Skip to main content

Advertisement

Log in

Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The folate receptor (FR) is overexpressed in a broad spectrum of malignant tumors and represents an attractive target for selective delivery of anti-cancer agents to FR-expressing tumors. Targeting liposomes to the FR has been proposed as a way to enhance the effects of liposome-based chemotherapy.

Methods

Folate–polyethylene glycol–distearoyl–phosphatidyl–ethanolamine conjugate was inserted into pegylated liposomal doxorubicin (PLD). The therapeutic activity of folate-targeted (FT-PLD) and non-targeted (PLD) pegylated liposomal doxorubicin was tested in two human tumor models (KB, KB-V) and in one mouse ascitic tumor model (FR-expressing J6456) by the i.v. systemic route in all models, and by the i.p. intracavitary route in the ascitic tumor model only.

Results

Consistent with previous studies, PLD was clearly superior to free doxorubicin in all tumor models. When targeted and non-targeted liposome formulations were compared, FT-PLD was more effective than PLD in the KB and KB-V xenograft models, and in the J6456 intra-cavitary therapy model. The therapeutic effect was dose-dependent in the KB model and schedule-dependent in the J6456 intra-cavitary therapy model. In some experiments, toxic deaths aggravated by folate-depleted diet were a major confounding factor. In a non-FR expressing J6456 model, FT-PLD was as active as PLD indicating that its activity is not limited to FR-expressing tumors.

Conclusion

Folate-targeting confers a significant albeit modest therapeutic improvement to PLD in FR-expressing tumor models, which appears particularly valuable in intracavitary therapy. The potential clinical added value of this approach has yet to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Solomon R, Gabizon AA (2008) Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal doxorubicin. Clin Lymphoma Myeloma 8:21–32

    Article  CAS  Google Scholar 

  2. Ewer MS, Martin FJ, Henderson C, Shapiro CL, Benjamin RS, Gabizon AA (2004) Cardiac safety of liposomal anthracyclines. Semin Oncol 31:161–181

    Article  CAS  PubMed  Google Scholar 

  3. Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113:171–199

    CAS  PubMed  Google Scholar 

  4. Gabizon A, Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA 85:6949–6953

    Article  CAS  PubMed  Google Scholar 

  5. Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP (2004) Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100:135–144

    Article  CAS  PubMed  Google Scholar 

  6. Pastorino F, Brignole C, Marimpietri D et al (2003) Doxorubicin-loaded Fab’ fragments of anti-disialoganglioside immunoliposomes selectively inhibit the growth and dissemination of human neuroblastoma in nude mice. Cancer Res 63:86–92

    CAS  PubMed  Google Scholar 

  7. Park JW, Kirpotin DB, Hong K et al (2001) Tumor targeting using anti-her2 immunoliposomes. J Control Release 74:95–113

    Article  CAS  PubMed  Google Scholar 

  8. Mamot C, Drummond DC, Greiser U et al (2003) Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells. Cancer Res 63:3154–3161

    CAS  PubMed  Google Scholar 

  9. Kobayashi T, Ishida T, Okada Y, Ise S, Harashima H, Kiwada H (2007) Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm 329:94–102

    Article  CAS  PubMed  Google Scholar 

  10. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338:284–293

    Article  CAS  PubMed  Google Scholar 

  11. Lee RJ, Low PS (1994) Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 269:3198–3204

    CAS  PubMed  Google Scholar 

  12. Wang S, Low PS (1998) Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release 53:39–48

    Article  CAS  PubMed  Google Scholar 

  13. Leamon CP (2008) Folate-targeted drug strategies for the treatment of cancer. Curr Opin Investig Drugs 9:1277–1286

    CAS  PubMed  Google Scholar 

  14. Yang J, Chen H, Vlahov IR, Cheng JX, Low PS (2006) Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging. Proc Natl Acad Sci USA 103:13872–13877

    Article  CAS  PubMed  Google Scholar 

  15. Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S (2004) Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid–PEG conjugates. Adv Drug Deliv Rev 56:1177–1192

    Article  CAS  PubMed  Google Scholar 

  16. Leamon CP, Cooper SR, Hardee GE (2003) Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug Chem 14:738–747

    Article  CAS  PubMed  Google Scholar 

  17. Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S (2003) In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 9:6551–6559

    CAS  PubMed  Google Scholar 

  18. Kirpotin DB, Drummond DC, Shao Y et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740

    Article  CAS  PubMed  Google Scholar 

  19. Allen TM, Sapra P, Moase E (2002) Use of the post-insertion method for the formation of ligand-coupled liposomes. Cell Mol Biol Lett 7:217–219

    PubMed  Google Scholar 

  20. Uster PS, Allen TM, Daniel BE, Mendez CJ, Newman MS, Zhu GZ (1996) Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett 386:243–246

    Article  CAS  PubMed  Google Scholar 

  21. Zalipsky S, Mullah N, Harding JA, Gittelman J, Guo L, DeFrees SA (1997) Poly(ethylene glycol)-grafted liposomes with oligopeptide or oligosaccharide ligands appended to the termini of the polymer chains. Bioconjug Chem 8:111–118

