Skip to main content

Effects of usEPs on Plasma Membranes—Pores, Channels, and Repair

  • Chapter
  • First Online:
Ultrashort Electric Pulse Effects in Biology and Medicine

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Receptors, channels, glycoprotein, and transport proteins, among other integral proteins, load the plasma membrane lipid bilayer, which receives reinforcement from cytoskeletal filaments as the boundaries of cellular life. Early studies suggested that usEPs did not induce plasma membrane permeabilization until relatively high amplitude conditions. As will be discussed here and elsewhere, this was because the usEP-induced plasma membrane pores were so small that they did not allow entry of propidium iodide, a commonly used marker for permeability, or calcein exit from the cell. The plasma membrane contained nanoelectropores or nanopores, so-called because they were ~1 nm in diameter. These lipid nanopore structures exhibited complex conductances similar to classic pores, which are common in protein structures. Another finding presented some confounding information regarding plasma membrane phosphatidylserine (PS) externalization, commonly used as a marker for apoptosis. usEPs “pulled” PS through these nanopores. Now PS externalization was an ambiguous marker for apoptosis. Although plasma membrane lipids were clear usEP targets, plasma membrane channels were also targets for usEPs. As will be discussed, these effects could be due indirectly to nanopore formation or possibly directly on the channels themselves, although more evidence for direct effects is necessary. In any event, patch-clamp techniques provided new, exciting, and valuable information about usEP effects on plasma membranes. As might be expected, cells have mechanisms that confront nanopore formation and other possible usEP-induced injuries, which will be presented. Finally, in relatively uncharted territory, usEPs were also shown to affect redox systems in plasma membranes as electron carriers. Although usEPs are unique for their effects on intracellular structures and functions, their impact on the plasma membrane has provided a wealth of information about how they can be used as tools in biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci USA 113:7858–7863

    Article  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (eds) (2014) Molecular biology of the cell, 6th edn. New York and Abingdon, UK. ISBN: 9780815344643

    Google Scholar 

  • Armstrong CM, Hille B (1998) Voltage-gated ion channels and electrical excitability. Neuron Rev 20:371–380

    Google Scholar 

  • Awasthi K, Nakabayashi T, Ohta N (2016) Effects of nanosecond pulsed electric fields on the intracellular function of HeLa cells as revealed by NADH autofluorescence microscopy. ACS Omega 1:396–406

    Article  Google Scholar 

  • Azarov JE, Semenov I, Casciola M, Pakhomov AG (2018) Excitation of murine cardiac myocytes by nanosecond pulsed electric field. J Cardiovasc Electrophysiol. https://doi.org/10.1111/jce.13834

  • Bailey RW, Nguyen T, Robertson L, Gibbons E, Nelson J, Christensen RE, Bell JP, Judd AM, Bell JD (2009) Sequence of physical changes to the cell membrane during glucocorticoid-induced apoptosis in S49 lymphoma cells. Biophys J 96:2709–2718

    Article  Google Scholar 

  • Batista Napotnik T, Wu YH, Gundersen MA, Miklavčič D, Vernier PT (2012) Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics 33:257–264

    Article  Google Scholar 

  • Batista Napotnik T, Reberšek M, Vernier PT, Mali B, Miklavčič D (2016) Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): A systematic review. Bioelectrochemistry 110:1–12

    Google Scholar 

  • Beebe SJ (2015) Considering effects of nanosecond pulsed electric fields on proteins. Bioelectrochemistry 103:52–59

    Article  Google Scholar 

  • Beebe, SJ (2016) Preclinical studies with nanosecond pulses. In: Miklavčič D (ed) Handbook of electroporation. Springer, Berlin, pp 1543–1562. ISBN: 978-3-319-26779-1 (Print) 978-3-319-26779-1

    Google Scholar 

  • Beebe SJ, Fox PM, Rec LH, Buescher ES, Somers K, Schoenbach KH (2002) Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans Plasma Sci 30:286–292

    Article  Google Scholar 

  • Beebe SJ, White J, Blackmore PF, Deng Y, Somers K, Schoenbach KH (2003a) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol 22:785–796

    Article  Google Scholar 

  • Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH (2003b) Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J 17:1493–2145

    Article  Google Scholar 

  • Beebe SJ, Chen YJ, Sain NM, Schoenbach KH, Xiao S (2012) Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability. PLoS One 7(12):e51349

    Google Scholar 

  • Beebe SJ, Sain NM, Ren W (2013) Induction of cell death mechanisms and apoptosis by nanosecond pulsed electric fields (nsPEFs). Cells 2:136–162

    Article  Google Scholar 

  • Beebe SJ, Lassiter BP, Guo S (2018) Nanopulse stimulation (NPS) induces tumor ablation and immunity in orthotopic 4T1 mouse breast cancer: a review. Cancers (Basel) 10(pii):E97

    Google Scholar 

  • Blazek AD, Paleo BJ, Weisleder N (2015) Plasma membrane repair: a central process for maintaining cellular homeostasis. Physiol (Bethesda) 30:438–448

    Google Scholar 

  • Botto L, Beretta E, Daffara R, Miserocchi G, Palestini P (2006) Biochemical and morphological changes in endothelial cells in response to hypoxic interstitial edema. Respir Res 7:7

    Article  Google Scholar 

  • Bowman AM, Nesin OM, Pakhomova ON, Pakhomov AG (2010) Analysis of plasma membrane integrity by fluorescent detection of Tl(+) uptake. J Membr Biol 236:15–26

    Article  Google Scholar 

  • Bubb KJ, Birgisdottir AB, Tang O, Hansen T, Figtree GA (2017) Redox modification of caveolar proteins in the cardiovascular system-role in cellular signalling and disease. Free Radic Biol Med 109:61–74

    Article  Google Scholar 

  • Buescher ES, Smith RR, Schoenbach KH (2004) Submicrosecond intense pulsed electric field effects on intracellular free calcium: mechanisms and effects. IEEE Trans Plasma Sci 32:1563–1572

    Article  Google Scholar 

  • Cai C, Masumiya H, Weisleder N, Matsuda N, Nishi M, Hwang M, Ko JK, Lin P, Thornton A, Zhao X, Pan Z, Komazaki S, Brotto M, Takeshima H, Ma J (2009) MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11:56–64

    Article  Google Scholar 

  • Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG, Liu ZG (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1):55–65

    Article  Google Scholar 

  • Cantu JC, Tarango M, Beier HT, Ibey BL (2016) The biological response of cells to nanosecond pulsed electric fields is dependent on plasma membrane cholesterol. Biochim Biophys Acta 1858:2636–2646

    Article  Google Scholar 

  • Casciola M, Bonhenry D, Liberti M, Apollonio F, Tarek M (2014) A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry 100:11–17

    Article  Google Scholar 

  • Chan FK, Luz NF, Moriwaki K (2015) Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol 33:79–106

    Article  Google Scholar 

  • Charras GT (2008) A short history of blebbing. J Microsc 231:466–478

    Article  MathSciNet  Google Scholar 

  • Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 75:477–490

    Google Scholar 

  • Charras GT, Hu CK, Coughlin M, Mitchison TJ (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175:477–490

    Article  Google Scholar 

  • Chen, Schoenbach KH, Kolb JF, James SR, Garner AL, Yang J, Joshi RP, Beebe SJ (2004) Leukemic cell intracellular responses to nanosecond electric fields. Biochem Biophys Res Commun 317:421–427

    Google Scholar 

  • Chen X, He WT, Hu L, Li J, Fang Y, Wang X, Xu X, Wang Z, Huang K, Han J (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26:1007–1020

    Article  Google Scholar 

  • Cheng DK, Tung L, Sobie EA (1999) Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am J Physiol 277:H351-362

