Skip to main content
Log in

Nanosecond pulsed electric fields modulate the expression of Fas/CD95 death receptor pathway regulators in U937 and Jurkat Cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In this publication, we demonstrate that exposure of Jurkat and U937 cells to nanosecond pulsed electrical fields (nsPEF) can modulate the extrinsic-mediated apoptotic pathway via the Fas/CD95 death receptor. An inherent difference in survival between these two cell lines in response to 10 ns exposures has been previously reported (Jurkat being more sensitive to nsPEF than U937), but the reason for this sensitivity difference remains unknown. We found that exposure of each cell line to 100, 10 ns pulses at 50 kV/cm caused a marked increase in expression of cFLIP (extrinsic apoptosis inhibitor) in U937 and FasL (extrinsic apoptosis activator) in Jurkat, respectively. Measurement of basal expression levels revealed an inherent difference between U937 cells, having a higher expression of cFLIP, and Jurkat cells, having a higher expression of FasL. From these data, we hypothesize that the sensitivity difference between the cells to nsPEF exposure may be directly related to expression of extrinsic apoptotic regulators. To validate this hypothesis, we used siRNA to knockdown cFLAR (coding for cFLIP protein) expression in U937, and FasL expression in Jurkat and challenged them to 100, 10 ns pulses at 150 kV/cm, a typical lethal dose. We observed that U937 survival was reduced nearly 60 % in the knockdown population while Jurkat survival improved ~40 %. These findings support the hypothesis that cell survival following 10 ns pulse exposures depends on extrinsic apoptotic regulators. Interestingly, pretreatment of U937 with a 100-pulse, 50 kV/cm exposure (to amplify cFLAR expression) significantly reduced the lethality of a 150 kV/cm, 100-pulse exposure applied 24 h later. From these data, we conclude that the observed survival differences between cells, exposed to 10 ns pulsed electric fields, is due to inherent cell biochemistry rather than the biophysics of the exposure itself. Understanding cell sensitivity to nsPEF may provide researchers/clinicians with a predicable way to control or avoid unintended cell death during nsPEF exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hamasu T, Inanami O, Asanuma T, Kuwabara M (2005) Enhanced induction of apoptosis by combined treatment of human carcinoma cells with X-rays and death receptor agonists. J Radiat Res (Tokyo) 46:103–110

    Article  CAS  Google Scholar 

  2. Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH (2003) Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. Faseb J 17:1493–1495

    CAS  PubMed  Google Scholar 

  3. Beebe SJ, White J, Blackmore PF, Deng Y, Somers K, Schoenbach KH (2003) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol 22:785–796

    Article  CAS  PubMed  Google Scholar 

  4. Hall E, Schoenbach K, Beebe S (2007) Nanosecond pulsed electric fields induce apoptosis in p53-wildtype and p53-null HCT116 colon carcinoma cells. Apoptosis 12:1721–1731

    Article  CAS  PubMed  Google Scholar 

  5. Schoenbach KS, Hargrave B, Joshi RP et al (2007) Bioelectric effects of nanosecond pulses. IEEE Trans Dielectr Electr Insul 14:1088–1109

    Article  CAS  Google Scholar 

  6. Weaver JC, Smith KC, Esser AT, Son RS, Gowrishankar TR (2012) A brief overview of electroporation pulse strength duration space: a region where additional intracellular effects are expected. Bioelectrochemistry 87:236–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Vernier PT, Aimin L, Marcu L, Craft CM, Gundersen MA (2003) Ultrashort pulsed electric fields induce membrane phospholipid translocation and caspase activation: differential sensitivities of Jurkat T lymphoblasts and rat glioma C6 cells. IEEE Trans Dielectr Electr Insul 10:795–809

    Article  CAS  Google Scholar 

  8. Beebe S, Sain N, Ren W (2013) Induction of cell death mechanisms and apoptosis by nanosecond pulsed electric fields (nsPEFs). Cells 2:136–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ren W, Beebe SJ (2012) An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma. Apoptosis 16:382–393

    Article  Google Scholar 

  10. Ren W, Sain NM, Beebe SJ (2012) Nanosecond pulsed electric fields (nsPEFs) activate intrinsic caspase-dependent and caspase-independent cell death in Jurkat cells. Biochem Biophys Res Commun 421:808–812

    Article  CAS  PubMed  Google Scholar 

  11. Napotnik TB, Wu Y-H, Gundersen MA, Miklavčič D, Vernier PT (2012) Nanosecond electric pulses cause mitochondrial membrane permeabilization in Jurkat cells. Bioelectromagnetics 33:257–264

