Skip to main content

Endolithic Microbes in Coral Skeletons: Algae or Bacteria?

  • Chapter
  • First Online:
Symbiotic Microbiomes of Coral Reefs Sponges and Corals

Abstract

Microbial endoliths exist ubiquitously, in several terrestrial and marine environments, including inside pores of coral skeletons. Although coral skeletons provide a harsh environment due to limited light and circadian fluctuations in pH and oxygen, visible green, black, brown, and red bands comprised of cyanobacteria, fungi, bacteria, and red and green algae, respectively, are usually observed in the skeletons of corals. Based on microscopic observation and culture-based methods, many studies showed algae, fungi, and cyanobacteria as dominant microorganisms in coral skeleton and also suggested that the endolithic microbes may be nutrient source of their coral hosts. Recently, various bacteria in coral skeletons have been illustrated, thanks to culture-independent methods. This chapter focuses on (1) challenges of environment in coral skeleton to endolithic microbes, (2) the endolithic microorganism and potential roles in coral skeletons, and (3) perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azam F, Worden A. Microbes, molecules and marine ecosystems. Science. 2004;303:1622–4.

    Article  CAS  Google Scholar 

  2. Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E. The coral probiotic hypothesis. Environ Microbiol. 2006;8:2068–73.

    Article  CAS  Google Scholar 

  3. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.

    Article  CAS  Google Scholar 

  4. Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol. 2007;9:2707–19.

    Article  CAS  Google Scholar 

  5. Rohwer F, Kelly S. Culture independent analyses of coral associated microbes. In: Rosenberg E, Loya Y, editors. Coral health and disease. Berlin: Springer; 2004. p. 265–78.

    Chapter  Google Scholar 

  6. Chazottes V, Le-Campion-Alsumard T, Peyrot-Clausade M. Bioerosion rates on coral reefs: interaction between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeogeogr Palaeoclimatol Palaeoecol. 1995;113:189–98.

    Article  Google Scholar 

  7. Radtke G, Le-Campion-Alsumard T, Golubic S. Microbial assemblages of the bioerosional “notch” along tropical limestone coasts. Algol Stud. 1996;83:469–582.

    Google Scholar 

  8. Radtke G, Le-Campion-Alsumard T, Golubic S. Microbial assemblages involved in tropical coastal bioerosion: an Atlantic- Pacific comparison. Proc 8th Int Coral Reef Symp. 1997;1:1825–30.

    Google Scholar 

  9. Ghirardelli LA. Endolithic microorganisms in live and dead thalli of coralline red algae (Corallinales, Rhodophyta) in the northern Adriatic Sea. Acta Geol Hisp. 2002;37:53–60.

    Google Scholar 

  10. De Los Rios A, Wierzchos J, Sancho LG, Green TGA, Ascaso C. Ecology of endolithic lichens colonizing granite in continental Antarctica. Lichenologist. 2005;37:383–95.

    Article  Google Scholar 

  11. Garcia-Pichel F. Plausible mechanisms for the boring on carbonates by microbial phototrophs. Sediment Geol. 2006;185:205–13.

    Article  Google Scholar 

  12. Tribollet A, Golubic S. Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern great barrier reef, Australia. Coral Reefs. 2005;24:422–34.

    Article  Google Scholar 

  13. Hutchings P. Biological destruction of coral reefs. Coral Reefs. 1986;4:239–52.

    Article  Google Scholar 

  14. Bruggemann JH, van Oppen MJH, Breeman AN. Foraging by the stoplight parrotfish Sparisoma viride. I. Food selection in different, socially determined habitats. Mar Ecol Prog Ser. 1994;106:41–55.

    Article  Google Scholar 

  15. Schlichter D, Kampmann H, Conrady S. Trophic potential and photoecology of endolithic algae living within coral skeletons. Mar Ecol. 1997;18:299–317.

    Article  Google Scholar 

  16. Ferrer LM, Szmant AM. Nutrient regeneration by the endolithic community in coral skeletons. Proc 6th Int Coral Reef Symp. 1988;1:1–4.

    Google Scholar 

  17. Fine M, Loya Y. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc Biol Sci. 2002;269:1205–10.

    Article  Google Scholar 

  18. Shashar N, Cohen Y, Loya Y, Sar N. Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral-bacteria interactions. Mar Ecol Prog Ser. 1994;111:259–64.

    Article  CAS  Google Scholar 

  19. Wendt-Potthoff K, Koschorreck M, Diez-Ercilla M, Sanchez-Espana J. Microbial activity and biogeochemical cycling in a nutrient-rich meromictic acid pit lake. Limnologica. 2012;42:175–88.

    Article  CAS  Google Scholar 

  20. van Gemerden H. Microbial mats: A joint venture. Mar Geol. 1993;113:3–25.

    Article  Google Scholar 

  21. Paerl HW, Pinckney JL. A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol. 1996;31:225–47.

    Article  CAS  Google Scholar 

  22. Jørgensen BB, Kuenen JG, Cohen Y. Microbial transformations of sulfur compounds in a stratified Lake (Solar Lake, Sinai). Limnol Oceanogr. 1979;24:799–822.

    Article  Google Scholar 

  23. Tonolla M, Peduzzi S, Demarta A, Peduzzi R, Hahn D. Phototropic sulfur and sulfate-reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland. J Limnol. 2004;63:161–70.

    Article  Google Scholar 

  24. Muscatine L, Porter JW. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience. 1977;27:454–9.

    Article  Google Scholar 

  25. Thompson JR, Rivera HE, Closek CJ, Medina M. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol. 2015;4:176.

    Article  Google Scholar 

  26. Shashar N, Stabmler N. Endolithic algae within corals-life in an extreme environment. J Exp Mar Biol Ecol. 1992;163:277–86.

    Article  CAS  Google Scholar 

  27. Roth MS. The engine of the reef: photobiology of the coral-algal symbiosis. Front Microbiol. 2014;5:422.

    Article  Google Scholar 

  28. Muko S, Kawasaki K, Sakai K, Takasu F, Shigesada N. Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull Mar Sci. 2000;66:225–39.

    Google Scholar 

  29. Magnusson SH, Fine M, Kuhl M. Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrica. Mar Ecol Prog Ser. 2007;332:119–28.

    Article  Google Scholar 

  30. Kanwisher J, Wainwright SA. Oxygen balance in some reef corals. Biol Bull. 1967;133:378–90.

    Article  Google Scholar 

  31. Halldal P. Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. Biol Bull. 1968;134:411–24.

    Article  CAS  Google Scholar 

  32. Fork DC, Larkum AWD. Light harvesting in the green alga Ostreobium sp., a coral symbiont adapted to extreme shade. Mar Biol. 1989;103:381–5.

    Article  Google Scholar 

  33. Behrendt L, Larkum AW, Norman A, Qvortrup K, Chen M, Ralph P, et al. Endolithic chlorophyll d-containing phototrophs. ISME J. 2011;5:1072–6.

    Article  CAS  Google Scholar 

  34. Bellamy N, Risk MJ. Coral gas: oxygen production in Millepora on the great barrier reef. Science. 1982;215:1618–9.

    Article  CAS  Google Scholar 

  35. Gille JJ, Jonje H. Biological significance of oxygen toxicity: an introduction. In: Vigo-Pelirey C, editor. Membrane lipid oxidation, vol. 3. Boca Raton: CRC Press; 1991. p. 1–32.

    Google Scholar 

  36. Ingraham LL, Meyer DL. Biochemistry of dioxygen. New York: Plenum Press; 1985. p. 255.

    Book  Google Scholar 

  37. Shashar N, Banaszak AT, Lesser MP, Amrami D. Coral endolithic algae: life in a protected environment. Pac Sci. 1997;51:167–73.

    Google Scholar 

  38. Schönberg CHL, Wisshak M. The perks of being endolithic. Aquat Biol. 2012;17:1–5.

    Article  Google Scholar 

  39. Risk MJ, Muller HR. Pore water in coral heads: evidence for nutrient regeneration. Limnol Oceanogr. 1983;28:1004–8.

    Article  Google Scholar 

  40. Le-Campion-Alsumard T, Golubic S, Hutchings P. Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser. 1995;117:149–57.

    Article  Google Scholar 

  41. Tribollet A. The boring microflora in modern coral reef ecosystems: a review of its roles. In: Wisshak M, Tapanila L, editors. Current developments in bioerosion. Berlin: Springer-Verlag; 2008. p. 67–94.

    Chapter  Google Scholar 

  42. Duerden JE. Endolithic algae as agents in the disintegration of corals. Bull Am Mus Nat Hist. 1902;16:323–32.

    Google Scholar 

  43. Schenider J, Le Campio-Alsumard T. Construction and destruction of carbonates by marine and freshwater cyanobacteria. Eur J Phycol. 1999;34:417–26.

    Article  Google Scholar 

  44. DiSalvo LH. Isolation of bacteria from corallum of Porites lobata (Vaughn) and its possible significance. Am Zool. 1969;9:735–40.

    Article  Google Scholar 

  45. Priess K, Le Campion-Alsumard T, Golubic S, Fadel F, Thomassin BA. Fungi in corals: black bands and density-banding of Porites lutea and P. lobata skeleton. Mar Biol. 2000;136:19–27.

    Article  Google Scholar 

  46. Yamazaki SS, Nakamura T, Yamasaki H. Photoprotective role of endolithic algae colonized in coral skeleton for the host photosynthesis. In: Allen JF, Gantt E, Golbeck JH, Osmond B, editors. Photosynthesis. Energy from the sun: 14th international congress on photosynthesis. Dordrecht: Springer; 2008. p. 1391–5.

    Chapter  Google Scholar 

  47. Yang SH, Lee STM, Huang CR, Tseng CH, Chiang PW, Chen CP, et al. Prevalence of potential nitrogen-fixing, green sulfur bacteria in the skeleton of reef-building coral Isopora palifera. Limnol Oceanogr. 2016;61:1078–86.

    Article  Google Scholar 

  48. Ralph PJ, Larkum AWD, Kühl M. Photobiology of endolithic microorganisms in living coral skeletons: 1. Pigmentation, spectral reflectance and variable chlorophyll fluorescence analysis of endoliths in the massive corals Cyphastrea serailia, Porites lutea and Goniastrea australensis. Mar Biol. 2007;152:395–404.

    Article  CAS  Google Scholar 

  49. Lukas KJ. Two species of the chlorophyte genus Ostreobium from skeletons of Atlantic and Caribbean reef corals. J Phycol. 1974;10:331–5.

    Google Scholar 

  50. Highsmith RC. Lime-boring algae in hermatypic coral skeletons. J Exp Mar Biol Ecol. 1981;55:267–81.

    Article  Google Scholar 

  51. Golubic S, Perkins RD, Lukas KJ. Boring microorganisms and microborings in carbonate substrates. In: Frey RW, editor. The study of trace fossils. New York: Springer; 1975. p. 229–59.

    Chapter  Google Scholar 

  52. Al-Thukair A, Golubic S. Five new Hyella species from the Arabian Gulf. Algol Stud. 1991a;64:167–97.

    Google Scholar 

  53. Al-Thukair A, Golubic S. New endolithic cyanobacteria from the Arabian Gulf. I. Hyella immanis sp. nov. J Phycol. 1991b;27:167–97.

    Article  Google Scholar 

  54. Golubic S, Radtke G, Le-Campion-Alsumard T. Endolithic fungi in marine ecosystems. Trends Microbiol. 2005;13:229–35.

    Article  CAS  Google Scholar 

  55. Tribollet A, Langdon C, Golubic S, Atkinson MJ. Endolithic microflora are major primary producers in dead carbonate substrates of Hawaiian coral reefs. J Phycol. 2006;42:292–303.

    Article  CAS  Google Scholar 

  56. Crossland CJ, Barnes DJ. Acetylene reduction by coral skeletons. Limnol Oceanogr. 1976;21:153–6.

    Article  Google Scholar 

  57. Bak RPM, Laane RWPM. Annual black bands in skeletons of reef corals (Scleractinia). Mar Ecol Prog Ser. 1987;38:169–75.

    Article  Google Scholar 

  58. Tribollet A, Payri C. Bioerosion of the crustose coralline alga Hydrolithon onkodes by microborers in the coral reefs of Moorea, French Polynesia. Oceanol Acta. 2001;24:329–42.

