Skip to main content

Sustainable Management of Soil Phosphorus in a Changing World

  • Chapter
  • First Online:
Adaptive Soil Management : From Theory to Practices

Abstract

Phosphorus (P) is an important nutrient for flora and fauna, and is an essential element during energy transformation processes of the living world. Phosphate rock, which is the most common source of phosphorus, is globally used in various forms, in order to boost agricultural productivity and cover contemporary food demand. Its low price in combination with its abundance on several areas on our planet led to overexploitation phenomena and unsustainable phosphorus management, resulting in important environmental and socio-economic problems. Eutrophication, soil over-accumulation, nutrient depletion due to soil erosion processes, contamination of the extraction sites, reduction of global available resources, massive price fluctuations and food crisis are some of these phosphorus-related problems with a global impact. The uncertainties and the underlying risks prevailing due to improper use of phosphate resources denote that sustainable soil phosphorus management should be set amongst the top priorities in global level. The local adaptation of the 4R Nutrient Stewardship approach can be proved a very promising tool in order to develop a sound soil phosphorus management program. In Europe, despite the multi-dimensional problems caused by unsustainable phosphorus use of the previous decades, significant steps are taken to restore the problems and establish a framework focusing on natural resources and socio-economic system protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agus F, Husnain H, Yustika RD (2016) Improving agricultural resilience to climate change through soil management. J Penelitian Pengembangan Pertanian 34(4):147–158

    Article  Google Scholar 

  • Arnold JG, Fohrer N (2005) SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrol Process 19(3):563–572

    Article  Google Scholar 

  • Baccini P, Brunner PH (1991) Metabolism of the anthroposphere. Springer, Berlin

    Book  Google Scholar 

  • Bastounopoulou M, Gasparatos D, Haidouti C, Massas I (2011) Chemical fractionation and sorption of phosphorus in Greek inceptisols. J Agric Sci Technol 1(A1):33–38

    CAS  Google Scholar 

  • Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. Bioscience 51(3):227–234

    Article  Google Scholar 

  • Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R (2015) Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol Fertil Soils 51(8):897–911

    Article  CAS  Google Scholar 

  • Borah DK, Bera M (2004) Watershed-scale hydrologic and nonpoint-source pollution models: review of applications. Trans ASAE 47(3):789–803

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2008) Soil water: characteristics and behavior. In: The nature and properties of soils. Prentice Hall, Ohio, pp 173–217

    Google Scholar 

  • Chardon W, Schoumans O (2007) Soil texture effects on the transport of phosphorus from agricultural land in river deltas of Northern Belgium, The Netherlands and North‐West Germany. Soil Use Manage 23(s1):16–24

    Article  Google Scholar 

  • Cordell D (2008) The story of phosphorus: missing global governance of a critical resource. SENSE Earth Systems Governance, Amsterdam http://www.glogov.de/images/doc/Cordell.pdf

    Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19(2):292–305

    Article  Google Scholar 

  • Cordell D, Neset T-SS, Prior T (2012) The phosphorus mass balance: identifying ‘hotspots’ in the food system as a roadmap to phosphorus security. Curr Opin Biotechnol 23(6):839–845

    Article  CAS  Google Scholar 

  • Daniel EB, Camp JV, LeBoeuf EJ, Penrod JR, Dobbins JP, Abkowitz MD (2011) Watershed modeling and its applications: a state-of-the-art review. Open Hydrol J 5(1):26–50

    Article  Google Scholar 

  • Dawson CJ, Hilton J (2011) Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy 36:S14–S22

    Article  Google Scholar 

  • de Ridder M, De Jong S, Polchar J, Lingemann S (2012) Risks and opportunities in the global phosphate rock market: robust strategies in times of uncertainty. Hague Centre for Strategic Studies, No 17/12/12

    Google Scholar 

  • Delgado A, Scalenghe R (2008) Aspects of phosphorus transfer from soils in Europe. J Plant Nutr Soil Sci 171(4):552–575

    Article  CAS  Google Scholar 

  • Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2008) Eutrophication of US freshwaters: analysis of potential economic damages. Environ Sci Technol 43(1):12–19

    Article  Google Scholar 

  • ECSCU (2013) Science for environment policy in depth report: sustainable phosphorus use. Report produced for the European Commission DG Environment, University of the West of England, Bristol

    Google Scholar 

  • EEA (2005) European environment outlook. European Environment Agency - Copenhagen. Report 4, p 92

    Google Scholar 

  • Elser JJ (2012) Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol 23(6):833–838

    Article  CAS  Google Scholar 

  • FAO (2005) Current world fertilizer trends and outlook to 2009/10. Food and Agriculture Organization of the United Nations, Rome, p 56

    Google Scholar 

  • FAO (2012) Current world fertilizer trends and outlook to 2016. Food and Agriculture Organization of the United Nations, Rome, p 43

    Google Scholar 

  • FAO (2015) World fertilizer trends and outlook to 2018. Food and Agriculture Organization of the United Nations, Rome, p 66

    Google Scholar 

  • Filippelli GM (2008) The global phosphorus cycle: past, present, and future. Elements 4(2):89–95

    Article  CAS  Google Scholar 

  • Force IT (2009) The global “4R” nutrient stewardship framework. Developing fertilizer best management practices for delivering economic, social, and environmental benefits. IFA Task Force on Fertilizer Best Management Practices. International Fertilizer Industry Association (IFA), Paris. AgCom/09/44, A/09/116

    Google Scholar 

  • Fox TR, Miller BW, Rubilar R, Stape JL, Albaugh TJ (2011) Phosphorus nutrition of forest plantations: the role of inorganic and organic phosphorus. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action, vol 100. Springer, Berlin, pp 317–338

    Chapter  Google Scholar 

  • Gasparatos D, Haidouti C, Haroulis A, Tsaousidou P (2006) Estimation of phosphorus status of soil Fe‐enriched concretions with the acid ammonium oxalate method. Commun Soil Sci Plant Anal 37(15–20):2375–2387

    Article  CAS  Google Scholar 

  • Heckenmόller M, Narita D, Klepper G (2014) Global availability of phosphorus and its implications for global food supply: an economic overview. Kiel Working paper, Kiel Institute for the World Economy, Kiel, Germany

    Google Scholar 

  • Hooda P, Truesdale V, Edwards A, Withers P, Aitken M, Miller A, Rendell A (2001) Manuring and fertilization effects on phosphorus accumulation in soils and potential environmental implications. Adv Environ Res 5(1):13–21

    Article  Google Scholar 

  • ICIS-IFA (2015) Global fertilizer trade map 2015. ICIS-IFA, UK

    Google Scholar 

  • Daniel EB, Camp JV, LeBoeuf EJ, Penrod JR, Dobbins JP, Abkowitz MD (2011a) Watershed modeling and its applications: a state-of-the-art review. Open Hydrol J 5(1):26–50

    Article  Google Scholar 

  • IFA (2009) The global ‘4R’ nutrient stewardship framework. International Fertilizer Industry Association, Paris, p 10

    Google Scholar 

  • IFA (2013) Production and trade statistics–phosphate rock. International Fertilizer Industry Association (IFA), Paris. http://www.fertilizer.org/ifa/content/download/15678/226160/version/6/file/2011_phosphate_rock_public.xlsx . Accessed 3 Mar 2016

  • IPNI (2012) A manual for 4R plant nutrition. International Plant Nutrition Institute. http://www.nutrientstewardship.com/4r-news/newsletter/ipni-issues-4r-plant-nutrition-manual. Accessed 3 Mar 2016

  • Jasinski S (2013) Annual publication. Mineral commodity summaries: phosphate rock (1996–2013). US Geological Survey [Online]. http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/ . Accessed 5 Mar 2016

  • Kairis O, Karavitis C, Kounalaki A, Salvati L, Kosmas C (2013) The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use Manag 29(4):597–606

    Article  Google Scholar 

  • Karamesouti M, Petropoulos GP, Papanikolaou ID, Kairis O, Kosmas K (2016) Erosion rate predictions from PESERA and RUSLE at a Mediterranean site before and after a wildfire: comparison and implications. Geoderma 261:44–58

    Article  Google Scholar 

  • Kosmas C, Detsis V, Karamesouti M, Kounalaki K, Vassiliou P, Salvati L (2015) Exploring long-term impact of grazing management on land degradation in the socio-ecological system of Asteroussia Mountains, Greece. Land 4(3):541–559

    Article  Google Scholar 

  • Lombi E, McLaughlin MJ, Johnston C, Armstrong RD, Holloway RE (2004) Mobility and lability of phosphorus from granular and fluid monoammonium phosphate differs in a calcareous soil. Soil Sci Soc Am J 68(2):682–689

    Article  CAS  Google Scholar 

  • Louwagie G, Gay S, Burrell A (2009) Sustainable agriculture and soil conservation (SoCo). Final report. JRC Scientific and Technical Reports EUR 23820EN, Ispra, p 171

    Google Scholar 

  • Magcale-Macandog DB (2002) Soil erosion and sustainability of different land uses of smallholder Imperata grasslands in SEA. In: 12th International Soil Conservation Organization (ISCO) conference: sustainable utilization of global soil and water resources, pp 306–312

    Google Scholar 

  • Matar A, Torrent J, Ryan J (1992) Soil and fertilizer phosphorus and crop responses in the dryland Mediterranean zone, Advances in Soil Science. Springer, New York, pp 81–146

    Google Scholar 

  • McDowell R, Cox N, Daughney C, Wheeler D, Moreau M (2015) A national assessment of the potential linkage between soil, and surface and groundwater concentrations of phosphorus. JAWRA J Am Water Res Assoc 51(4):992–1002

    Article  Google Scholar 

  • McLaughlin MJ, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2011) The chemical nature of P accumulation in agricultural soils—implications for fertiliser management and design: an Australian perspective. Plant and Soil 349(1–2):69–87

    Article  CAS  Google Scholar 

  • Mullins GL (2009) Phosphorus, agriculture & the environment. Virginia Cooperative Extension, Virginia State University

    Google Scholar 

  • Nearing M, Kimoto A, Nichols MH, Ritchie JC (2005) Spatial patterns of soil erosion and deposition in two small, semiarid watersheds. J Geophys Res Earth Surf 110, F0420

    Article  Google Scholar 

  • Niirnberg GK (1994) Phosphorus release from anoxic sediments: what we know and how we can deal with it. Limnetica 10(1):1–4

    Google Scholar 

  • NRCS (2006) Model simulation of soil loss, nutrient loss, and change in soil organic carbon associated with crop production. US Department of Agriculture Natural Resources Conservation Service, Washington

    Google Scholar 

  • Nyenje P, Foppen J, Uhlenbrook S, Kulabako R, Muwanga A (2010) Eutrophication and nutrient release in urban areas of sub-Saharan Africa—a review. Sci Total Environ 408(3):447–455

    Article  CAS  Google Scholar 

  • Officer S, Armstrong R, Norton R (2009) Plant availability of phosphorus from fluid fertiliser is maintained under soil moisture deficit in non-calcareous soils of South-Eastern Australia. Aust J Soil Res 47(1):103–113

    Article  CAS  Google Scholar 

  • Ongley ED, Xiaolan Z, Tao Y (2010) Current status of agricultural and rural non-point source pollution assessment in China. Environ Pollut 158(5):1159–1168

    Article  CAS  Google Scholar 

  • Ott C, Rechberger H (2012) The European phosphorus balance. Resour Conserv Recycl 60:159–172

    Article  Google Scholar 

  • Pagani A, Sawyer JE, Mallarino AP (2013) Site-specific nutrient management for nutrient management planning to improve crop production, environmental quality, and economic return. Iowa State University, International Plant Nutrition Institute, The Fertilizer Institute and Nutrient, USDA-NRCS

    Google Scholar 

  • Pimentel D, Whitecraft M, Scott ZR, Zhao L, Satkiewicz P, Scott TJ, Phillips J, Szimak D, Singh G, Gonzalez DO (2010) Will limited land, water, and energy control human population numbers in the future? Hum Ecol 38(5):599–611

    Article  Google Scholar 

  • Qiao M, Zheng Y-M, Zhu Y-G (2011) Material flow analysis of phosphorus through food consumption in two megacities in Northern China. Chemosphere 84(6):773–778

    Article  CAS  Google Scholar 

  • Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci 3(5):311–314

    Article  CAS  Google Scholar 

  • Römer W (2009) Concepts for a more efficient use of phosphorus based on experimental observations. Ber Landwirtschaft 87(1):5–30

    Google Scholar 

  • Rowe H, Withers PJA, Baas P et al (2016) Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr Cycl Agroecosyst 104:393–412

    Article  CAS  Google Scholar 

  • Sattari SZ, Bouwman AF, Giller KE, van Ittersum MK (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci U S A 109(16):6348–6353

    Article  CAS  Google Scholar 

  • Scholz RW, Ulrich AE, Eilittä M, Roy A (2013) Sustainable use of phosphorus: a finite resource. Sci Total Environ 461:799–803

    Article  Google Scholar 

  • Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (2014) Sustainable phosphorus management. A global transdisciplinary roadmap. Springer, Dordrecht, p 299

    Book  Google Scholar 

  • Schoumans O, Chardon W, Bechmann M, Gascuel-Odoux C, Hofman G, Kronvang B, Rubæk GH, Ulén B, Dorioz J-M (2014) Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review. Sci Total Environ 468:1255–1266

    Article  Google Scholar 

  • Schoumans OF, Bouraoui F, Kabbe C, Oenema O, van Dijk KC (2015) Phosphorus management in Europe in a changing world. Ambio 44(2):180–192

    Article  CAS  Google Scholar 

  • Schröder JJ, Smit AL, Cordell D, Rosemarin A (2011) Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84(6):822–831

    Article  Google Scholar 

  • Sharpley A (1985) The selection erosion of plant nutrients in runoff. Soil Sci Soc Am J 49(6):1527–1534

    Article  CAS  Google Scholar 

  • Sharpley A (2016) Managing agricultural phosphorus to minimize water quality impacts. Sci Agric 73(1):1–8

    Article  Google Scholar 

  • Sharpley AN, Weld JL, Beegle DB, Kleinman PJ, Gburek W, Moore P, Mullins G (2003) Development of phosphorus indices for nutrient management planning strategies in the United States. J Soil Water Conserv 58(3):137–152

    Google Scholar 

  • Sharpley A, Jarvie HP, Buda A, May L, Spears B, Kleinman P (2013) Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual 42(5):1308–1326

    Article  CAS  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  CAS  Google Scholar 

  • Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy Environ 25(1):53–88

    Article  Google Scholar 

  • Syers J, Johnston A, Curtin D (2008) Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer and Plant Nutrition Bulletin 18. http://www.fao.org/docrep/010/a1595e/a1595e00.htm . Accessed 5 Mar 2016

  • Syers K, Bekunda M, Cordell D, Corman J, Johnston J, Rosemarin A, Salcedo I (2011) Phosphorus and food production. In: UNEP year book. UNEP, Nairobi, pp 34–45

    Google Scholar 

  • Tóth G, Guicharnaud R-A, Tóth B, Hermann T (2014) Phosphorus levels in croplands of the European Union with implications for P fertilizer use. Eur J Agron 55:42–52

    Article  Google Scholar 

  • Tufekcioglu M, Schultz RC, Zaimes GN, Isenhart TM, Tufekcioglu A (2013) Riparian grazing impacts on streambank erosion and phosphorus loss via surface runoff. J Am Water Res Assoc 49:103–113

    Article  CAS  Google Scholar 

  • Tunney H, Csath P, Ehlert P (2003) Approaches to calculating P balance at the field‐scale in Europe. J Plant Nutr Soil Sci 166(4):438–446

    Article  CAS  Google Scholar 

  • USEPA (1996) National water quality inventory: report to Congress. United States Environmental Protection Agency, Office of Water Regulations and Standards

    Google Scholar 

  • USGS (2015) U.S. geological survey, mineral commodity summaries 2015, 196 pp. doi:10.3133/70140094. Accessed 27 Feb 2016

  • van Dijk KC, Lesschen JP, Oenema O (2016) Phosphorus flows and balances of the European Union Member States. Sci Total Environ 542:1078–1093

    Article  Google Scholar 

  • Van Kauwenbergh SJ (2010) World phosphate rock reserves and resources. IFDC, Muscle Shoals

    Google Scholar 

  • Villamil MB, Amiotti NM, Peinemann N (2001) Soil degradation related to overgrazing in the semi-arid southern Caldenal area of Argentina. Soil Sci 166(7):441–452

    Article  CAS  Google Scholar 

  • Wade A, Whitehead P, Butterfield D (2002) The Integrated Catchments model of Phosphorus dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous river systems: model structure and equations. Hydrol Earth Syst Sci Discuss 6(3):583–606

    Article  Google Scholar 

  • Weikard H-P, Seyhan D (2009) Distribution of phosphorus resources between rich and poor countries: the effect of recycling. Ecol Econ 68(6):1749–1755

    Article  Google Scholar 

  • Withers PJ, Sylvester-Bradley R, Jones DL, Healey JR, Talboys PJ (2014) Feed the crop not the soil: rethinking phosphorus management in the food chain. Environ Sci Technol 48(12):6523–6530

    Article  CAS  Google Scholar 

  • Young A, Menz K, Muraya P, Smith C (1998) SCUAF version 4: a model to estimate soil changes under agriculture, agroforestry and forestry. ACIAR Technical Reports Series No. 41. Australian Centre for International Agricultural Research (ACIAR), Canberra, Australia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mina Karamesouti or Dionisios Gasparatos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Karamesouti, M., Gasparatos, D. (2017). Sustainable Management of Soil Phosphorus in a Changing World. In: Rakshit, A., Abhilash, P., Singh, H., Ghosh, S. (eds) Adaptive Soil Management : From Theory to Practices. Springer, Singapore. https://doi.org/10.1007/978-981-10-3638-5_9

Download citation

Publish with us

Policies and ethics