    Article  Google Scholar 

  • Cohen P (2000) The regulation of protein function by multisite phosphorylation–a 25 year update. Trends Biochem Sci 25:596–601

    Article  Google Scholar 

  • Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3:339–345

    Article  Google Scholar 

  • Craviso GL, Chatterjee P, Maalouf G, Cerjanic A, Yoon J, Chatterjee I, Vernier PT (2009) Nanosecond electric pulse-induced increase in intracellular calcium in adrenal chromaffin cells triggers calcium-dependent catecholamine release. IEEE Trans Dielect Electr Ins 16:1294–1301

    Google Scholar 

  • Craviso GL, Choe S, Chatterjee P, Chatterjee I, Vernier PT (2010) Nanosecond electric pulses: a novel stimulus for triggering Ca2+ influx into chromaffin cells via voltage-gated Ca2+ channels. Cell Mol Neurobiol 30:1259–1265

    Article  Google Scholar 

  • Davies SS, Guo L (2014) Lipid peroxidation generates biologically active phospholipids including oxidatively N-modified phospholipids. Chem Phys Lipids 181:1–33

    Article  Google Scholar 

  • Demonbreun AR, McNally EM (2016) Plasma membrane repair in health and disease. Curr Top Membr 77:67–96

    Article  Google Scholar 

  • Denes A, Lopez-Castejon G, Brough D (2012) Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis 3:e338

    Article  Google Scholar 

  • Deng J, Schoenbach KH, Buescher ES, Hair PS, Fox PM, Beebe SJ (2003) The effects of intense submicrosecond electrical pulses on cells. Biophys J 84:2709–2714

    Article  Google Scholar 

  • Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–116

    Article  Google Scholar 

  • Donate A, Bulysheva A, Edelblute C, Jung D, Malik MA, Guo S, Burcus N, Schoenbach K, Heller R (2016) Thermal assisted in vivo gene electrotransfer. Curr Gene Ther 16:83–89

    Article  Google Scholar 

  • Edelblute CM, Hornef J, Burcus NI, Norman T, Beebe SJ, Schoenbach K, Heller R, Jiang C, Guo S (2017) Controllable moderate heating enhances the therapeutic efficacy of irreversible electroporation for pancreatic cancer. Sci Rep 7:11767

    Article  Google Scholar 

  • Edelblute CM, Guo S, Hornef J, Yang E, Jiang C, Schoenbach K, Heller R (2018) Moderate heat application enhances the efficacy of nanosecond pulse stimulation for the treatment of squamous cell carcinoma. Technol Cancer Res Treat 17:1533033818802305

    Article  Google Scholar 

  • Esser AT, Smith KC, Gowrishankar TR, Weaver JC (2009) Towards solid tumor treatment by nanosecond pulsed electric fields. Technol Cancer Res Treat 8:289–306

    Article  Google Scholar 

  • Esser AT, Smith KC, Gowrishankar TR, Vasilkoski Z, Weaver JC (2010) Mechanisms for the intracellular manipulation of organelles by conventional electroporation. Biophys J 98:2506–2514

    Article  Google Scholar 

  • Estlack LE, Roth CC, Thompson GL 3rd, Lambert WA 3rd, Ibey BL (2014) Nanosecond pulsed electric fields modulate the expression of Fas/CD95 death receptor pathway regulators in U937 and Jurkat Cells. Apoptosis 19:1755–1768

    Article  Google Scholar 

  • Fernández ML, Marshall B, Sagués F, Reigada R (2010) Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J Phys Chem B 114:6855–6865

    Article  Google Scholar 

  • Fielding CJ, Fielding PE (2000) Cholesterol and caveolae: structural and functional relationships. Biochim Biophys Acta 1529(1–3):210–222

    Google Scholar 

  • Foster KR (2000) Thermal and nonthermal mechanisms of interaction of radio-frequency energy with biological systems. IEEE Trans Plasma Sci 28:15–23

