Skip to main content

Interaction of Haloarchaea with Metals

  • Chapter
  • First Online:
Marine Pollution and Microbial Remediation

Abstract

Haloarchaea are predominant microflora of hypersaline econiches such as solar saltern, salt lakes, and salt deposits and so on. Urbanization and industrialization including mining, agriculture, and waste disposal in coastal countries result in the discharge of effluents containing toxic metal ions into rivers, estuaries, and marine econiches. Saltpans located along the estuary often serve as a sink of these metal toxicants. Moreover, solar salterns are sites where microorganisms thrive and where haloarchaea are predominant indicating their survival in metal-toxicated environment to be the result of resistance mechanism specialized to overcome the stress. This chapter reviews and focuses on the various resistance strategies adopted by Archaea especially haloarchaea to survive the metal-contaminated econiche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed M, Malik A (2012) Bioaccumulation of heavy metals by Zn resistant bacteria isolated from agricultural soils irrigated with waste water. Bacteriol J 2(1):12–21

    Article  Google Scholar 

  • Albers SV, Koning SM, Konings WN, Driessen AJ (2004) Insights into ABC transport in archaea. J Bioenerg Biomembr 36(1):5–15

    Article  CAS  Google Scholar 

  • Anton A, Grobe C, Reibmann J, Pribyl T, Nies DH (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J Bacteriol 181(22):6876–6881

    CAS  Google Scholar 

  • Asker D, Awad T, Ohta Y (2002) Lipids of Haloferax alexandrinus strain TM(T): an extremely halophilic canthaxanthin producing archaeon. J Biosci Bioeng 93(1):37–43

    Article  CAS  Google Scholar 

  • Baliga NS, Bonneau R, Facciotti MT et al (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the dead sea. Gen Res 14(11):2221–2234

    Article  CAS  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron dependent marine methane oxidation. Science 325:184–187

    Article  CAS  Google Scholar 

  • Bini E (2010) Archaeal transformation of metals in the environment. FEMS Microbiol Ecol 73(1):1–16

    CAS  Google Scholar 

  • Bolhuis H, Palm P, Wende A et al (2006) The genome of the square archaeon Haloquadratum walsbyi: life at the limits of water activity. BMC Genomics 7:169

    Article  Google Scholar 

  • Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20(1):3–22

    Article  CAS  Google Scholar 

  • Coombs JM, Barkay T (2005) New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea. Appl Environ Microbiol 71:7083–7091

    Article  CAS  Google Scholar 

  • Cullen WR, Bentley R (2005) The toxicity of trimethylarsine: an urban myth. J Environ Monit 7(1):11–15

    Article  CAS  Google Scholar 

  • DasSarma S, Capes M, DasSarma P (2009) Haloarchaeal megaplasmids. In: Schwartz E (ed) Microbial megaplasmids. Springer, Berlin, pp 3–30

    Chapter  Google Scholar 

  • Dave BP, Anshuman K, Hajela P (2006) Siderophores of halophilic archaea and their chemical characterization. Indian J Exp Biol 44(4):340–344

    CAS  Google Scholar 

  • Delong E (2007) Microbial domains in the ocean: a lesson from the archaea. Oceanography 20(2):124–129

    Article  Google Scholar 

  • Fagan MJ, Saier MH Jr (1994) P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J Mol Evol 38(1):57–99

    Article  CAS  Google Scholar 

  • Falb M, Pfeiffer F, Palm P et al (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Gen Res 15(10):1336–1343

    Article  CAS  Google Scholar 

  • Faraldo-Gomez JD, Sansom MSP (2003) Acquisition of siderophores in gram-negative bacteria. Nat Rev Mol Cell Biol 4:105–116

    Article  CAS  Google Scholar 

  • Haney CJ, Grass G, Franke S, Rensing C (2005) New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 32(6):215–226

    Article  CAS  Google Scholar 

  • Hartman AL, Norais C, Badger JH et al (2010) The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS One 5(3):9605

    Article  Google Scholar 

  • Hu H, Jin Q, Kavan P (2014) A study of heavy metal pollution in China: current statues, pollution control policies and counter measures. Sustainability 6:5820–5838

    Article  CAS  Google Scholar 

  • Hubmacher D, Matzanke B, Anemuller FS (2007) Iron uptake in the Euryarchaeon Halobacterium salinarum. Biometals 20:539–547

    Article  CAS  Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III) and Mn(IV) and toxic metals at 100 °C by Pyrobaculum islandicum. J Bacteriol 66:1050–1056

    CAS  Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67:3275–3279

    Article  CAS  Google Scholar 

  • Kashefi K, Moskowitz BM, Lovley DR (2008a) Characterization of extracellular minerals produced during dissimilatory Fe (III) and U (VI) reduction at 100 degrees C by Pyrobaculum islandicum. Geobiology 6:147–154

    Article  CAS  Google Scholar 

  • Kashefi K, Shelobolina ES, Elliott WC, Lovley DR (2008b) Growth of thermophilic and hyperthermophilic Fe(III)- reducing microorganisms on a ferruginous smectite as the sole electron acceptor. Appl Environ Microb 74:251–258

    Article  CAS  Google Scholar 

  • Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res 16(7):841–854

    Article  CAS  Google Scholar 

  • Kawakami Y, Hayashi N, Ema M, Nakayama M (2007) Effects of divalent cations on Halobacterium salinarum cell aggregation. J Biosci Bioeng 104(1):42–46

    Article  CAS  Google Scholar 

  • Khandavilli S, Sequeira F, Furtado I (1999) Metal tolerance of extremely halophilic bacteria isolated from estuaries of Goa, India. Ecol Environ Conserv 5(2):149–152

    CAS  Google Scholar 

  • Klein JS, Lewinson O (2011) Bacterial ATP-driven transporters of transition metals: physiological roles, mechanisms of action, and roles in bacterial virulence. Metallomics 3(11):1098–1108

    Article  CAS  Google Scholar 

  • Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environment: a management tool. Int J Environ Sci 1:1079–1093

    Google Scholar 

  • Lechner J, Sumper M (1987) The primary structure of a prokaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. J Biol Chem 262:9724–9729

    CAS  Google Scholar 

  • Litchfield CD, Gillevet PM (2002) Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J Ind Microbiol Biotechnol 28(1):48–55

    Article  CAS  Google Scholar 

  • Maezato Y, Blum P (2012) Survival of the fittest: overcoming oxidative stress at the extremes of acid, heat and metal. Life 2:229–242

    Article  CAS  Google Scholar 

  • Malki L, Yanku M, Borovok I, Cohen G, Mevarech Aharonowitz MY (2009) Identification and characterization of gshA, a gene encoding the glutamate-cysteine ligase in the halophilic archaeon Haloferax volcanii. J Bacteriol 191(16):5196–5204

    Article  CAS  Google Scholar 

  • Matyar F, Akkan T, Ucak Y, Eraslan B (2010) Aeromonas and Pseudomonas: antibiotic and heavy metal resistance species from Iskenderun Bay, Turkey (northeast Mediterranean Sea). Environ Monit Assess 73:263–273

    Google Scholar 

  • Merroun M, Rossberg A, Hennig C, Scheinost A, Selenska-Pobell S (2007) Spectroscopic characterization of gold nanoparticles formed by cells and S-layer-protein of Bacillus sphaericus JGA12. Mater Sci Eng C 27:288–292

    Article  Google Scholar 

  • Montanini B, Blaudez D, Jeandroz S et al (2007) Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 8:107

    Article  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT et al (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26(3):311–325

    Article  CAS  Google Scholar 

  • Naik S, Furtado I (2014) Equilibrium and kinetics of adsorption of Mn2+ by Haloarchaeon GUSF (MTCC3265). Geomicrobiol J 31(8):708–715

    Article  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27(2–3):313–339

    Article  CAS  Google Scholar 

  • Nieto JJ, Ventosa A, Ruiz-Berraquero F (1987) Susceptibility of halobacteria to heavy metals. Appl Environ Microbiol 53(5):1199–1202

    CAS  Google Scholar 

  • Orell A, Navarro CA, Rivero M, Aguilar JS, Jerez CA (2012) Inorganic polyphosphates in extremophiles and their possible functions. Extremophiles. doi:10.1007/s00792-012-0457-9

    Google Scholar 

  • Oren A (2012) Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematic. Int J Syst Evol Microbiol 62(2):263–271

    Article  Google Scholar 

  • Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19(4):239–262

    Article  CAS  Google Scholar 

  • Patil S, Fernandes J, Tangasali R, Furtado I (2014) Exploitation of Haloferax alexandrinus for biogenic synthesis of silver nanoparticles antagonistic to human and lower mammalian pathogens. J Clust Sci. doi:10.1007/s10876-013-0621-0

    Google Scholar 

  • Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Mem Biol 156(2):99–103

    Article  CAS  Google Scholar 

  • Poli A, Donato P Di, Abbamondi GR, Nicolaus B (2011) Synthesis, production and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea article id 693253:13

    Google Scholar 

  • Pollman K, Matys S (2007) Construction of S-layer protein exhibiting modified self assembling properties and enhanced metal binding properties. Appl Microbiol Biotechnol 75:1079–1085

    Article  Google Scholar 

  • Popescu G, Dumitru L (2009) Biosorption of some heavy metals from media with high salt concentrations by halophilic archaea. Biotechnol Biotechnol Equip 23(sup1):791–795

    Article  Google Scholar 

  • Raimunda D, Gonzalez-Guerrero M, Leeber BW III, Arguello JM (2011) The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Biometals 24(3):467–475

    Article  CAS  Google Scholar 

  • Reindel S, Schmidt CL, Anemuller S, Matzanke BF (2005) Expression and regulation pattern of ferritin-like DpsA in the Archaeon Halobacterium salinarum. Bio Met 18(4):387–397

    CAS  Google Scholar 

  • Roth JR, Lawrence JG, Rubenfield M et al (1993) Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 175(11):3303–3316

    CAS  Google Scholar 

  • Saier MH Jr (1994) Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58(1):71–93

    CAS  Google Scholar 

  • Salgaonkar BB, Das D, Branganca JM (2015) Resistance of extremely halophilic archaea to zinc and zinc oxide nanoparticle. Appl Nanosci 6(2):251–258

    Article  Google Scholar 

  • Schelert J, Drozda M, Dixit V, Dillman A, Blum P (2006) Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus. J Bacteriol 188(20):7141–7150

    Article  CAS  Google Scholar 

  • Schneider S, Paoli M (2005) Crystallization and preliminary Xray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica. Acta Crystallogr 61(8):802–805

    CAS  Google Scholar 

  • Silveira CB, Cardoso AM, Coutinho FH et al (2013) Tropical aquatic archaea show environment-specific community composition. PLoS One 8(9):e76321

    Article  CAS  Google Scholar 

  • Snavely MD, Florer JB, Miller CG, Maguire ME (1989) Magnesium transport in Salmonella typhimurium: 28 Mg2+ transport by the CorA, MgtA, and MgtB systems. J Bacteriol 171(9):4761–4766

    CAS  Google Scholar 

  • Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27(2–3):183–195

    Article  CAS  Google Scholar 

  • Srivastava P, Kowshik M (2013) Mechanisms of metal resistance and homeostasis in haloarchaea. Archaea. doi:10.1155/2013/732864

    Google Scholar 

  • Srivastava P, Braganca J, Ramanan SR, Kowshik M (2013) Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17(5):821–831

    Article  CAS  Google Scholar 

  • Sumper M, Berg E, Mengele R, Strobel I (1990) Primary structure and glycosylation of the S-layer protein of Haloferax volcanii. J Bacteriol 172:7111–7118

    CAS  Google Scholar 

  • Suzuki Y, Matsushita H (1968) Interaction of metal ions and phospholipids monolayers as a biological membrane model. Ind Health 6(3):128–133

    Article  CAS  Google Scholar 

  • Tabak HH, Lens P, Hullebusch VED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides-1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Biotechnol 4(3):115–156

    Article  CAS  Google Scholar 

  • Taran M, Safari M, Monaza A, Reza JZ, Bakhtiyari S (2013) Optimal condition for the biological removal of arsenic by novel halophilic archaea in different condition and its process optimization. Pol J Chem Technol 15(2):7–9

    Article  CAS  Google Scholar 

  • Tottey S, Rich PR, Rondet SAM, Robinson NJ (2001) Two menkes-type ATPases supply copper for photosynthesis in synechocystis PCC6803. J Biol Chem 276(23):19999–20004

    Article  CAS  Google Scholar 

  • Wakai H, Nakamura S, Kawasaki H, Takada K, Mizutani S, Aono R, Horikoshi K (1997) Cloning and sequencing of the gene encoding the cell surface glycoprotein of Haloarcula japonica strain TR-1. Extremophiles 1:29–35

    Article  CAS  Google Scholar 

  • Wang G, Kennedy SP, Fasiludeen Rensing SC, DasSarma S (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186(10):3187–3194

    Article  CAS  Google Scholar 

  • Williams GP, Gnanadesigan M, Ravikumar S (2012) Biosorption and bio-kinetic properties of solar saltern halobacterial strains for managing Zn2+, As2+ and Cd2+ metals. Geomicrobiol J. doi:10.1080/01490451.2012.732663

    Google Scholar 

  • Yuan C, Lu X, Jie Q, Rosen BP, Le XC (2008) Volatile arsenic species released from Escherichia coli expressing the aslll S-adenosylmethionine methyltransferase gene. Environ Sci Technol 42(9):3201–3206

    Article  CAS  Google Scholar 

  • Zhuang W, Gao X (2014) Integrated assessment of heavy metal pollution in the surface sediments of the Laizhou Bay and the coastal waters of the Zhangzi Island, China: comparison among typical marine sediment quality indices. PLoS ONE 9(4):e94145

    Article  Google Scholar 

  • Zumft WG, Viebrock-Sambale A, Braun C (1990) Nitrous oxide reductase from denitrifying Pseudomonas stutzeri. Genes for copper-processing and properties of the deduced products, including a new member of the family of ATP/GTP-binding proteins. Eur J Biochem 192(3):591–599

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanika Shivdas Naik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Naik, S.S., Furtado, I. (2017). Interaction of Haloarchaea with Metals. In: Naik, M., Dubey, S. (eds) Marine Pollution and Microbial Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1044-6_9

Download citation

Publish with us

Policies and ethics