Skip to main content

Advertisement

Log in

Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security

  • Perspective
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Legacy phosphorus (P) that has accumulated in soils from past inputs of fertilizers and manures is a large secondary global source of P that could substitute manufactured fertilizers, help preserve critical reserves of finite phosphate rock to ensure future food and bioenergy supply, and gradually improve water quality. We explore the issues and management options to better utilize legacy soil P and conclude that it represents a valuable and largely accessible P resource. The future value and period over which legacy soil P can be accessed depends on the amount present and its distribution, its availability to crops and rates of drawdown determined by the cropping system. Full exploitation of legacy P requires a transition to a more holistic system approach to nutrient management based on technological advances in precision farming, plant breeding and microbial engineering together with a greater reliance on recovered and recycled P. We propose the term ‘agro-engineering’ to encompass this integrated approach. Smaller targeted applications of fertilizer P may still be needed to optimize crop yields where legacy soil P cannot fully meet crop demands. Farm profitability margins, the need to recycle animal manures and the extent of local eutrophication problems will dictate when, where and how quickly legacy P is best exploited. Based on our analysis, we outline the stages and drivers in a transition to the full utilization of legacy soil P as part of more sustainable regional and global nutrient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agbenin JO, Goladi JT (1998) Dynamics of phosphorus fractions in a savanna Alfisol under continuous cultivation. Soil Use Manag 14:59–64

    Article  Google Scholar 

  • Alvarez-Cobelas M, Sánchez-Carrillo S, Angeler DG, Sánchez-Andrés R (2009) Phosphorus export from catchments: a global view. J N Am Benthol Soc 28:805820

    Google Scholar 

  • Araújo A, Plassard C, Drevon J (2008) Phosphatase and phytase activities in nodules of common bean genotypes at different levels of phosphorus supply. Plant Soil 312:129–138. doi:10.1007/s11104-008-9595-3

    Article  CAS  Google Scholar 

  • Ashby JA (1987) The effects of different types of farmer participation on the management of on-farm trials. Agric Admin Ext 25(4):235–252

    Google Scholar 

  • Atwell RC, Schulte LA, Westphal LM (2009) Linking resilience theory and diffusion of innovations theory to understand the potential for perennials in the US Corn Belt. Ecol Soc 14(1):30

    Google Scholar 

  • Bai Z, Li L, Yang X, Zhou B, Shi X, Wang B et al (2013) The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 372:27–37

    Article  CAS  Google Scholar 

  • Banik S, Dey B (1983) Phosphate-solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source. Zentralblatt fuer Mikrobiologie 138:17–23

    CAS  Google Scholar 

  • Barrow NJ, Debnath A (2014) Effect of phosphate status on the sorption and desorption properties of some soils of northern India. Plant Soil 378:383–395

    Article  CAS  Google Scholar 

  • Beauchemin S, Hesterberg D, Chou J, Beauchemin M, Simard RR, Sayers DE (2003) Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation. J Environ Qual 32:1809–1819

    Article  CAS  PubMed  Google Scholar 

  • Beegle D (2005) Assessing soil phosphorus fro crop production by soil testing. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment, agronomy monograph 46. American Society of Agronomy, Wisconsin, pp 123–143

    Google Scholar 

  • Bender RS, Haegele JW, Ruffo ML, Below FE (2013) Nutrient uptake, partitioning and remobilization in modern, transgenic, insect-protected maize hybrids. Agronomy 105(1):161–170

    Article  CAS  Google Scholar 

  • Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–234

    Article  Google Scholar 

  • Blake L, Johnston AE, Poulton PR, Goulding KWT (2003) Changes in soil phosphorus fractions following positive and negative phosphorus balances for long periods. Plant Soil 254:245–261

    Article  CAS  Google Scholar 

  • Brown P, Nelson R, Jacobs B, Kokic P, Tracey J, Ahmed M, DeVoil P (2010) Enabling natural resource managers to self-assess their adaptive capacity. Agric Syst 103:562–568

    Article  Google Scholar 

  • Buda AR, Koopmans GF, Bryant RB, Chardon WJ (2012) Emerging technologies for removing nonpoint phosphorus from surface water and groundwater: introduction. J Environ Qual 41:621–627

    Article  CAS  PubMed  Google Scholar 

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci USA 102(9):1003–1005

    Google Scholar 

  • Chowdhury RB, Moore GA, Weatherley AJ, Arora M (2014) A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales. Resour Conserv Recycl 83:213–228

    Article  Google Scholar 

  • Coad J, Burkett L, Dougherty W, Sparrow L (2014) Decrease in phosphorus concentrations when P fertilizer application is reduced or omitted from grazed pasture soils. Soil Research 52:282–292

    Article  Google Scholar 

  • Condron LM, Goh KM (1989) Effects of long-term phosphatic fertilizer applications on amounts and forms of phosphorus in soils under irrigated pasture in New Zealand. J Soil Sci 40:383–395

    Article  CAS  Google Scholar 

  • Daram P, Brunner S, Persson BL, Amrhein N, Bucher M (1998) Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 1:225–233

    Article  Google Scholar 

  • de Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlun L et al (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci USA 110(35):14296–14301

    Article  PubMed  PubMed Central  Google Scholar 

  • DEFRA (2010) The fertiliser manual (RB209), 8th edn. The Stationary Office, Department for Environment Food and Rural Affairs, London

    Google Scholar 

  • Delgado A, Torrent J (1997) Phosphate-rich soils in the European Union: estimating total plant-available phosphorus. Eur J Agron 6(3–4):205–214

    Article  Google Scholar 

  • Delmas M, Saby N, Arrouays D, Dupas R, Lemercier B, Pellerin S, Gascuel-Odoux C (2015) Explaining and mapping total phosphorus content in French topsoils. Soil Use Manag 31(2):259–269

    Article  Google Scholar 

  • Delorme TA, Angle JS, Coale FJ, Chaney RL (2000) Phytoremediation of phosphorus-enriched soils. Int J Phytorem 2(2):173–181

    Article  CAS  Google Scholar 

  • DeLuca T, Glanville HC, Harris M, Emmett BA, Pingree MRA, de Sosa LL, Morenà C, Jones DL (2015) A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes. Soil Biol Biogeochem 88:110–119

    Article  CAS  Google Scholar 

  • Dodd MB, Ledgard SF (1999) Long term effects of withholding superphosphate application to North Island hill country: a 10-year update. Proc N Z Grassl Assoc 61:63–68

    Google Scholar 

  • Dodd JR, Mallarino AP (2005) Soil-test phosphorus and crop grain yield responses to long-term phosphorus fertilization for corn-soybean rotations. Soil Sci Soc Am J 69:1118–1128

    Article  CAS  Google Scholar 

  • Dodd RJ, McDowell RW, Condron LM (2012) Predicting the changes in environmentally and agronomically significant phosphorus forms following the cessation of phosphorus fertilizer applications to grassland. Soil Use Manag 28:135–147

    Article  Google Scholar 

  • Dodd RJ, McDowell RW, Condron LM (2014) Manipulation of fertilizer regimes in phosphorus enriched soils can reduce phosphorus loss to leachate through an increase in pasture and microbial biomass production. Agric Ecosyst Environ 185:65–76

    Article  CAS  Google Scholar 

  • Ehlert P, Morel C, Fotyma M, Destain J (2003) Potential role of phosphate buffering capacity of soils in fertilizer management strategies fitted to environmental goals. J Plant Nutr Soil Sci 166:409–415

    Article  CAS  Google Scholar 

  • Elser J, Bennett E (2011) Phosphorus: a broken biogeochemical cycle. Nature 478:29–31

    Article  CAS  PubMed  Google Scholar 

  • Elser JJ, Elser TJ, Carpenter SR, Brock WA (2014) Regime shift in fertilizer commodities indicates more turbulence ahead for food security. PLoS ONE 9:e93998. doi:10.1371/journal.pone.0093998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • FAOSTAT (2015) Inputs/Fertilizer statistics. http://faostat3.fao.org/browse/R/RF/E

  • Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000) Processes governing phosphorus availability in temperate soils. J Environ Qual 29:15–23

    Article  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57

    Article  Google Scholar 

  • Gahoonia TS, Claassen N, Jungk A (1992) Mobilization of phosphate on different soils by ryegrass supplied with ammonium or nitrate. Plant Soil 140:241–248

    Article  Google Scholar 

  • Gallet A, Flisch R, Ryser JP, Frossard E, Sinaj S (2003a) Effect of phosphate fertilization on crop yield and soil phosphorus status. J Plant Nutr Soil Sci 166:568–578

    Article  CAS  Google Scholar 

  • Gallet A, Flisch R, Ryser JP, Nosberger J, Frossard E, Sinaj S (2003b) Effect of phosphate fertilization on crop yield and soil phosphorus status. J Plant Nutr Soil Sci 166:557–567

    Article  CAS  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488(7412):535–541

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola R, Edwards M, Elser JJ (2011) A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture. Chemosphere 84:840–845

    Article  CAS  PubMed  Google Scholar 

  • Gomiero T, Pimental D, Paoletti MG (2011) Is there a need for a more sustainable agriculture? Crit Rev Plant Sci 30(1–2):6–23

    Article  Google Scholar 

  • Grandt S, Ketterings QM, Lembo AJ, Vermeylen F (2010) In-field variability of soil test phosphorus and implications for agronomic and environmental phosphorus management. Soil Sci Soc Am J 74(5):1800–1807

    Article  CAS  Google Scholar 

  • Gransee A, Merbach W (2000) Phosphorus dynamics in a long-term P fertilization trial on Luvic Phaeozem at Halle. J Plant Nutr Soil Sci 163:353–357

    Article  CAS  Google Scholar 

  • Grant CA, Flaten DN, Tomasiewicz DJ, Sheppard SC (2001) The importance of early season phosphorus nutrition. Can J Plant Sci 81:211–214

    Article  CAS  Google Scholar 

  • Guo C, Guo L, Li X, Gu J, Zhao M, Duan W, Ma C, Lu W, Xiao K (2014) TaPT2, a high-affinity phosphate transporter gene in wheat (Triticum aestivum L.), is crucial in plant Pi uptake under phosphorus deprivation. Acta Physiol Plant 36(6):1373–1384. doi:10.1007/s11738-014-1516-x

    Article  CAS  Google Scholar 

  • Hanserud OS, Brod E, Øgaard AF, Müller DB, Brattebø H (2015) A multi-regional soil phosphorus balance for exploring secondary fertilizer potential: the case of Norway. Nutr Cycl Agroecosyst. doi:10.1007/s10705-015-9721-6

  • Hao LF, Zhang JL, Chen FJ, Christie P, Li XL (2008) Response of two maize inbred lines with contrasting phosphorus efficiency and root morphology to mycorrhizal colonization at different soil phosphorus supply levels. J Plant Nutr 31:1059–1073. doi:10.1080/01904160802115227

    Article  CAS  Google Scholar 

  • Hayes J, Richardson A, Simpson R (2000) Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Biol Fertil Soils 32:279–286

    Article  CAS  Google Scholar 

  • Herlihy M, McCarthy J, Breen J, Moles R (2004) Effects over time of fertiliser P and soil series on P balance, soil-test P and herbage production. Irish J Agric Food Res 43:147–160

    Google Scholar 

  • Herman DJ, Firestone MK, Nuccio E, Hodge A (2012) Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiol Ecol 80(1):236–247

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen J, Tang X, Zhang F (2011) P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156:1078–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holford ICR (1980) Effects of phosphate buffer capacity on critical levels and relationships between soil tests and labile phosphate in wheat-growing areas. Aust J Soil Res 18:405–414

    Article  CAS  Google Scholar 

  • Jaakola A, Hartikainen H, Lemola R (1997) Effect of fertilization on soil phosphorus in a along-term field experiment in southern Finland Agriculture and Food. Science 6:313–322

    Google Scholar 

  • Jacobs BC, Brown PR (2014) Drivers of change in landholder capacity to manage natural resources. J Nat Resour Policy Res 6(1):1–26

    Article  Google Scholar 

  • Jarvie HP, Sharpley AN, Spears B, Buda AR, May L, Kleinman PJA (2013) Water quality remediation faces unprecedented challenges from legacy phosphorus. Environ Sci Technol 47:8997–8998

    Article  CAS  PubMed  Google Scholar 

  • Jarvie HP, Sharpley AN, Flaten D, Kleinman PJA, Jenkins A, Simmons T (2015) The pivotal role of phosphorus in a resilient water–energy–food security nexus. J Environ Qual 44(4):1049–1062

    Article  CAS  PubMed  Google Scholar 

  • Jing J, Zhang F, Rengel Z, Shen J (2012) Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake. Field Crops Res 133:176–185

    Article  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757

    Article  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Johnston AE, Goulding KWT, Poulton PR, Chalmers AG (2001) Reducing fertilizer inputs: endangering arable soil fertility. In: Proceedings no. 487, International Fertilizer Society York UK

  • Johnston AE, Poulton PR, Fixen PE, Curtin D (2014) Phosphorus: its efficient use in agriculture. Adv Agron 123:177–228

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones D, Oburger E (2011) Solubilization of phosphorus by soil microorganisms. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action. Springer, Berlin, pp 169–198

    Chapter  Google Scholar 

  • Jordan-Meille L, Rubaek GH, Ehlert P, Genot V, Hofman G, Goulding K, Recknagel KJ, Provolo G, Barraclough P (2012) An overview of fertilizer-P recommendations in Europe: soil testing, calibration, and fertilizer recommendations. Soil Use Manag 28(4):419–435

    Article  Google Scholar 

  • Juang K-W, Liou D-C, Lee D-Y (2002) Site-specific phosphorus application based on the kriging fertilizer-phosphorus availability index of soils. J Environ Qual 31(4):1248–1255

    Article  CAS  PubMed  Google Scholar 

  • Kamprath EJ (1999) Changes in phosphate availability of Ultisols with long-term cropping. Commun Soil Sci Plant Anal 30(7&8):909–919

    Article  CAS  Google Scholar 

  • Kautz T, Amelung W, Ewert F, Gaiser T, Horn R, Jahn R et al (2013) Nutrient acquisition from arable subsoils in temperate climates: a review. Soil Biol Biochem 57:1003–1022

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Kleinman PJA, Sharpley AN, Withers PJA, Bergstrom L, Johnson LT, Doody DG (2015) Implementing agricultural phosphorus science and management to combat eutrophication. Ambio 44(Suppl 2):S297–S310

    Article  PubMed  CAS  Google Scholar 

  • Lambers H, Finnegan PM, Laliberté E, Pearse SJ, Ryan MH, Shane MW, Veneklaas EJ (2011) Update on phosphorus nutrition in Proteaceae. Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops? Plant Physiol 156(3):1058–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Cawthray GR, Giavalisco P, Kuo J, Laliberte E, Pearse SJ, Scheible W, Stitt M, Teste F, Turner BL (2012) Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytol. doi:10.1111/j.1469-8137.2012.04285.x

    Google Scholar 

  • Lederer J, Laner D, Fellner J (2014) A framework for the evaluation of anthropogenic resources: the case study of phosphorus stocks in Austria. J Clean Prod 84:368–381

    Article  CAS  Google Scholar 

  • Li L, Li S, Sun J, Zhou L, Bao X, Zhang H, Zhang F (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA 104:11192–11196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Shen JB, Zhang FS, Tang CX, Hans L (2008) Is there a critical level of shoot phosphorus concentration for cluster-root formation in Lupinus albus? Funct Plant Biol 35:328–336

    Article  CAS  Google Scholar 

  • Li H, Huang G, Meng Q, Ma L, Yuan L, Wang F, Zhang W, Cui Z, Shen J, Chen X, Jiang R, Zhang F (2011) Integrated soil and plant phosphorus management for crop and environment in China: a review. Plant Soil 349:157–167

    Article  CAS  Google Scholar 

  • Liang C, Wang J, Zhao J, Tian J, Liao H (2014) Control of phosphate homeostasis through gene regulation in crops. Curr Opin Plant Biol 21C:59–66

    Article  CAS  Google Scholar 

  • Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant Microbe Interact 11(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP (2007) Roots and the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • MacDonald GK, Bennett EM (2009) Phosphorus accumulation in Saint Lawrence river watershed soils: a century-long perspective. Ecosystems 12:621–635

    Article  CAS  Google Scholar 

  • MacDonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world’s croplands. Proc Natl Acad Sci USA 108:3086–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald GK, Bennett EM, Taranu ZE (2012) The influence of time, soil characteristics, and land-use history on soil phosphorus legacies: a global meta-analysis. Glob Change Biol 18:1904–1917

    Article  Google Scholar 

  • Maguire RO, Chardon WJ, Simard RR (2005) Assessing potential environmental impacts of soil phosphorus by soil testing. In: Sharpley AN, Sims AT (eds) Phosphorus: agriculture and the environment. Agriculture and the Environment, American Society of Agronomy, Madison, pp 145–180

    Google Scholar 

  • Malboobi MA, Owlia P, Behbahani M, Sarokhani E, Moradi S, Yakhchali B, Deljou A, Heravi KM (2009) Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J Microbiol Biotechnol 25:1471–1477

    Article  CAS  Google Scholar 

  • Manschadi AM, Kaul H-P, Vollmann J, Eitzinger J, Wenzel W (2014) Developing phosphorus-efficient crop varieties—an interdisciplinary research framework. Field Crops Res 162:87–98

    Article  Google Scholar 

  • Massey MS, Davis JG, Ippolito JA, Sheffield RE (2009) Effectiveness of recovered magnesium phosphates as fertilizers in neutral and slightly alkaline soils. Agron J 101(2):323–329

    Article  CAS  Google Scholar 

  • McBride SD, Nguyen ML, Rickard DS (1990) Implications of ceasing annual superphosphate topdressing applications on pasture production. Proc N Z Grassl Assoc 59:177–180

    Google Scholar 

  • McCollum RE (1991) Buildup and decline in soil phosphorus: 30-year trends on Typic Umprabuult. Agron J 83:77–85

    Article  CAS  Google Scholar 

  • McCormick S, Jordan C, Bailey JS (2009) Within and between-field spatial variation in soil phosphorus in permanent grassland. Precis Agric 10:262–276

    Article  Google Scholar 

  • McDowell RW, Condron LM (2012) Phosphorus and the Winchmore trials: review and lessons learnt. N Z J Agric Res 55:119–132

    Article  CAS  Google Scholar 

  • McDowell RW, Condron LM, Stewart I, Cave V (2005) Chemical nature and diversity of phosphorus in New Zealand pasture soils using 31P nuclear magnetic resonance spectroscopy and sequential fractionation. Nutr Cycl Agroecosyst 72:241–254

    Article  CAS  Google Scholar 

  • McDowell RW, Cosgrove G, Orchiston T, Chrystal J (2014) A cost-effective management practice to decrease phosphorus loss from dairy farms. J Environ Qual 43(6):2044–2052

    Article  CAS  PubMed  Google Scholar 

  • McDowell RW, Cox N, Daughney CJ, Wheeler D, Moreau M (2015) A national assessment of the potential linkage between soil, and surface and groundwater concentrations of phosphorus. J Am Water Resour Assoc 51(4):992–1002

    Article  Google Scholar 

  • McLaughlin MJ, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2012) The chemical nature of P accumulation in agricultural soils—implications for fertilizer management and design: an Australian perspective. Plant Soil 349:69–87

    Article  CAS  Google Scholar 

  • Metson GS, MacDonald GK, Haberman D, Nesme T, Bennett EM (2015) Feeding the corn belt: opportunities for phosphorus recycling in U.S. agriculture. Sci Total Environ. doi:10.1016/j.scitotenv.2015.08.047

  • Miras-Avalos JM, Antunes PM, Koch A, Khosla K, Klironomos JN, Dunfield KE (2011) The influence of tillage on the structure of rhizosphere and root-associated arbuscular mycorrhizal fungal communities. Pedobiologia 54:235–241. doi:10.1016/j.pedobi.2011.03.005

    Article  Google Scholar 

  • Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D (1997) Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Natl Acad Sci USA 94(13):7098–7102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negassa W, Leinweber P (2009) How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. J Plant Nutr Soil Sci 172:305–325

    Article  CAS  Google Scholar 

  • Novak JM, Chan ASK (2002) Development of P-hyperaccumulator plant strategies to remediate soils with excess P concentrations. Crit Rev Plant Sci 21:493–509

    Article  CAS  Google Scholar 

  • Nziguheba G, Zingore S, Kihara J, Merckx R, Njoroge S, Otinga A, Vandamme E, Vanlauwe B (2015) Phosphorus in smallholder farming systems of sub-Sahara Africa: implications for agricultural intensification. Nutr Cycl Agroecosyst. doi:10.1007/s10705-015-9729-y

  • Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Pannell D (2011) Policy perspectives on changing land management. In: Pannell D, Vanclay F (eds) Changing land management: adoption of new practices by rural landholders. CSIRO, Collingwood, pp 177–188

    Google Scholar 

  • Paris P, Gavazzi C, Tabaglio V (2004) Rate of soil P decline due to crop uptake long-term curves of depletion. Agric Med 134:236–245

    Google Scholar 

  • Penn C, McGrath J, Bowen J, Wilson S (2014) Phosphorus removal structures: a management option for legacy phosphorus. J Soil Water Conserv 69(2):51A–56A

    Article  Google Scholar 

  • Postma J, Lynch JP (2010) Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Ann Bot 107:829–841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pretty J, Brett C, Gee D, Hine R, Mason C, Morison J, Rayment M, Van Der Bijl G, Dobbs T (2001) Policy challenges and priorities for internalizing the externalities of modern agriculture. J Environ Plan Manag 44(2):263–283

    Article  Google Scholar 

  • Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeoscience 7:585–619

    Article  CAS  Google Scholar 

  • Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296

    Article  CAS  Google Scholar 

  • Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224

    Article  Google Scholar 

  • Read DWL, Spratt ED, Bailey LD, Warder FG (1977) Residual effects of phosphorus fertilizer I For wheat grown on four Chernozemic soil types of Saskatchewan and Manitoba. Can J Soil Sci 57:255–262

    Article  CAS  Google Scholar 

  • Rehm GW, Randall GW, Scobbie AJ, Vetch JA (1995) Impact of fertilizer placement and tillage system on phosphorus distribution. Soil Sci Soc Am J 59:1661–1665

    Article  CAS  Google Scholar 

  • Reynolds M (2006) Critical appraisal in environmental decision making. The Open University, Milton

    Google Scholar 

  • Richardson A, Barea J-M, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi:10.1007/s11104-009-9895-2

    Article  CAS  Google Scholar 

  • Ringeval B, Nowak B, Nesme T, Delmas M, Pellerin S (2014) Contribution of anthropogenic phosphorus to agricultural soil fertility and food production. Glob Biogeochem Cycles 28:743–756

    Article  CAS  Google Scholar 

  • Rodrigues M, Pavinato PS, Withers PJA, Bettoni Teles AP, Herrera WFB (2015) Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna. Sci Total Environ (in press)

  • Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  CAS  Google Scholar 

  • Rose TJ, Liu L, Wissuwa M (2013) Improving phosphorus efficiency in cereal crops: is breeding for reduced grain phosphorus concentration part of the solution? Front Plant Sci 4:444. doi:10.3389/fpls.2013.00444

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowe HI, Brown CS, Claassen VP (2007) Comparisons of mycorrhizal responsiveness with field soil and commercial inoculum for six native montane species and Bromus tectorum. Restor Ecol 15:44–52

    Article  Google Scholar 

  • Roy-Bolduc A, Hijri M (2011) The use of mycorrhizae to enhance phosphorus uptake: a way out the phosphorus crisis. J Biofertil Biopestic 2:1–5

    Google Scholar 

  • Rubaek GH, Kristensen K, Olesen SE, Østergaard HS, Heckrath G (2013) Phosphorus accumulation and spatial distribution in agricultural soils in Denmark. Geoderma 209–210:241–250

    Article  CAS  Google Scholar 

  • Sánchez-Alcalá I, del Campillo MC, Barrón V, Torrent J (2014) The Olsen P/solution P relationship as affected by soil properties. Soil Use Manag 30(4):454–462

    Article  Google Scholar 

  • Sattari S, Bouwman A, Giller KE, Van Ittersum M (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci USA 109:6348–6353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sattari SZ, van Ittersum MK, Giller KE, Zhang F, Bouwman AF (2014) Key role of China and its agriculture in global sustainable phosphorus management. Environ Res Lett 9:054003

    Article  CAS  Google Scholar 

  • Schulte RPO, Melland AR, Fenton O, Herlihyn M, Richards K, Jordan P (2010) Modelling soil phosphorus decline: expectations of water framework directives policies. Environ Sci Policy 13:472–484

    Article  CAS  Google Scholar 

  • Selles F, Campbell CA, Zentner RP, Curtin D, James DC, Basnyat P (2011) Phosphorus use efficiency and long-term trends in soil available phosphorus in wheat production systems with and without nitrogen fertilizer. Can J Soil Sci 91:39–52

    Article  CAS  Google Scholar 

  • Sharma NC, Starnes DL, Sahi SV (2009) Phytoextraction of excess soil phosphorus. Environ Pollut 146(1):120–127

    Article  CAS  Google Scholar 

  • Sharpley AN (2003) Plowing to decrease surface stratification of phosphorus in manured soils. J Environ Qual 32:1375–1384

    Article  CAS  PubMed  Google Scholar 

  • Sharpley AN, McDowell RW, Kleinman PJA (2004) Amounts, forms and solubility of phosphorus in soils receiving manure. Soil Sci Soc Am J 68:2048–2057

    Article  CAS  Google Scholar 

  • Sharpley AN, Jarvie HP, Buda A, May L, Spears B, Kleinman P (2013) Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual 42:1308–1326

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Li C, Mi G, Li L, Yuan L, Jiang R, Zhang F (2013) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64:1181–1192

    Article  CAS  PubMed  Google Scholar 

  • Simpson RJ, Oberson A, Culvenor RA, Ryan MH, Veneklaas EJ, Lambers H, Lynch JP, Ryan PR, Delhaize E, Smith FA (2011) Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349:1–32

    Article  CAS  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: Where do we go from here? Trends Ecol Evol 24:201–207

    Article  PubMed  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DR, Francesconi W, Livingston SJ, Huang C (2014) Phosphorus losses from monitored fields with conservation practices in the Lake Erie Basin, USA. Ambio 44(Suppl):S319–S331

    Google Scholar 

  • Staver KW, Brinsfield RB (2001) Agriculture and water quality on the Maryland, Eastern Shore: Where do we go from here? Bioscience 51(10):859–868

    Article  Google Scholar 

  • Stout WL, Sharpley AN, Landa J (2000) Effectiveness of coal combustion by-products in controlling phosphorus export from soils. J Environ Qual 29:1239–1244

    Article  CAS  Google Scholar 

  • Sulpice R, Ishihara H, Schlereth A, Cawthray GR, Encke B, Giavalisco P et al (2014) Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species. Plant, Cell Environ 37(6):1276–1298. doi:10.1111/pce.12240

    Article  CAS  Google Scholar 

  • Tiessen H, Stewart J, Cole C (1984) Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Sci Soc Am J 48:853–858

    Article  CAS  Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61(2):295–304

    Article  CAS  PubMed  Google Scholar 

  • Tóth G, Guicharnaud R-A, Tóth B, Hermann T (2014) Phosphorus levels in croplands of the European Union with implications for P fertilizer use. Eur J Agron 55:42–52

    Article  CAS  Google Scholar 

  • Unger PW, Kaspar TC (1993) Soil compaction and root growth: a review. Agron J 86(5):759–766

    Article  Google Scholar 

  • van der Salm C, Chardon WJ, Koopmans GF, van Middlekoop JC, Ehlert PAI (2009) Phytoextraction of phosphorus-enriched grassland soils. J Environ Qual 38:751–761

    Article  PubMed  CAS  Google Scholar 

  • Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195(2):306–320. doi:10.1111/j.1469-8137.2012.04190.x

    Article  CAS  PubMed  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  CAS  Google Scholar 

  • Wang X, Shen J, Liao H (2010) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179:302–306

    Article  CAS  Google Scholar 

  • Watson CJ, Smith RV, Matthews DI (2007) Increase in phosphorus losses from grassland in response to Olsen-P accumulation. J Environ Qual 36:1452–1460

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Hammond JP (2008) Chapter 4: Phosphorus nutrition of terrestrial plants. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Berlin, pp 51–81

    Chapter  Google Scholar 

  • Withers PJA, Unwin RJ, Grylls JP, Kane R (1994) Effects of withholding phosphate and potash fertilizer on grain yield of cereals and on plant-available phosphorus and potassium in calcareous soils. Eur J Agron 3(1):1–8

    Article  CAS  Google Scholar 

  • Withers PJA, Edwards AC, Foy RH (2001) Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil. Soil Use Manag 17:139–149

    Article  Google Scholar 

  • Withers PJA, Hartikainen H, Barberis E, Flynn NJ, Warren GP (2009) The effect of soil phosphorus on particulate phosphorus in land runoff. Eur J Soil Sci 60:994–1004

    Article  CAS  Google Scholar 

  • Withers PJA, Sylvester-Bradley R, Jones DL, Healey JR, Talboys PJ (2014) Feed the crop not the soil: rethinking phosphorus management in the food chain. Environ Sci Technol 48:6523–6530

    Article  CAS  PubMed  Google Scholar 

  • Withers PJA, van Dijk KC, Neset T-SS, Nesme T, Oenema O, Rubæk GH, Schoumans OF, Smit B, Pellerin S (2015) Stewardship to tackle global phosphorus inefficiency: the case of Europe. Ambio 44(Suppl 2):S193–S206

    Article  PubMed  CAS  Google Scholar 

  • Wu P, Shou H, Xu G, Lian X (2013) Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol 16(2):205–212. doi:10.1016/j.pbi.2013.03.002

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gaxiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H + -pyrophosphatase. Plant Biotechnol J 5(6):735–745. doi:10.1111/j.1467-7652.2007.00281.x

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Zhang X, Gaxiola RA, Xu G, Peer WA, Murphy AS (2014) Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions. J Exp Bot 65(12):3045–3053. doi:10.1093/jxb/eru149

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Shen J, Zhang J, Zuo Y, Li L, Chen X (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. Adv Agron 107:1–32

    Article  CAS  Google Scholar 

  • Zhang DS, Zhang CC, Tang XY, Li HG, Zhang FS, Rengel Z, Whalley WR, Davies WJ, Shen JB (2015) Increased soil P availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytol. doi:10.1111/nph.13613

  • Zhu Y-G, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was initiated and refined at the Phosphorus Sustainability Research Coordination Network (P RCN) meetings in Tempe, Arizona in January 2014 and Washington DC in May 2015. We thank the U.S. National Science Foundation (CHE-1230603) for funding that workshop and to the UK Science & Innovation Network of the British Consulate-General for providing additional travel support. We also thank Dr. Tom Bruulsema, International Plant Nutrition Institute and two anonymous referees for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. A. Withers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowe, H., Withers, P.J.A., Baas, P. et al. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutr Cycl Agroecosyst 104, 393–412 (2016). https://doi.org/10.1007/s10705-015-9726-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-015-9726-1

Keywords

Navigation