    Article  CAS  Google Scholar 

  12. Vernier PT, Yinghua S, Jingjing W, et al. (2005) Nanoelectropulse intracellular perturbation and electropermeabilization technology: phospholipid translocation, calcium bursts, chromatin rearrangement, cardiomyocyte activation, and tumor cell sensitivity. Engineering in Medicine and Biology Society, 2005 IEEE-EMBS 2005 27th Annual International Conference of the 2005 pp. 5850–5853

  13. Vernier PT, Sun Y, Chen M-T, Gundersen MA, Craviso GL (2008) Nanosecond electric pulse-induced calcium entry into chromaffin cells. Bioelectrochemistry 73:1–4

    Article  CAS  PubMed  Google Scholar 

  14. Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA (2004) Nanoelectropulse-induced phosphatidylserine translocation. Biophys J 86:4040–4048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Hu Q, Joshi RP, Schoenbach KH (2005) Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse. Phys Rev E 72:031902

    Article  CAS  Google Scholar 

  16. Pakhomov AG, Shevin R, White JA et al (2007) Membrane permeabilization and cell damage by ultrashort electric field shocks. Arch Biochem Biophys 465:109–118

    Article  CAS  PubMed  Google Scholar 

  17. Pakhomov AG, Pakhomova ON (2010) Nanopores: a distinct transmembrane passageway in electroporated cells. In: Pakhomov AG, Miklavcic D, Markov MS (eds) Advanced electroporation techniques in biology in medicine. CRC Press, Boca Raton

    Google Scholar 

  18. Pakhomov AG, Kolb JF, White JA, Joshi RP, Xiao S, Schoenbach KH (2007) Long-lasting plasma membrane permeabilization in mammalian cells by nanosecond pulsed electric field (nsPEF). Bioelectromagnetics 28:655–663

    Article  CAS  PubMed  Google Scholar 

  19. Pakhomov AG, Bowman AM, Ibey BL, Andre FM, Pakhomova ON, Schoenbach KH (2009) Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem Biophys Res Commun 385:181–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Rubinsky B (2010) Irreversible electroporation. Springer, Berlin Heidelberg

    Book  Google Scholar 

  21. Pakhomova ON, Gregory BW, Semenov I, Pakhomov AG (2013) Two modes of cell death caused by exposure to nanosecond pulsed electric field. PLoS One 8:e70278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ibey BL, Pakhomov AG, Gregory BW, et al. (2010) Selective cytotoxicity of intense nanosecond-duration electric pulses in mammalian cells. Biochim et Biophys Acta (BBA) 1800:1210–1219

  23. Ibey BL, Roth CC, Pakhomov AG, Bernhard JA, Wilmink GJ, Pakhomova ON (2011) Dose-dependent thresholds of 10-ns electric pulse induced plasma membrane disruption and cytotoxicity in multiple cell lines. PLoS One 6:e15642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Ren W, Beebe SJ (2011) An apoptosis targeted stimulus with nanosecond pulsed electric fields (nsPEFs) in E4 squamous cell carcinoma. Apoptosis 16:382–393

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ford WE, Ren W, Blackmore PF, Schoenbach KH, Beebe SJ (2010) Nanosecond pulsed electric fields stimulate apoptosis without release of pro-apoptotic factors from mitochondria in B16f10 melanoma. Arch Biochem Biophys 497:82–89

    Article  CAS  PubMed  Google Scholar 

  26. Parrino J, Hotchkiss RS, Bray M (2007) Prevention of immune cell apoptosis as potential therapeutic strategy for severe infections. Emerg Infect Dis 13:191–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811

    Article  CAS  PubMed  Google Scholar 

  28. Song Y, Jacob CO (2005) The mouse cell surface protein TOSO regulates Fas/Fas ligand-induced apoptosis through its binding to Fas-associated death domain. J Biol Chem 280:9618–9626

    Article  CAS  PubMed  Google Scholar 

  29. Nguyen X-H, Lang PA, Lang KS et al (2011) Toso regulates the balance between apoptotic and nonapoptotic death receptor signaling by facilitating RIP1 ubiquitination. Blood 118:598–608

    Article  CAS  PubMed  Google Scholar 

  30. Safa AR (2012) c-FLIP, a master anti-apoptotic regulate. Exp Oncol 34:176–184

    CAS  PubMed  Google Scholar 

  31. Irmler M, Thome M, Hahne M et al (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195

    Article  CAS  PubMed  Google Scholar 

  32. McLornan D, Hay J, McLaughlin K et al (2013) Prognostic and therapeutic relevance of c-FLIP in acute myeloid leukaemia. Br J Haematol 160:188–198

    Article  CAS  PubMed  Google Scholar 

  33. Pakhomov AG, Phinney A, Ashmore J et al (2004) Characterization of the cytotoxic effect of high-intensity, 10-ns duration electrical pulses. IEEE Trans Plasma Sci 32:1579–1585

    Article  CAS  Google Scholar 

  34. Campos CB, Paim BA, Cosso RG et al (2006) Method for monitoring of mitochoindrial cytochrome c release during cell death: immunodetection of cytochrome c by flow cytometry after selective permeabilization of the plasma membrane. Cytometry A 69(6):515–523

    Article  PubMed  Google Scholar 

  35. Beebe SJ, Fox PM, Rec LJ, Somers K, Stark RH, Schoenbach KH (2002) Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition. IEEE Trans Plasma Sci 30:286–292

    Article  CAS  Google Scholar 

  36. Nuccitelli R, Chen X, Pakhomov AG et al (2009) A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer 125:438–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Nuccitelli R, Pliquett U, Chen X et al (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343:351–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Nuccitelli R, Pliquett U, Ford W, et al. (2005) Electrapoptosis: ultrashort electrical pulses stimulate skin tumors to self-destruct. The American Society for Cell Biology, 45th Annual Meeting. San Francisco 2005: 229a

  39. Tekle E, Oubrahim H (2005) Dzekunov SM, Kolb JF, Schoenbach KH, Chock* PB. Selective field effects on intracellular vacuoles and vesicle membranes with nanosecond electric pulses. Biophys J 89:274–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Vernier PT, Ziegler MJ, Sun Y, Chang WV, Gundersen MA, Tieleman DP (2006) Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. J Am Chem Soc 128:6288–6289

    Article  CAS  PubMed  Google Scholar 

  41. Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448

    Article  CAS  PubMed  Google Scholar 

  42. Buescher ES, Schoenbach KH (2003) Effects of submicrosecond, high intensity pulsed electric fields on living cells—intracellular electromanipulation. IEEE Trans Dielectr Electr Insul 10:788–794

    Article  Google Scholar 

  43. Ye Y-C, Wang H-J, Yu L, Tashiro S-I, Onodera S, Ikejima T (2012) RIP1-mediated mitochondrial dysfunction and ROS production contributed to tumor necrosis factor alpha-induced L929 cell necroptosis and autophagy. Int Immunopharmacol 14:674–682

    Article  CAS  PubMed  Google Scholar 

  44. Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223

    Article  CAS  PubMed  Google Scholar 

  45. Fulda S (2013) Alternative cell death pathways and cell metabolism. Int J Cell Biol 2013:4

    Article  Google Scholar 

  46. Maytin E, Wimberly J, Anderson R (1990) Thermotolerance and the heat shock response in normal human keratinocytes in culture. J Invest Dermatol 95:635–642

    Article  CAS  PubMed  Google Scholar 

  47. Pakhomova ON, Gregory BW, Pakhomov AG (2013) Facilitation of electroporative drug uptake and cell killing by electrosensitization. J Cell Mol Med 17:154–159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Heller R, Jaroszeski MJ, Reintgen DS et al (1998) Treatment of cutaneous and subcutaneous tumors with electrochemotherapy using intralesional bleomycin. Cancer 83:148–157

    Article  CAS  PubMed  Google Scholar 

  49. Miller L, Leor J, Rubinsky B (2005) Cancer cells ablation with irreversible electroporation. Technol Cancer Res Treat 4:699–705

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by intramural funds from the Air Force Surgeon General’s Office, Medical Research Program and the Air Force Office of Scientific Research LRIR 13RH08COR. Mr. Roth would like to thank the SMART Program grant # N002440910081 (OSD-T&E (Office of Secretary Defense-Test and Evaluation), Defense-Wide/PE0601120D8Z National Defense Education Program (NDEP)/BA-1, Basic Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bennett L. Ibey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estlack, L.E., Roth, C.C., Thompson, G.L. et al. Nanosecond pulsed electric fields modulate the expression of Fas/CD95 death receptor pathway regulators in U937 and Jurkat Cells. Apoptosis 19, 1755–1768 (2014). https://doi.org/10.1007/s10495-014-1041-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1041-9

Keywords

Navigation