Skip to main content

Vision-Aided Inertial Navigation System with Point and Vertical Line Observations for Land Vehicle Applications

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2017 Proceedings: Volume II (CSNC 2017)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 438))

Included in the following conference series:

  • 1484 Accesses

Abstract

Various aiding sensors can be integrated with the inertial navigation system (INS) to reduce its error growth when the vehicle is operating in GNSS denied environments. This paper developed a method to use the vanishing point from vertical line observations of building blocks in order to further improve point-based visual-inertial navigation system (VINS) for land vehicle applications. First, we presented the formulations of tightly coupled point-based VINS based on the Multi-State Constraint Kalman Filter (MSCKF) in the local-level frame. Second, we developed the relationship between the INS roll angle and vanishing point coordinates from vertical line observations. The roll angle measurement model is formulated. Finally, loosely coupled vertical line aiding module is added to the existing VINS, and the integration scheme is presented. Real world experiments demonstrated the validity of the mixed VINS method and the improved accuracy of the attitude and position estimation when compared with the solution without vertical line vanishing point aiding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vinet L, Zhedanov A (2012) Handbook of intelligent vehicles. Springer London, London

    Google Scholar 

  2. Zolghadri A, Henry D, Cieslak J (2014) Fault diagnosis and fault-tolerant control and guidance for aerospace vehicles. Springer, London

    Google Scholar 

  3. Liu Z, El-Sheimy N, Qin Y, Yu C, Zhang J (2016) Partial state feedback correction for smoothing navigational parameters. In: Sun J, Liu J, Fan S, Wang F (eds) China satellite navigation conference (CSNC) 2016 proceedings, vol II. Springer Singapore, Singapore, pp 461–472

    Chapter  Google Scholar 

  4. Ahmed-Zaid F, Bai F, Bai S, Basnayake C, Bellur B, Brovold S, Brown G, Caminiti L, Cunningham D, Elzein H, Hong K, Ivan J, Jiang D, Kenney J, Krishnan H, Lovell J, Maile M, Masselink D, McGlohon E, Mudalige P, Popovic Z, Rai V, Stinnett J, Tellis L, Tirey K, and VanSickle S (2011) Vehicle safety communications–applications (VSC-A)

    Google Scholar 

  5. Chowdhary G, Johnson EN, Magree D, Wu A, Shein A (2013) GPS-denied indoor and outdoor monocular vision aided navigation and control of unmanned aircraft. J F Robot 30(3):415–438

    Article  Google Scholar 

  6. Dissanayake G, Sukkarieh S, Nebot E, Durrant-Whyte H (2001) The aiding of a low-cost strapdown inertial measurement unit using vehicle model constraints for land vehicle applications. IEEE Trans Robot Autom 17(5):731–747

    Article  Google Scholar 

  7. Niu X, Nassar S, El-Sheimy N (2007) An accurate land-vehicle MEMS IMU/GPS navigation system using 3D auxiliary velocity updates. J Inst Navig 54(3):177–188

    Article  Google Scholar 

  8. Nistér D, Naroditsky O, Bergen J (2006) Visual odometry for ground vehicle applications. J F Robot 23(1):3–20

    Article  MATH  Google Scholar 

  9. Scaramuzza D, Fraundorfer F (2011) Visual odometry [tutorial]. IEEE Robot Autom Mag 18(4):80–92

    Article  Google Scholar 

  10. Veth M, Raquet J (2006) Two-dimensional stochastic projections for tight integration of optical and inertial sensors for navigation, Natl Tech Meet Proc Inst Navig, pp 587–596

    Google Scholar 

  11. Veth MJ (2008) Fusion of imaging and inertial sensors for navigation. Air Force Institute of Technology, USA

    Google Scholar 

  12. Mourikis AI Roumeliotis SI, (2007) A multi-state constraint Kalman filter for vision-aided inertial navigation, In: Proceedings-IEEE international conference on robotics and automation, pp 3565–3572

    Google Scholar 

  13. Leutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P (2015) Keyframe-based visual-inertial odometry using nonlinear optimization. Int J Rob Res 34(3):314–334

    Article  Google Scholar 

  14. Veth M, Raquet J, Pachter M (2006) Stochastic constraints for efficient image correspondence search. IEEE Trans Aerosp Electron Syst 42(3):973–982

    Article  Google Scholar 

  15. Forster C, Carlone L, Dellaert F, Scaramuzza D (2015) On-manifold pre-integration theory for fast and accurate visual-inertial navigation, IEEE Trans Robot, pp 1–18

    Google Scholar 

  16. Kim S-B, Bazin J-C, Lee H-K, Choi K-H, Park S-Y (2011) Ground vehicle navigation in harsh urban conditions by integrating inertial navigation system, global positioning system, odometer and vision data. IET Radar Sonar Navig 5(8):814

    Article  Google Scholar 

  17. Camposeco F, Pollefeys M (2015) Using vanishing points to improve visual-inertial odometry. In: 2015 IEEE international conference on robotics and automation (ICRA), pp 5219–5225

    Google Scholar 

  18. Clement LE, Peretroukhin V, Lambert J Kelly J (2015) The Battle for filter supremacy: a comparative study of the multi-state constraint Kalman filter and the sliding window filter. In: Proceedings of 2015 12th conference on computer and robot vision, CRV 2015, pp 23–30

    Google Scholar 

  19. Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  20. Grompone Von Gioi R, Jakubowicz J, Morel JM, Randall G (2010) LSD: a fast line segment detector with a false detection control. IEEE Trans Pattern Anal Mach Intell 32(4):722–732

    Article  Google Scholar 

  21. Toldo R, Fusiello A Informatica D (2008) Robust multiple structures estimation with J-Linkage. In: Computer vision-ECCV: 10th European conference on computer vision, marseille, France, Oct 12–18, Proceedings, Part I, pp 537–547

    Google Scholar 

  22. Feng C, Deng F Kamat VR (2010) Semi-automatic 3D reconstruction of piecewise planar. In: 10th international conference construction applications of virtual reality, pp 1–9

    Google Scholar 

  23. Geiger A, Lenz P, Stiller C, Urtasun R (2013) Vision meets robotics: the KITTI dataset. Int J Rob Res 32(11):1231–1237

    Article  Google Scholar 

  24. RT3000 inertial and GPS navigation system. Available: http://www.oxts.com/Downloads/Support/Brochures/rt3kpres.pdf. Accessed: 17-Jan-2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenbo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Liu, Z., Zhou, Q., Qin, Y., El-Sheimy, N. (2017). Vision-Aided Inertial Navigation System with Point and Vertical Line Observations for Land Vehicle Applications. In: Sun, J., Liu, J., Yang, Y., Fan, S., Yu, W. (eds) China Satellite Navigation Conference (CSNC) 2017 Proceedings: Volume II. CSNC 2017. Lecture Notes in Electrical Engineering, vol 438. Springer, Singapore. https://doi.org/10.1007/978-981-10-4591-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4591-2_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4590-5

  • Online ISBN: 978-981-10-4591-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics