Skip to main content

Culture-Independent Analyses of Coral-Associated Microbes

  • Chapter
Coral Health and Disease

Abstract

The influence of microbes on coral reefs has been underappreciated, even though it is widely recognized that Bacteria, Archaea, and unicellular eukaryotes are vital components of all marine ecosystems. Several studies have applied modern microbial ecology methods to investigate the microbes living with reef organisms. These new avenues of research are changing our view of how coral reefs function. This chapter is intended to make these new findings accessible to those interested in interdisciplinary studies of coral and microbial ecology. A model of how microbes are structured on healthy corals is proposed, as is the hypothesis that disrupting this structure leads to coral disease and death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169

    PubMed  CAS  Google Scholar 

  • Ayukai T (1995) Retention of phytoplankton and planktonic microbes on coral reefs within the Great Barrier Reef, Australia. Coral Reefs 14: 141–147

    Article  Google Scholar 

  • Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280: 694–696

    Article  CAS  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10: 257–263

    Article  Google Scholar 

  • Bak R, Joenje M, de Jong I, Lambrechts D, Nieuwland G (1998) Bacterial suspension feeding by coral reef benthic organisms. Mar Ecol Prog Ser 175: 285–288

    Article  Google Scholar 

  • Balch WE, Magrum LJ, Fox GE, Wolfe RS, Woese CR (1977) An ancient divergence among the bacteria. J Mol Evol 9: 305–311

    Article  PubMed  CAS  Google Scholar 

  • Benson A, Muscatine L (1974) Wax in coral mucus: energy transfer from corals to reef fishes. Limnol Oceanogr 19: 810–814

    Article  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2000) GenBank. Nucleic Acids Res 28: 15–18

    Article  CAS  Google Scholar 

  • Brown JR, Doolittle WF (1995) Root of the universal tree of life based on ancient aminoacyltRNA synthetase gene duplications. Proc Natl Acad Sci USA 92: 2441–2445

    Article  PubMed  CAS  Google Scholar 

  • Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28: 281–285

    Article  PubMed  CAS  Google Scholar 

  • Bythell J, Barer M, Cooney R, Guest J, O’Donnell A, Pantos O, Le Tissier M (2002) Histopathological methods for the investigation of microbial communities associated with disease lesions in reef corals. Lett Appl Microbiol 34: 359–364

    Article  PubMed  CAS  Google Scholar 

  • Cooney R, Pantos O, Le Tissier M, Barer M, O’Donnell A, Bythell J (2002) Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ Microbiol 4: 401–413

    Article  PubMed  Google Scholar 

  • Czaran T, Hoekstra R, Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci USA 99: 786–790

    Article  PubMed  CAS  Google Scholar 

  • Ducklow HW, Mitchell R (1979a) Bacterial populations and adaptations in the mucus layers on living corals. Limnol Oceanogr 24: 715–725

    Article  Google Scholar 

  • Ducklow HW, Mitchell R (1979b) Composition of mucus released by coral reef coelenterates. Limnol Oceanogr 24: 707–714

    Google Scholar 

  • Ferguson RL, Buckley EN, Palumbo AV (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47: 49–55

    PubMed  CAS  Google Scholar 

  • Ferrier-Pages C, Allemand D, Gattuso J-P, Jaubert J, Rassoulzadegan F (1998) Microheterotrophy in the zooxanthellate coral Stylophora pistillata: effects of light and cilliate density. Limnol Oceanogr 43: 1639–1648

    Article  CAS  Google Scholar 

  • Frias-Lopez J, Zerkle AL, Bonheyo GT, Fouke BW (2002) Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Appl Environ Microbiol 68: 2214–2228

    Article  PubMed  CAS  Google Scholar 

  • Frias-Lopez J, Bonheyo G, Qusheng J, Fouke B (2003) Cyanobacteria associated with coral black band disease in Caribbean and Indo-Pacific reefs. Appl Environ Microbiol 69: 2409–2413

    Google Scholar 

  • Fuhrman JA, Noble RT (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40: 1236–1242