    Article  CAS  PubMed  Google Scholar 

  22. Shmeeda H, Mak L, Tzemach D, Astrahan P, Tarshish M, Gabizon A (2006) Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther 5:818–824

    Article  CAS  PubMed  Google Scholar 

  23. Gabizon A, Horowitz AT, Goren D et al (1999) Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem 10:289–298

    Article  CAS  PubMed  Google Scholar 

  24. Cabanes A, Tzemach D, Goren D, Horowitz AT, Gabizon A (1998) Comparative study of the antitumor activity of free doxorubicin and polyethylene glycol-coated liposomal doxorubicin in a mouse lymphoma model. Clin Cancer Res 4:499–505

    CAS  PubMed  Google Scholar 

  25. Shen DW, Cardarelli C, Hwang J et al (1986) Multiple drug-resistant human KB carcinoma cells independently selected for high-level resistance to colchicine, adriamycin, or vinblastine show changes in expression of specific proteins. J Biol Chem 261:7762–7770

    CAS  PubMed  Google Scholar 

  26. Gabizon AA, Tzemach D, Horowitz AT, Shmeeda H, Yeh J, Zalipsky S (2006) Reduced toxicity and superior therapeutic activity of a mitomycin C lipid-based prodrug incorporated in pegylated liposomes. Clin Cancer Res 12:1913–1920

    Article  CAS  PubMed  Google Scholar 

  27. Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet 42:419–436

    Article  CAS  PubMed  Google Scholar 

  28. Gabizon AA, Shmeeda H, Zalipsky S (2006) Pros and cons of the liposome platform in cancer drug targeting. J Liposome Res 16:175–183

    Article  CAS  PubMed  Google Scholar 

  29. Huang SK, Lee KD, Hong K, Friend DS, Papahadjopoulos D (1992) Microscopic localization of sterically stabilized liposomes in colon carcinoma-bearing mice. Cancer Res 52:5135–5143

    CAS  PubMed  Google Scholar 

  30. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK (1994) Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54:3352–3356

    CAS  PubMed  Google Scholar 

  31. Pan XQ, Wang H, Lee RJ (2003) Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharm Res 20:417–422

    Article  CAS  PubMed  Google Scholar 

  32. Saul JM, Annapragada A, Natarajan JV, Bellamkonda RV (2003) Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J Control Release 92:49–67

    Article  CAS  PubMed  Google Scholar 

  33. Zalipsky S, Mullah N, Qazen M (2004) Preparation of poly(ethylene glycol)-grafted liposomes with ligands at the extremities of polymer chains. Methods Enzymol 387:50–69

    Article  CAS  PubMed  Google Scholar 

  34. Shmeeda H, Tzemach D, Mak L, Gabizon A (2009) Her2-targeted pegylated liposomal doxorubicin: retention of target-specific binding and cytotoxicity after in vivo passage. J Control Release 136:155–160

    Article  CAS  PubMed  Google Scholar 

  35. Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A (2000) Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res 6:1949–1957

    CAS  PubMed  Google Scholar 

  36. Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98:335–344

    Article  CAS  PubMed  Google Scholar 

  37. Lee RJ, Low PS (1995) Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta 1233:134–144

    Article  PubMed  Google Scholar 

  38. Matthay KK, Heath TD, Papahadjopoulos D (1984) Specific enhancement of drug delivery to AKR lymphoma by antibody-targeted small unilamellar vesicles. Cancer Res 44:1880–1886

    CAS  PubMed  Google Scholar 

  39. Heath TD, Lopez NG, Stern WH, Papahadjopoulos D (1985) 5-Fluoroorotate: a new liposome-dependent cytotoxic agent. FEBS Lett 187:73–75

    Article  CAS  PubMed  Google Scholar 

  40. Kim JS, Heath TD (2000) In vitro cytotoxic effect of N-(phosphonacetyl)-l-aspartic acid in liposome against C-26 murine colon carcinoma. Arch Pharm Res 23:167–171

    Article  CAS  PubMed  Google Scholar 

  41. Gabizon A, Shmeeda H, Amitay Y et al (2009) Intracellular delivery of zoledronic acid by folate-targeted liposomes results in potent tumor cell cytotoxicity. Ann Oncol 20:iii32

    Article  Google Scholar 

  42. Reddy JA, Abburi C, Hofland H et al (2002) Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther 9:1542–1550

    Article  CAS  PubMed  Google Scholar 

  43. Chiu SJ, Marcucci G, Lee RJ (2006) Efficient delivery of an antisense oligodeoxyribonucleotide formulated in folate receptor-targeted liposomes. Anticancer Res 26:1049–1056

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by the Israel Cancer Research Fund and by Alza Corporation (Mountain View, CA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gabizon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOSM1 (DOC 283 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabizon, A., Tzemach, D., Gorin, J. et al. Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother Pharmacol 66, 43–52 (2010). https://doi.org/10.1007/s00280-009-1132-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1132-4

Keywords

Navigation