    Article  Google Scholar 

  • Frey W, White JA, Price RO, Blackmore PF, Joshi RP, Nuccitelli R, Beebe SJ, Schoenbach KH, Kolb JF (2006) Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophys J 90:3608–3615

    Article  Google Scholar 

  • Gowrishankar TR, Esser AT, Vasilkoski Z, Smith KC, Weaver JC (2006). Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Commun 341(4):1266–1276

    Google Scholar 

  • Graves JD, Krebs EG (1999) Protein phosphorylation and signal transduction. Pharmacol Ther 82:111–121

    Article  Google Scholar 

  • Guo S, Jing Y, Burcus NI, Lassiter BP, Tanaz R, Heller R, Beebe SJ (2018) Nano-pulse stimulation induces potent immune responses, eradicating local breast cancer while reducing distant metastases. Int J Cancer 142:629–640

    Article  Google Scholar 

  • Hall EH, Schoenbach KH, Beebe SJ (2007) Nanosecond pulsed electric fields induce apoptosis in p53-wildtype and p53-null HCT116 colon carcinoma cells. Apoptosis 12(9):1721–1731

    Google Scholar 

  • Hayes MJ, Merrifield CJ, Shao D, Ayala-Sanmartin J, Schorey CD, Levine TP, Proust J, Curran J, Bailly M, Moss SE (2004) Annexin 2 binding to phosphatidylinositol 4,5-bisphosphate on endocytic vesicles is regulated by the stress response pathway. J Biol Chem 279:14157–14164

    Article  Google Scholar 

  • Horn A, Jaiswal JK (2018) Cellular mechanisms and signals that coordinate plasma membrane repair. Cell Mol Life Sci 75:3751–3770

    Article  Google Scholar 

  • Hu Q, Joshi RP, Schoenbach KH (2005a) Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Phys Rev E Stat Nonlin Soft Matter Phys 72:031902

    Google Scholar 

  • Hu Q, Viswanadham S, Joshi RP, Schoenbach KH, Beebe SJ, Blackmore PF (2005b) Simulations of transient membrane behavior in cells subjected to a high-intensity, ultra-short electric pulse. Phys Rev E 71:031914

    Google Scholar 

  • Huang D, Zheng X, Wang ZA, Chen X, He WT, Zhang Y, Xu JG, Zhao H, Shi W, Wang X, Zhu Y, Han J (2017) The MLKL channel in necroptosis is an octamer formed by tetramers in a dyadic. Process Mol Cell Biol 37(pii):e00497-16

    Google Scholar 

  • Hyun DH, Hernandez JO, Mattson MP, de Cabo R (2006) The plasma membrane redox system in aging. Ageing Res Rev 5(2):209–220

    Article  Google Scholar 

  • Ibey BL, Xiao S, Schoenbach KH, Murphy MR, Pakhomov AG (2009) Plasma membrane permeabilization by 60- and 600-ns electric pulses is determined by the absorbed dose. Bioelectromagnetics 30:92–99

    Google Scholar 

  • Ibey BL, Mixon DG, Payne JA, Bowman A, Sickendick K, Wilmink GJ, Roach WP, Pakhomov AG (2010). Plasma membrane permeabilization by trains of ultrashort electric pulses. Bioelectrochemistry 79:114–121. [PubMed: 20171148]

    Google Scholar 

  • Jimenez AJ, Perez F (2017) Plasma membrane repair: the adaptable cell life-insurance. Curr Opin Cell Biol 47:99–107

    Article  Google Scholar 

  • Joshi RP, Hu Q, Schoenbach KH, Hjalmarson HP (2002) Improved energy model for membrane electroporation in biological cells subjected to electrical pulses. Phys Rev E Stat Nonlin Soft Matter Phys 65:041920

    Article  Google Scholar 

  • Joshi RP, Schoenbach KH, Beebe SJ, Blackmore PF (2005) Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Hu Q, Viswanadham S, Phys Rev E Stat Nonlin Soft Matter Phys 71(3):031914

    Google Scholar 

  • Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381

    Article  Google Scholar 

  • Kotnik T, Miklavcic D (2006) Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J 90:480–491

    Article  Google Scholar 

  • Lassiter BP, Guo S, Beebe SJ (2018) Nano-pulse stimulation ablates orthotopic rat hepatocellular carcinoma and induces innate and adaptive memory immune mechanisms that prevent recurrence. Cancers (Basel) 10(3):E69

    Google Scholar 

  • Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D'Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC (2010) The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468:447–451

    Google Scholar 

  • Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535:153–158

    Article  Google Scholar 

  • Marracino P, Apollonio F, Liberti M, d’Inzeo G, Amadei A (2013) Effect of high exogenous electric pulses on protein conformation: myoglobin as a case study. J Phys Chem B 117:2273–2279

    Article  Google Scholar 

  • Mihalache CC, Yousefi S, Conus S, Villiger PM, Schneider EM, Simon HU (2011) Inflammation associated autophagy-related programmed necrotic death of human neutrophils characterized by organelle fusion events. J Immunol 186:6532–6542

    Article  Google Scholar 

  • Nakamura M, Dominguez ANM, Decker JR, Hull AJ, Verboon JM, Parkhurst SM (2018) Into the breach: how cells cope with wounds. Open Biol 8:180135

    Google Scholar 

  • Nesin V, Pakhomov AG (2012a) Inhibition of voltage-gated Na(+) current by nanosecond pulsed electric field (nsPEF) is not mediated by Na(+) influx or Ca(2+) signaling. Bioelectromagnetics 33:443–451

    Article  Google Scholar 

  • Nesin V, Bowman AM, Xiao S, Pakhomov AG (2012b) Cell permeabilization and inhibition of voltage-gated Ca(2+) and Na(+) channel currents by nanosecond pulsed electric field. Bioelectromagnetics 33:394–404

    Article  Google Scholar 

  • Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lymphoma cells by electroporation in high electric fields. EMBO J 1(7):841–845

    Google Scholar 

  • Neumann E, Kakorin S, Toensing K (1999) Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem Bioenerg 48:3–16

    Article  Google Scholar 

  • Nordzieke DE, Medraño-Fernandez I (2018) The plasma membrane: a platform for intra- and intercellular redox signaling. Antioxidants (Basel) 7:E168

    Google Scholar 

  • Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532:3–16

    Article  Google Scholar 

  • Op den Kamp JA (1979) Lipid asymmetry in membranes. Annu Rev Biochem 48:47–71

    Google Scholar 

  • Pakhomov AG, Pakhomova ON (2010) Nanopores: a distinct transmembrane passageway in electroporated cells. In: Pakhomov AG, Miklavcic D, Markov MS (eds) Advanced electroporation techniques in biology in medicine. CRC Press, pp 178–194

    Google Scholar 

  • Pakhomov AG, Shevin R, White JA, Kolb JF, Pakhomova ON, Joshi RP, Schoenbach KH (2007a) Membrane permeabilization and cell damage by ultrashort electric field shocks. Arch Biochem Biophys 465:109–118

    Article  Google Scholar 

  • Pakhomov AG, Kolb JF, White JA, Joshi RP, Xiao S, Schoenbach KH (2007b) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28:655–663

    Article  Google Scholar 

  • Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385:181–186

    Article  Google Scholar 

  • Pakhomov AG, Semenov I, Casciola M, Xiao S (2017) Neuronal excitation and permeabilization by 200-ns pulsed electric field: an optical membrane potential study with FluoVolt dye. Biochim Biophys Acta Biomembr 1859:1273–1281

    Article  Google Scholar 

  • Papackova Z, Cahova M (2015) Fatty acid signaling: the new function of intracellular lipases. Int J Mol Sci 16:3831–3855

    Article  Google Scholar 

  • Pawson T, Scott JD (2005) Protein phosphorylation in signaling–50 years and counting. Trends Biochem Sci 30:286–290

    Article  Google Scholar 

  • Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN et al (2007) Autophagy gene dependent clearance of apoptotic cells during embryonic development. Cell 128:931–946

    Article  Google Scholar 

  • Rassokhin MA, Pakhomov AG (2012) Electric field exposure triggers and guides formation of pseudopod-like blebs in U937 monocytes. J Membr Biol 245:521–529

    Article  Google Scholar 

  • Rassokhin MA, Pakhomov AG (2014) Cellular regulation of extension and retraction of pseudopod-like blebs produced by nanosecond pulsed electric field (nsPEF). Cell Biochem Biophys 69:555–566

    Article  Google Scholar 

  • Ray S, Kassan A, Busija AR, Rangamani P, Patel HH (2016) The plasma membrane as a capacitor for energy and metabolism. Am J Physiol Cell Physiol 310:C181-192

    Article  Google Scholar 

  • Reale R, English NJ, Garate JA, Marracino P, Liberti M, Apollonio F (2013) Human aquaporin 4 gating dynamics under and after nanosecond-scale static and alternating electric-field impulses: a molecular dynamics study of field effects and relaxation. J Chem Phys 139:205101

    Article  Google Scholar 

  • Ren W, Sain NM, Beebe SJ (2012) Nanosecond pulsed electric fields (nsPEFs) activate intrinsic caspase-dependent and caspase-independent cell death in Jurkat cells. Biochem Biophys Res Commun 421(4):808–812

    Article  Google Scholar 

  • Rizvi SI, Srivastava N (2010) Erythrocyte plasma membrane redox system in first degree relatives of type 2 diabetic patients. Intern J Diab Mell 2:119–121

    Google Scholar 

  • Rizvi SI, Kumar D, Chakravarti S, Singh P (2011) Erythrocyte plasma membrane redox system may determine maximum life span. Med Hypotheses 76:547–549

    Article  Google Scholar 

  • Romeo S, Zeni L, Sarti M, Sannino A, Scarfì MR, Vernier PT, Zeni O (2011) DNA electrophoretic migration patterns change after exposure of Jurkat cells to a single intense nanosecond electric pulse. PLoS ONE 6:e28419

    Article  Google Scholar 

  • Roth CC, Tolstykh GP, Payne JA, Kuipers MA, Thompson GL, DeSilva MN, Ibey BL (2013) Nanosecond pulsed electric field thresholds for nanopore formation in neural cells. J Biomed Opt 18(3):035005

    Google Scholar 

  • Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, Müller DJ, Broz P, Hiller S (2016) GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 35:1766–1778

    Article  Google Scholar 

  • Scarlett DJ, Herst P, Tan A, Prata C, Berridge M (2004) Mitochondrial gene-knockout (rho0) cells: a versatile model for exploring the secrets of trans-plasma membrane electron transport. Biofactors Rev. 20:199–206

    Article  Google Scholar 

  • Schoenbach KH, Peterkin FE, Alden RW, Beebe SJ (1997) The effect of pulsed electric fields on biological cells: experiments and applications. IEEE Trans Plasma Sci 25:284–292

    Article  Google Scholar 

  • Schoenbach KH, Joshi RP, Stark RH, Dobbs F, Beebe SJ (2000) Bacterial decontamination of liquids with pulsed electric fields, invited review paper. IEEE Trans Dielectr Electr Insul 7:637

    Article  Google Scholar 

  • Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448

    Article  Google Scholar 

  • Schoenbach KH, Joshi RP, Kolb JF, Chen N, Stacey M, Blackmore PF, Buescher ES, Beebe SJ (2004) Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE 92:1122–1137

    Article  Google Scholar 

  • Schoenbach KH, Joshi RP, and Beebe SJ, Baum CE (2009) A scaling law for membrane permeabilization with nanopulses. IEEE Trans. Dielectrics and Electrical Insulation. 16:1224–1235

    Google Scholar 

  • Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176

    Article  Google Scholar 

  • Schwann HP (1985) Dielectric properties of cells and tissues. In: Interactions between Electromagnetic Fields and Cells. C. Chiabrera, C. Nicolini, and H. P. Schwan, editors. Pergamon Press, New York, and London 75–97

    Google Scholar 

  • Schumacker PT (2015) Reactive oxygen species in cancer: a dance with the devil. Cancer Cell 27:156–157

    Article  Google Scholar 

  • Sebbagh M, Renvoizé C, Hamelin J, Riché N, Bertoglio J, Bréard J (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3:346–352

    Article  Google Scholar 

  • Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S (2014) Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 344:1164–1168

    Article  Google Scholar 

  • Semenov I, Xiao S, Pakhomov AG (2013a) Primary pathways of intracellular Ca(2+) mobilization by nanosecond pulsed electric field. Biochim Biophys Acta 1828:981–989

    Article  Google Scholar 

  • Semenov I, Xiao S, Pakhomova ON, Pakhomov AG (2013b) Recruitment of the intracellular Ca2+ by ultrashort electric stimuli: the impact of pulse duration. Cell Calcium 54:145–150

    Article  Google Scholar 

  • Semenov I, Xiao S, Kang D, Schoenbach KH, Pakhomov AG (2015a) Cell stimulation and calcium mobilization by picosecond electric pulses. Bioelectrochemistry 105:65–71

    Article  Google Scholar 

  • Semenov I, Zemlin C, Pakhomova ON, Xiao S, Pakhomov AG (2015b) Diffuse, non-polar electropermeabilization and reduced propidium uptake distinguish the effect of nanosecond electric pulses. Biochim Biophys Acta 1848:2118–21125

    Article  Google Scholar 

  • Semenov I, Xiao S, Pakhomov AG (2016) Electroporation by subnanosecond pulses. Biochem Biophys Rep 6:253–259

    Google Scholar 

  • Sharma V, Tung L (2002) Spatial heterogeneity of transmembrane potential responses of single guinea-pig cardiac cells during electric field stimulation. J Physiol 542:477–492

    Article  Google Scholar 

  • Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245–254

    Article  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  Google Scholar 

  • Smyth KC, Gowrishankar TR, Esser AT, Stewart DA, Weaver JC (2006) Spatially distributed, dynamic transmembrane voltages of organelle and cell membranes due to 10 ns pulses: predictions of meshed and unmeshed transpoort network models. IEEE Trans Plasma Sci 34:1394–1404

    Article  Google Scholar 

  • Sridhara V, Joshi RP (2014) Numerical study of lipid translocation driven by nanoporation due to multiple high-intensity, ultrashort electrical pulses. Biochim Biophys Acta 1838(3):902–909

    Google Scholar 

  • Stewart DA, Gowrishankar TR, Weaver JC (2004) Transport lattice approach to describing cell electroporation: use of a local asymptotic model. IEEE Trans Plasma Sci 32:1696–1708

    Article  Google Scholar 

  • Sun J, Nguyen T, Aponte AM, Menazza S, Kohr MJ, Roth DM, Patel HH, Murphy E, Steenbergen C (2015) Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovasc Res 106:227–236

    Article  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    Article  Google Scholar 

  • Taylor SS, Keshwani MM, Steichen JM, Kornev AP (2012) Evolution of the eukaryotic protein kinases as dynamic molecular switches. Philos Trans R Soc Lond B Biol Sci 367(1602):2517–2528

    Google Scholar 

  • Tekle E, Oubrahim H, Dzekunov SM, Kolb JF, Schoenbach KH, Chock PB (2005) Selective field effects on intracellular vacuoles and vesicle membranes with nanosecond electric pulses. Biophys J 89:274–284

    Article  Google Scholar 

  • Tekle E, Wolfe MD, Oubrahim H, Chock PB (2008) Phagocytic clearance of electric field induced ‘apoptosis-mimetic’ cells. Biochem Biophys Res Commun 376:256–260

    Article  Google Scholar 

  • Thompson GL, Roth C, Tolstykh G, Kuipers M, Ibey BL (2014) Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields. Bioelectromagnetics 35:262–272

    Article  Google Scholar 

  • Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10

    Article  Google Scholar 

  • Togo T (2004) Long-term potentiation of wound-induced exocytosis and plasma membrane repair is dependent on cAMP-response element-mediated transcription via a protein kinase C- and p38 MAPK-dependent pathway. J Biol Chem 279:44996–445003

    Article  Google Scholar 

  • Tolstykh GP, Thompson GL, Beier HT, Steelman ZA, Ibey BL (2016) nsPEF-induced PIP2 depletion, PLC activity and actin cytoskeletal cortex remodeling are responsible for post-exposure cellular swelling and blebbing. Biochem Biophys Rep 9:36–41

    Google Scholar 

  • Tolstykh GP, Tarango M, Roth CC, Ibey BL (2017) Nanosecond pulsed electric field induced dose dependent phosphatidylinositol-4,5-bisphosphate signaling and intracellular electro-sensitization. Biochim Biophys Acta Biomembr 1859:438–445

    Article  Google Scholar 

  • Verhoven B, Schlegel, Williamson P (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med 182:1597–1601

    Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA (2003) Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 310:286–295

    Article  Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA (2004a) Nanoelectropulse-induced phosphatidylserine translocation. Biophys J 86:4040–4048

    Article  Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA (2004b) Nanosecond pulsed electric fields perturb membrane phospholipids in T lymphoblasts. FEBS Lett 572:103–108

    Article  Google Scholar 

  • Vernier PT, Sun Y, Gundersen MA (2006a) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7:37

    Article  Google Scholar 

  • Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP (2006b) Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers–in cells and in silico. Phys Biol 3:233–247

    Article  Google Scholar 

  • Vernier PT, Sun Y, Chen MT, Gundersen MA, Craviso GL (2008) Nanosecond electric pulse-induced calcium entry into chromaffin cells. Bioelectrochemistry 73:1–4

    Article  Google Scholar 

  • Wang S, Chen J, Chen MT, Vernier PT, Gundersen MA, Valderrábano M (2009a) Cardiac myocyte excitation by ultrashort high-field pulses. Biophys J 96:1640–1648

    Article  Google Scholar 

  • Wang Y, Dawson VL, Dawson TM (2009b) Poly(ADP-ribose) signals to mitochondrial AIF: a key event in parthanatos. Exp Neurol 218:193–202

    Article  Google Scholar 

  • Watkins SJ, Borthwick GM, Arthur HM (2011) The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. Vitro Cell Dev Biol Anim 47:125–131

    Article  Google Scholar 

  • Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 4:135–160

    Article  Google Scholar 

  • White JA, Blackmore PF, Schoenbach KH, Beebe SJ (2004) Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields. J Biol Chem 279:22964–22972

    Article  Google Scholar 

  • Xia B, Fang S, Chen X, Hu H, Chen P, Wang H, Gao Z (2016) MLKL forms cation channels. Cell Res 26(5):517–528

    Article  Google Scholar 

  • Zhang J, Blackmore PF, Hargrave BY, Xiao S, Beebe SJ, Schoenbach KH (2008) Nanosecond pulsed electric field (nanopulse): a novel non-ligand agonist for platelet activation. Arch Biochem Biophys 471(2):240–248

    Google Scholar 

  • Zhang Y, Chen X, Gueydan C, Han J (2018) Plasma membrane changes during programmed cell deaths. Cell Res 28:9–21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Beebe .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beebe, S.J. (2021). Effects of usEPs on Plasma Membranes—Pores, Channels, and Repair. In: Ultrashort Electric Pulse Effects in Biology and Medicine. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5113-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5113-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5112-8

  • Online ISBN: 978-981-10-5113-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics