Skip to main content
Log in

Cellular Regulation of Extension and Retraction of Pseudopod-Like Blebs Produced by Nanosecond Pulsed Electric Field (nsPEF)

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Recently we described a new phenomenon of anodotropic pseudopod-like blebbing in U937 cells exposed to nanosecond pulsed electric field (nsPEF). In Ca2+-free buffer such exposure initiates formation of pseudopod-like blebs (PLBs), protrusive cylindrical cell extensions that are distinct from apoptotic and necrotic blebs. PLBs nucleate predominantly on anode-facing cell pole and extend toward anode during nsPEF exposure. Bleb extension depends on actin polymerization and availability of actin monomers. Inhibition of intracellular Ca2+, cell contractility, and RhoA produced no effect on PLB initiation. Meanwhile, inhibition of WASP by wiskostatin causes dose-dependent suppression of PLB growth. Soon after the end of nsPEF exposure PLBs lose directionality of growth and then retract. Microtubule toxins nocodazole and paclitaxel did not show immediate effect on PLBs; however, nocodazole increased mobility of intracellular components during PLB extension and retraction. Retraction of PLBs is produced by myosin activation and the corresponding increase in PLB cortex contractility. Inhibition of myosin by blebbistatin reduces retraction while inhibition of RhoA–ROCK pathway by Y-27632 completely prevents retraction. Contraction of PLBs can produce cell translocation resembling active cell movement. Overall, the formation, properties, and life cycle of PLBs share common features with protrusions associated with ameboid cell migration. PLB life cycle may be controlled through activation of WASP by its upstream effectors such as Cdc42 and PIP2, and main ROCK activator—RhoA. Parallels between pseudopod-like blebbing and motility blebbing may provide new insights into their underlying mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., et al. (1996). Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). Journal of Biological Chemistry, 271(34), 20246–20249.

    Article  CAS  Google Scholar 

  2. Barros, L. F., Kanaseki, T., Sabirov, R., Morishima, S., Castro, J., Bittner, C. X., et al. (2003). Apoptotic and necrotic blebs in epithelial cells display similar neck diameters but different kinase dependency. Cell Death and Differentiation, 10(6), 687–697.

    Article  CAS  PubMed  Google Scholar 

  3. Bergert, M., Chandradoss, S. D., Desai, R. A., & Paluch, E. (2012). Cell mechanics control rapid transitions between blebs and lamellipodia during migration. Proceedings of the National Academy of Sciences, 109(36), 14434–14439.

    Article  CAS  Google Scholar 

  4. Blaser, H., Reichman-Fried, M., Castanon, I., Dumstrei, K., Marlow Florence, L., Kawakami, K., et al. (2006). Migration of zebrafish primordial germ cells: A role for myosin contraction and cytoplasmic flow. Developmental Cell, 11(5), 613–627.

    Article  CAS  PubMed  Google Scholar 

  5. Bowman, A., Nesin, O., Pakhomova, O., & Pakhomov, A. (2010). Analysis of plasma membrane integrity by fluorescent detection of Tl(+) uptake. Journal of Membrane Biology, 236(1), 15–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bubb, M. R., Senderowicz, A. M., Sausville, E. A., Duncan, K. L., & Korn, E. D. (1994). Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. Journal of Biological Chemistry, 269(21), 14869–14871.

    CAS  Google Scholar 

  7. Bubb, M. R., Spector, I., Beyer, B. B., & Fosen, K. M. (2000). Effects of jasplakinolide on the kinetics of actin polymerization: An explanation for certain in vivo observations. Journal of Biological Chemistry, 275(7), 5163–5170.

    Article  CAS  PubMed  Google Scholar 

  8. Bustelo, X. R., Sauzeau, V., & Berenjeno, I. M. (2007). GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays, 29(4), 356–370.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Campellone, K. G., & Welch, M. D. (2010). A nucleator arms race: cellular control of actin assembly. Nature Reviews Molecular Cell Biology, 11(4), 237–251.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Charras, G. T. (2008). A short history of blebbing. Journal of Microscopy, 231(3), 466–478.

    Article  CAS  PubMed  Google Scholar 

  11. Charras, G. T., Hu, C.-K., Coughlin, M., & Mitchison, T. J. (2006). Reassembly of contractile actin cortex in cell blebs. The Journal of Cell Biology, 175(3), 477–490.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Charras, G., & Paluch, E. (2008). Blebs lead the way: How to migrate without lamellipodia. Nature Reviews Molecular Cell Biology, 9(9), 730–736.

    Article  CAS  PubMed  Google Scholar 

  13. Coué, M., Brenner, S. L., Spector, I., & Korn, E. D. (1987). Inhibition of actin polymerization by latrunculin A. FEBS Letters, 213(2), 316–318.

    Article  PubMed  Google Scholar 

  14. Cunningham, C. C. (1995). Actin polymerization and intracellular solvent flow in cell surface blebbing. The Journal of Cell Biology, 129(6), 1589–1599.

    Article  CAS  PubMed  Google Scholar 

  15. Deacon, S. W., & Peterson, J. R. (2008). Chemical inhibition through conformational stabilization of Rho GTPase effectors. In E. Klussmann & J. Scott (Eds.), Protein–protein interactions as new drug targets (Vol. 186, pp. 431–460)., Handbook of Experimental Pharmacology Berlin Heidelberg: Springer.

    Chapter  Google Scholar 

  16. Eitaki, M., Yamamori, T., Meike, S., Yasui, H., & Inanami, O. (2012). Vincristine enhances amoeboid-like motility via GEF-H1/RhoA/ROCK/Myosin light chain signaling in MKN45 cells. BMC Cancer, 12(1), 469.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Etienne-Manneville, S. (2004). Cdc42—the centre of polarity. Journal of Cell Science, 117(8), 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  18. Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.

    Article  CAS  PubMed  Google Scholar 

  19. Fackler, O. T., & Grosse, R. (2008). Cell motility through plasma membrane blebbing. The Journal of Cell Biology, 181(6), 879–884.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Friedl, P., & Wolf, K. (2003). Proteolytic and non-proteolytic migration of tumour cells and leucocytes. Biochemical Society Symposia, 70, 277–285.

    CAS  Google Scholar 

  21. Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews Cancer, 3(5), 362–374.

    Article  CAS  PubMed  Google Scholar 

  22. Fukata, Y., Kaibuchi, K., & Amano, M. (2001). Rho–Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends in Pharmacological Sciences, 22(1), 32–39.

    Article  CAS  PubMed  Google Scholar 

  23. Gadea, G., Sanz-Moreno, V., Self, A., Godi, A., & Marshall, C. J. (2008). DOCK10-mediated Cdc42 activation is necessary for amoeboid invasion of melanoma cells. Current Biology, 18(19), 1456–1465.

    Article  CAS  PubMed  Google Scholar 

  24. Ganguly, A., Yang, H., Sharma, R., Patel, K. D., & Cabral, F. (2012). The role of microtubules and their dynamics in cell migration. Journal of Biological Chemistry, 287(52), 43359–43369.

    Google Scholar 

  25. Gass, G. V., & Chernomordik, L. V. (1990). Reversible large-scale deformations in the membranes of electrically-treated cells: Electroinduced bleb formation. Biochimica et Biophysica Acta (BBA)–Biomembranes, 1023(1), 1–11.

    Article  CAS  Google Scholar 

  26. Guerriero, C. J., & Weisz, O. A. (2007). N-WASP inhibitor wiskostatin nonselectively perturbs membrane transport by decreasing cellular ATP levels. American Journal of Physiology–Cell Physiology, 292(4), C1562–C1566.

    Article  CAS  PubMed  Google Scholar 

  27. Hummel, I., Klappe, K., Ercan, C., & Kok, J. W. (2011). Multidrug resistance-related protein 1 (MRP1) function and localization depend on cortical actin. Molecular Pharmacology, 79(2), 229–240.

    Article  CAS  PubMed  Google Scholar 

  28. Jordan, M. A., Toso, R. J., Thrower, D., & Wilson, L. (1993). Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proceedings of the National Academy of Sciences, 90(20), 9552–9556.

    Article  CAS  Google Scholar 

  29. Kardash, E., Reichman-Fried, M., Maitre, J.-L., Boldajipour, B., Papusheva, E., Messerschmidt, E.-M., et al. (2010). A role for Rho GTPases and cell–cell adhesion in single-cell motility in vivo. Nature Cell Biology, 12(1), 47–53.

    Article  CAS  PubMed  Google Scholar 

  30. Keely, P. J., Westwick, J. K., Whitehead, I. P., Der, C. J., & Parise, L. V. (1997). Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature, 390(6660), 632–636.

    Article  CAS  Google Scholar 

  31. Kimura, K., Ito, M., Amano, M., Chihara, K., Fukata, Y., Nakafuku, M., et al. (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science, 273(5272), 245–248.

    Article  CAS  PubMed  Google Scholar 

  32. Kovács, M., Tóth, J., Hetényi, C., Málnási-Csizmadia, A., & Sellers, J. R. (2004). Mechanism of blebbistatin inhibition of myosin II. Journal of Biological Chemistry, 279(34), 35557–35563.

    Article  PubMed  Google Scholar 

  33. Lammermann, T., Bader, B. L., Monkley, S. J., Worbs, T., Wedlich-Soldner, R., Hirsch, K., et al. (2008). Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature, 453(7191), 51–55.

    Article  PubMed  Google Scholar 

  34. Lämmermann, T., Renkawitz, J., Wu, X., Hirsch, K., Brakebusch, C., & Sixt, M. (2009). Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood, 113(23), 5703–5710.

    Article  Google Scholar 

  35. Lämmermann, T., & Sixt, M. (2009). Mechanical modes of ‘amoeboid’ cell migration. Current Opinion in Cell Biology, 21(5), 636–644.

    Article  PubMed  Google Scholar 

  36. Leung, T., Chen, X. Q., Manser, E., & Lim, L. (1996). The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Molecular and Cellular Biology, 16(10), 5313–5327.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Limouze, J., Straight, A., Mitchison, T., & Sellers, J. (2004). Specificity of blebbistatin, an inhibitor of myosin II. Journal of Muscle Research and Cell Motility, 25(4), 337–341.

    Article  CAS  PubMed  Google Scholar 

  38. Martinet, W., Schrijvers, D. M., & Kockx, M. M. (2003). Nucleofection as an efficient nonviral transfection method for human monocytic cells. Biotechnology Letters, 25(13), 1025–1029.

    Article  CAS  PubMed  Google Scholar 

  39. Maugis, B., Brugues, J., Nassoy, P., Guillen, N., Sens, P., & Amblard, F. (2010). Dynamic instability of the intracellular pressure drives bleb-based motility. Journal of Cell Science, 123(22), 3884–3892.

    Article  CAS  PubMed  Google Scholar 

  40. Mills, J. C., Stone, N. L., Erhardt, J., & Pittman, R. N. (1998). Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. The Journal of Cell Biology, 140(3), 627–636.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Mitchison, T. J., Charras, G. T., & Mahadevan, L. (2008). Implications of a poroelastic cytoplasm for the dynamics of animal cell shape. Seminars in Cell & Developmental Biology, 19(3), 215–223.

    Article  CAS  Google Scholar 

  42. Pakhomov, A. G., Shevin, R., White, J. A., Kolb, J. F., Pakhomova, O. N., Joshi, R. P., et al. (2007). Membrane permeabilization and cell damage by ultrashort electric field shocks. Archives of Biochemistry and Biophysics, 465(1), 109–118.

    Article  CAS  PubMed  Google Scholar 

  43. Paluch, E., Piel, M., Prost, J., Bornens, M., & Sykes, C. (2005). Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophysical Journal, 89(1), 724–733.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Paluch, E., Sykes, C., Prost, J., & Bornens, M. (2006). Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends in Cell Biology, 16(1), 5–10.

    Article  CAS  PubMed  Google Scholar 

  45. Parri, M., & Chiarugi, P. (2010). Rac and Rho GTPases in cancer cell motility control. Cell Communication and Signal, 8, 23.

    Article  Google Scholar 

  46. Parri, M., Taddei, M. L., Bianchini, F., Calorini, L., & Chiarugi, P. (2009). EphA2 reexpression prompts invasion of melanoma cells shifting from mesenchymal to amoeboid-like motility style. Cancer Research, 69(5), 2072–2081.

    Article  CAS  PubMed  Google Scholar 

  47. Paul, B. Z. S., Daniel, J. L., & Kunapuli, S. P. (1999). Platelet shape change is mediated by both calcium-dependent and -independent signaling pathways: Role of p160 Rho-associated coiled-coil-containing protein kinase in platelet shape change. Journal of Biological Chemistry, 274(40), 28293–28300.

    Article  CAS  PubMed  Google Scholar 

  48. Peterson, J. R., Bickford, L. C., Morgan, D., Kim, A. S., Ouerfelli, O., Kirschner, M. W., et al. (2004). Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nature Structural & Molecular Biology, 11(8), 747–755.

    Article  CAS  Google Scholar 

  49. Petrie, R. J., Gavara, N., Chadwick, R. S., & Yamada, K. M. (2012). Nonpolarized signaling reveals two distinct modes of 3D cell migration. The Journal of Cell Biology, 197(3), 439–455.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Pollard, T. D., & Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112(4), 453–465.

    Article  CAS  PubMed  Google Scholar 

  51. Raftopoulou, M., & Hall, A. (2004). Cell migration: Rho GTPases lead the way. Developmental Biology, 265(1), 23–32.

    Article  CAS  PubMed  Google Scholar 

  52. Rassokhin, M., & Pakhomov, A. (2012). Electric field exposure triggers and guides formation of pseudopod-like blebs in U937 monocytes. Journal of Membrane Biology, 245(9), 521–529.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Renkawitz, J., & Sixt, M. (2010). Mechanisms of force generation and force transmission during interstitial leukocyte migration. EMBO Reports, 11(10), 744–750.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Ridley Anne, J. (2011). Life at the leading edge. Cell, 145(7), 1012–1022.

    Article  CAS  PubMed  Google Scholar 

  55. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell, 70(3), 401–410.

    Article  CAS  PubMed  Google Scholar 

  56. Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., Takenawa, T., et al. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97(2), 221–231.

    Article  CAS  PubMed  Google Scholar 

  57. Rottner, K., Hall, A., & Small, J. V. (1999). Interplay between Rac and Rho in the control of substrate contact dynamics. Current Biology, 9(12), S640–S641.

    Article  Google Scholar 

  58. Sahai, E., & Marshall, C. J. (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biology, 5(8), 711–719.

    Article  CAS  PubMed  Google Scholar 

  59. Salbreux, G., Charras, G., & Paluch, E. (2012). Actin cortex mechanics and cellular morphogenesis. Trends in Cell Biology, 22(10), 536–545.

    Article  CAS  PubMed  Google Scholar 

  60. Sanz-Moreno, V. (2012). Tumour invasion: A new twist on Rac-driven mesenchymal migration. Current Biology, 22(11), R449–R451.

    Article  CAS  PubMed  Google Scholar 

  61. Sanz-Moreno, V., Gadea, G., Ahn, J., Paterson, H., Marra, P., Pinner, S., et al. (2008). Rac activation and inactivation control plasticity of tumor cell movement. Cell, 135(3), 510–523.

    Article  CAS  PubMed  Google Scholar 

  62. Schoenbach, K. H., Hargrave, B., Joshi, R. P., Kolb, J. F., Nuccitelli, R., Osgood, C., et al. (2007). Bioelectric effects of intense nanosecond pulses, dielectrics and electrical insulation. IEEE Transactions, 14(5), 1088–1109.

    CAS  Google Scholar 

  63. Semenov, I., Xiao, S., & Pakhomov, A. G. (2012). Primary pathways of intracellular Ca(2+) mobilization by nanosecond pulsed electric field. Biochimica et Biophysica Acta (BBA)–Biomembranes (0), 1828(3), 981–989.

    Google Scholar 

  64. Steffen, A., Rottner, K., Ehinger, J., Innocenti, M., Scita, G., Wehland, J., et al. (2004). Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO Journal, 23(4), 749–759.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Takesono, A., Heasman, S. J., Wojciak-Stothard, B., Garg, R., & Ridley, A. J. (2010). Microtubules regulate migratory polarity through Rho/ROCK signaling in T cells. PLoS ONE, 5(1), e8774.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Tan, J. L., Ravid, S., & Spudich, J. A. (1992). Control of nonmuscle myosins by phosphorylation. Annual Review of Biochemistry, 61(1), 721–759.

    Article  CAS  PubMed  Google Scholar 

  67. Tekle, E., Wolfe, M. D., Oubrahim, H., & Chock, P. B. (2008). Phagocytic clearance of electric field induced ‘apoptosis-mimetic’ cells. Biochemical and Biophysical Research Communications, 376(2), 256–260.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Tsong, T. Y. (1991). Electroporation of cell membranes. Biophysical Journal, 60(2), 297–306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Vega, F. M., Fruhwirth, G., Ng, T., & Ridley, A. J. (2011). RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. The Journal of Cell Biology, 193(4), 655–665.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Vicente-Manzanares, M., Ma, X., Adelstein, R. S., & Horwitz, A. R. (2009). Non-muscle myosin II takes centre stage in cell adhesion and migration. Nature Reviews Molecular Cell Biology, 10(11), 778–790.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. White, J. A., Blackmore, P. F., Schoenbach, K. H., & Beebe, S. J. (2004). Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields. Journal of Biological Chemistry, 279(22), 22964–22972.

    Article  CAS  Google Scholar 

  72. Wolf, K., Mazo, I., Leung, H., Engelke, K., von Andrian, U. H., Deryugina, E. I., et al. (2003). Compensation mechanism in tumor cell migration. The Journal of Cell Biology, 160(2), 267–277.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Wolf, K., Müller, R., Borgmann, S., Bröcker, E.-B., & Friedl, P. (2003). Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood, 102(9), 3262–3269.

    Article  CAS  PubMed  Google Scholar 

  74. Yam, P. T., Wilson, C. A., Ji, L., Hebert, B., Barnhart, E. L., Dye, N. A., et al. (2007). Actin–myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. The Journal of Cell Biology, 178(7), 1207–1221.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Yoshida, K., & Soldati, T. (2006). Dissection of amoeboid movement into two mechanically distinct modes. Journal of Cell Science, 119(18), 3833–3844.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Rassokhin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rassokhin, M.A., Pakhomov, A.G. Cellular Regulation of Extension and Retraction of Pseudopod-Like Blebs Produced by Nanosecond Pulsed Electric Field (nsPEF). Cell Biochem Biophys 69, 555–566 (2014). https://doi.org/10.1007/s12013-014-9831-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9831-9

Keywords

Navigation