    Article  Google Scholar 

  59. Kamennaya NA, Ajo-Franklin CM, Northen T, Jansson C. Cyanobacteria as biocatalysts for carbonate mineralization. Fortschr Mineral. 2012;2:338–64.

    Article  CAS  Google Scholar 

  60. Arp G, Reimer A, Reitner J. Calcification in cyanobacterial biofilms of alkaline salt lakes. Eur J Phycol. 1999;34:393–403.

    Article  Google Scholar 

  61. Mouchka ME, Hewson I, Harvell CD. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr Comp Biol. 2010;50:662–74.

    Article  Google Scholar 

  62. Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser. 2002;243:1–10.

    Article  Google Scholar 

  63. Hong MJ, Yu YT, Chen CA, Chiang PW, Tang SL. Influence of species specificity and other factors on bacteria associated with the coral Stylophora pistillata in Taiwan. Appl Environ Microbiol. 2009;75:7797–806.

    Article  CAS  Google Scholar 

  64. Kvennefors EC, Sampayo E, Ridgway T, Barnes AC, Hoegh-Guldberg O. Bacterial communities of two ubiquitous great barrier reef corals reveals both site and species-specificity of common bacterial associates. PLoS One. 2010;5:e10401.

    Article  Google Scholar 

  65. Kimes NE, Johnson WR, Torralba M, Nelson KE, Weil E, Morris PJ. The Montastraea faveolata microbiome: ecological and temporal influences on a Caribbean reef-building coral in decline. Environ Microbiol. 2013;15:2082–94.

    Article  Google Scholar 

  66. Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, et al. The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl Environ Microbiol. 2013;79:4759–62.

    Article  CAS  Google Scholar 

  67. Lema KA, Bourne DG, Willis BL. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Mol Ecol. 2014;23:4682–95.

    Article  CAS  Google Scholar 

  68. Ainsworth TD, Fine M, Blackall LL, Hoegh-Guldberg O. Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl Environ Microbiol. 2006;72:3016–20.

    Article  CAS  Google Scholar 

  69. Lee OO, Yang J, Bougouffa S, Wang Y, Batang Z, Tian R, et al. Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing. Appl Environ Microbiol. 2012;78:7173–84.

    Article  CAS  Google Scholar 

  70. Santos HF, Carmo FL, Duarte G, Dini-Andreote F, Castro CB, Rosado AS, et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 2014;8:2272–9.

    Article  Google Scholar 

  71. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A. 2006;103:12115–20.

    Article  CAS  Google Scholar 

  72. Li J, Chen Q, Long LJ, Dong JD, Yang J, Zhang S. Bacterial dynamics within the mucus, tissue and skeleton of the coral Porites lutea during different seasons. Sci Rep. 2014;4:7320.

    Article  CAS  Google Scholar 

  73. Yuen YS, Yamazaki SS, Baird AH, Nakamura T, Yamasaki H. Sulfate-reducing bacteria in the skeleton of the massive coral Goniastrea aspera from the great barrier reef. Galaxea, J Coral Reef Stud. 2013;15:154–9.

    Article  Google Scholar 

  74. Kendrick B, Risk MJ, Michaelides J, Bergman K. Amphibious microborers: bioeroding fungi isolated from live corals. Bull Mar Sci. 1982;32:862–7.

    Google Scholar 

  75. Bentis CJ, Kaufman L, Golubic S. Endolithic fungi in reef-building corals (order: Scleractinia) are common, cosmopolitan, and potentially pathogenic. Biol Bull. 2000;198:254–60.

    Article  CAS  Google Scholar 

  76. Shibata K, Haxo FT. Light transmission and spectral distribution through epi- and endozoic algal layers in the brain coral Favia. Biol Bull. 1969;136:461–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen-Lin Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, SH., Tang, SL. (2019). Endolithic Microbes in Coral Skeletons: Algae or Bacteria?. In: Li, Z. (eds) Symbiotic Microbiomes of Coral Reefs Sponges and Corals. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1612-1_4

Download citation

Publish with us

Policies and ethics