    Article  Google Scholar 

  • Gast GJ, Wiegman S, Wieringa E, Duyl FC, Bak RPM (1998) Bacteria in coral reef water types: removal of cells, stimulation of growth and mineralization. Mar Ecol 167: 37–45

    Article  Google Scholar 

  • Geesey GG, Morita RY (1979) Capture of arginine at low concentrations by a marine psychrophilic bacterium. Appl Environ Microbiol 38: 1092–1097

    PubMed  CAS  Google Scholar 

  • Gili J-M, Coma R (1998) Benthic suspension feeders: their paramount role in littoral marine food webs. TREE 13: 316–321

    PubMed  CAS  Google Scholar 

  • Glansdorff N (2000) About the last common ancestor, the universal life-tree and lateral gene transfer: a reappraisal. Mol Microbiol 38: 177–185

    Article  PubMed  CAS  Google Scholar 

  • Hagstrom A, Pommier T, Rohwer F, Simu K, Svensson D, Zweifel UL (2002) Bio-informatics reveal surprisingly low species richness in marine bacterioplankton. Appl Environ Microbiol 67: 3628–3633

    Article  Google Scholar 

  • Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13: 407–412

    Article  PubMed  CAS  Google Scholar 

  • Herndl GJ, Velimirov B (1986) Microheterotrophic utilization of mucus released by the Mediterranean coral Cladocora cespitosa. Mar Biol 90: 363–369

    Article  Google Scholar 

  • Joint IR, Pomeroy AJ (1983) Production of picoplankton and small nanoplankton in the Celtic Sea. Mar Biol 77: 19–27

    Article  Google Scholar 

  • Kennish MJ (2001) Practical handbook of marine science. CRC Press, Boca Raton

    Google Scholar 

  • Kirchman DL (1994) The uptake of inorganic nutrients by heterotrophic bacteria. Microbial Ecol 28: 255–271

    Article  CAS  Google Scholar 

  • Koh EGL (1997) Do scleractinian corals engage in chemical warfare against microbes? J Chem Ecol 23: 379–398

    Article  CAS  Google Scholar 

  • Krupp DA (1981) The composition of the mucus from the mushroom coral, Fungia scutaria. Proc 4th Int Coral Reef Symp 2: 69–73

    Google Scholar 

  • Liu H, Nolla H, Campbell L (1997) Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat Microb Ecol 12: 39–47

    Google Scholar 

  • Martin A (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68: 3673–3682

    Article  PubMed  CAS  Google Scholar 

  • Martin JH (1992) Iron as a limiting factor in oceanic productivity. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp 123–137

    Google Scholar 

  • Meikle P, Richards GN, Yellowlees D (1988) Structural investigations on the mucus from six species of coral. Mar Biol 99: 187–193

    Article  CAS  Google Scholar 

  • Middelboe M, Nielsen B, Sondergaard M (1992) Bacterial utilization of dissolved organic carbon ( DOC) in coastal waters - determination of growth yield. Arch Hydrobiol Ergeb Limnol 37: 51–61

    Google Scholar 

  • Middelboe M, Jorgensen NOG, Kroer N (1996) Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton. Appl Environ Microbiol 62: 1991–1997

    PubMed  CAS  Google Scholar 

  • Muscatine L (1980) Uptake, retention, and release of dissolved inorganic nutrients by marine algae invertebrate associations. In: Cook CB, Pappas PW, Rudolph ED (eds) Cellular interactions in symbioses and parasitism. Ohio State Univ Press, Columbus, pp 229–244

    Google Scholar 

  • Nissen H, Nissen P, Azam F (1984) Multiphasic uptake of D-glucose by an oligotrophic marine bacterium. Mar Ecol Prog Ser 16: 155

    Article  CAS  Google Scholar 

  • Odum HT, Odum EP (1955) Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol Mono 25: 291–320

    Article  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276: 734–740

    Article  PubMed  CAS  Google Scholar 

  • Pace NR, Stahl DA, Lane DJ, Olsen GJ (1985) Analyzing natural microbial populations by rRNA sequences. ASM News 51: 4–12

    Google Scholar 

  • Pantos O, Cooney R, Le Tissier M, Barer M, O’Donnell A, Bythell J (2003) The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastraea annularis. Environ Microbiol 5: 370–382

    Article  PubMed  CAS  Google Scholar 

  • Paul J, DeFlaun M, Jeffery W (1986) Elevated levels of microbial activity in the coral surface monolayer. Mar Ecol Prog Ser 33: 29–40

    Article  Google Scholar 

  • Pomeroy LR (1974) The ocean’s food web, a changing paradigm. BioScience 24: 499–504

    Article  Google Scholar 

  • Proctor LM, Fuhrman JA (1988) Marine bacteriophages and bacterial mortality. EOS 69: 1111–1112

    Google Scholar 

  • Rahav O, Dubinsky Z, Achituv Y, Falkowski PG (1989) Ammonium assimilation in the zooxanthelle coral, Stylophroa pistillata. Philos Trans R Soc Lond B 236: 325–337

    CAS  Google Scholar 

  • Rappe M, Connon S, Vergin K, Giovannoni S (2002) Cultivation of the ubiquitous SARI marine bacterioplankton clade. Nature 418: 630–633

    Article  PubMed  CAS  Google Scholar 

  • Rohwer F, Breitbart M, Jara J, Azam F, Knowlton N (2001) Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs 20: 85–95

    Article  Google Scholar 

  • Rohwer F, Serigutan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243: 1–10

    Article  Google Scholar 

  • Rowan R, Knowlton N (1995) The ecological significance of genetic diversity in corals and their algal symbionts. J Cell Biochem [Suppl] 19B: 334

    Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388: 265–269

    Article  PubMed  CAS  Google Scholar 

  • Saffo MB (1992) Invertebrates in endosymbiotic associations. Am Zool 32: 557–565

    Google Scholar 

  • Shashar N, Cohen Y, Loya Y, Sar N (1994) Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral-bacteria interactions. Mar Ecol Prog Ser 111: 259–264

    Article  CAS  Google Scholar 

  • Sorokin YI (1973) Trophical role of bacteria in the ecosystem of the coral reef. Nature 242: 415–417

    Article  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39: 321–346

    Article  PubMed  CAS  Google Scholar 

  • Szmant AM, Ferrer LM, FitzGerald LM (1990) Nitrogen excretion and O:N ratios in reef corals: evidence for the conservation of nitrogen. Mar Biol 104: 119–127

    Article  CAS  Google Scholar 

  • Thingstad TF, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 13: 19–27

    Article  Google Scholar 

  • Thingstad FT, Zweifel UL, Rassoulzadegan F (1998) P limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean. Limnol Oceanogr 43: 88–94

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24: 4876–4882

    Article  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001) Repopulation of zooxanthellae in the Caribbean corals Montastraea annularis and M. faveolata following experimental and disease-associated bleaching. Biol Bull (Woods Hole) 201: 360–373

    Article  CAS  Google Scholar 

  • Urbach E, Vergin K, Giovannoni S (1999) Immunochemical detection and isolation of DNA from metabolically active bacteria. Appl Environ Microbiol 65: 1207–1213

    PubMed  CAS  Google Scholar 

  • Wagner M, Amann R, Lemmer H, Schleifer KH (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59: 1520–1525

    PubMed  CAS  Google Scholar 

  • Wilkinson CR, Fay P (1979) Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279: 527–529

    Article  CAS  Google Scholar 

  • Williams WM, Viner AB, Broughton WJ (1987) Nitrogen fixation (acetylene reduction) associated with the living coral Acropora variabilis. Mar Biol 94: 531–535

    Article  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74: 5088–5090

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rohwer, F., Kelley, S. (2004). Culture-Independent Analyses of Coral-Associated Microbes. In: Rosenberg, E., Loya, Y. (eds) Coral Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06414-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06414-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05863-9

  • Online ISBN: 978-3-662-06414-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics