Skip to main content

Silicon-Mediated Tolerance to Drought and Low-Temperature Stress

  • Chapter
Silicon in Agriculture

Abstract

Drought and low temperature are two of the major adverse climatic factors that restrain plant growth and sustainable agricultural development. Silicon (Si) application can alleviate various abiotic stresses including drought and low temperature, suggesting its potential application in agricultural practices in these adverse soil and climate conditions. The mechanisms for Si-mediated increases of tolerance to drought and low-temperature stresses include physiological, biochemical and physical aspects. These include promoting photosynthetic enzymatic activities, photochemical efficiency and photosynthetic rate; maintaining nutrient balance; improving water retention by decreasing water loss from leaves and increasing water uptake by roots; and scavenging reactive oxygen species by improving the capabilities of antioxidant defence. Although some progress has been made in the understanding of mechanisms for Si-mediated drought and low-temperature stresses at the physiological, biochemical and physical levels, information on the molecular aspect is still lacking. The use of modern technologies, such as transcriptomics and proteomics approaches, may help clarify the transcriptional and post-transcriptional regulatory mechanisms of Si-mediated tolerance in plants, which will provide a theoretical basis for Si application in agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adatia MH, Besford RT. The effects of silicon on cucumber plants grown in recirculating nutrient solution. Ann Bot. 1986;58:343–51.

    CAS  Google Scholar 

  • Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci. 1998;1:96–103.

    Article  Google Scholar 

  • Ahmed M, Hassen FU, Qadeer U, Aslam MA. Silicon application and drought tolerance mechanism of sorghum. Afr J Agric Res. 2011;6:594–607.

    Google Scholar 

  • Ahsan N, Renault J, Komatsu S. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics. 2009;9:2602–21.

    Article  CAS  PubMed  Google Scholar 

  • Aro E-M, McCaffery S, Anderson JM. Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol. 1993;103:835–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashraf M, Harris PJC. Photosynthesis under stressful environments: an overview. Photosynthetica. 2013;51:163–90.

    Article  CAS  Google Scholar 

  • Ashraf M, Ahmad A, McNeilly T. Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica. 2001;39:389–94.

    Article  CAS  Google Scholar 

  • Barber SA. Soil nutrient bioavailability: a mechanistic approach. New York: Wiley-Interscience Publication; 1984.

    Google Scholar 

  • Bienert GB, Bienert MD, Jahn TP, Boutry M, Chaumont F. Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J. 2011;66:306–17.

    Article  CAS  PubMed  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AM. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res. 2008;105:1–14.

    Article  Google Scholar 

  • Chen THH, Gusta LV, Fowler DB. Freezing injury and root development in winter cereals. Plant Physiol. 1983;73:773–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen W, Yao XQ, Cai KZ, Chen J. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res. 2011;142:67–76.

    Article  CAS  PubMed  Google Scholar 

  • de-Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JT. Solute accumulation and distribution during shoot and leaf develipment in two sorghum genotypes under salt stress. Environ Exp Bot. 2003;49:107–20.

    Article  Google Scholar 

  • Deren CW. Changes in nitrogen and phosphorus concentrations of silicon-fertilized rice grown on organic soil. J Plant Nutr. 1997;20:765–71.

    Article  CAS  Google Scholar 

  • Detmann KC, Araújo L, Martins SCV, et al. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol. 2012;196:752–62.

    Article  CAS  PubMed  Google Scholar 

  • Ding YF. Mechanisms of silicon-enhancement of drought tolerance in wheat seedlings. MSc thesis, Nanjing Agricultural University; 2006.

    Google Scholar 

  • dos Santos MG, Ribeiro RV, de Oliveira RF, Machado EC, Pimentel C. The role of inorganic phosphate on photosynthesis recovery of common bean after a mild water deficit. Plant Sci. 2006;170:659–64.

    Article  Google Scholar 

  • Doubnerová V, Ryšlavá H. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci. 2011;180:575–83.

    Article  PubMed  Google Scholar 

  • Eneji AE, Inanaga S, Muranaka S, Li J, Hattori T, An P, Tsuji W. Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. J Plant Nutr. 2008;31:355–65.

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 2009;29:185–212.

    Article  Google Scholar 

  • Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk MK. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot. 2011;62:2001–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F. Silicon improves water use efficiency in maize plants. J Plant Nutr. 2004;27:1457–70.

    Article  CAS  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F. Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr. 2006;29:1637–47.

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909–30.

    Article  CAS  PubMed  Google Scholar 

  • Gong H, Chen K. The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol Plant. 2012;34:1589–94.

    Article  CAS  Google Scholar 

  • Gong HJ, Chen KM, Chen GC, Wang SM, Zhang CL. Effects of silicon on growth of wheat under drought. J Plant Nutr. 2003;26:1055–63.

    Article  CAS  Google Scholar 

  • Gong HJ, Zhu XY, Chen KM, Wang S, Zhang CL. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 2005;169:313–21.

    Article  CAS  Google Scholar 

  • Gong HJ, Chen KM, Zhao ZG, Chen GC, Zhou WJ. Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol Plant. 2008;52:592–6.

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A, Bagci EG, Coban S. Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stress. J Plant Interact. 2007;2:105–13.

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A, Coban S. Influence of silicon on sunflower cultivars under drought stress. I: Growth, antioxidant mechanisms, and lipid peroxidation. Commun Soil Sci Plant Anal. 2008;39:1885–903.

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M. Extreme temperature responses, oxidative stress and antioxidant defense in plants. In K Vahdati, C Leslie, editors. Abiotic stress – plant responses and applications in agriculture. InTech; 2013. doi: 10.5772/54833.

    Google Scholar 

  • Hattori T, Inanaga S, Tanimoto E, Lux A, Luxova M, Sugimoto Y. Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol. 2003;44:743–9.

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A. Application of silicon enhanced drought tolerance in Sorghum bicolour. Physiol Plant. 2005;123:459–66.

    Article  CAS  Google Scholar 

  • Hattori T, Sonobe K, Inanaga S, An P, Tsuji W, Araki H, Eneji AE, Morita S. Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environ Exp Bot. 2007;60:177–82.

    Article  CAS  Google Scholar 

  • Hattori T, Sonobe K, Araki H, Inanaga S, An P, Morita S. Silicon application by sorghum through the alleviation of stress-induced increase in hydraulic resistance. J Plant Nutr. 2008a;31:1482–95.

    Article  CAS  Google Scholar 

  • Hattori T, Sonobe K, Inanaga S, An P, Morita S. Effects of silicon on photosynthesis of young cucumber seedlings under osmotic stress. J Plant Nutr. 2008b;31:1046–58.

    Article  CAS  Google Scholar 

  • Huang Y, Yang F. Physical state change of phospholipids mediated by Ma2+ modulates activity and conformation of reconstituted mitochondrial F0-F1-ATPase. In: Yang F, Wang F, editors. Membrane lipid-protein interaction andits application in medicine and agriculture. Jinan: Shandong Science Press; 1996. p. 1–17.

    Google Scholar 

  • Huang J, Ji M, Liu Y, Zhang L, Gong D. An overview of arid and semi-arid climate change. Progressus Inquisitiones De Mutatione Climatis. 2013;9:9–14 (In Chinese with English abstract).

    Google Scholar 

  • Kaya C, Tuna L, Higgs D. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J Plant Nutr. 2006;29:1469–80.

    Article  CAS  Google Scholar 

  • Khattab HI, Emam MA, Emam MM, Helal NM, Mohamed MR. Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice. Biol Plant. 2014;58:265–73.

    Article  CAS  Google Scholar 

  • Liang YC, Zhang WH, Chen Q, Ding RX. Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot. 2005;53:29–37.

    Article  CAS  Google Scholar 

  • Liang YC, Zhang WH, Chen Q, Liu YL, Ding RX. Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot. 2006;57:212–9.

    Article  CAS  Google Scholar 

  • Liang YC, Zhu J, Li ZJ, Chu GX, Ding YF, Zhang J, Sun WC. Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ Exp Bot. 2008;64:286–94.

    Article  CAS  Google Scholar 

  • Liu P, Yin L, Deng X, Wang S, Tanaka K, Zhang S. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L. J Exp Bot. 2014;65:4747–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lobato AKS, Coimbra GK, Neto MAM, Costa RCL, Filho BGS, Neto CFO, Luz LM, Barreto AGT, Pereira BWF, Alves GAR, Monteiro BS, Marochio CA. Protective action of silicon on water relations and photosynthetic pigments in pepper plants induced to water deficit. Res J Biol Sci. 2009;4:617–23.

    Google Scholar 

  • Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005;444:139–58.

    Article  CAS  PubMed  Google Scholar 

  • Matoh T, Murata S, Takahashi E. Effect of silicate application on photosynthesis of rice plants. Jpn J Soil Sci Plant Nutr. 1991;62:248–51 (in Japanese).

    CAS  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santon V. plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol. 2008;59:595–624.

    Article  CAS  PubMed  Google Scholar 

  • Millar AA, Duysen ME, Wilkerson GE. Internal water balance of barley under soil moisture stress. Plant Physiol. 1968;43:968–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ming DF. Regulatory mechanisms of silicon on physiological and biochemical characteristics, ultrastructure and related gene expression of rice under water stress. PhD thesis, Zhejiang University; 2012.

    Google Scholar 

  • Ming DF, Yuan HM, Wang YH, Gong HJ, Zhou WJ. Effects of silicon on the physiological and biochemical characteristics of roots of rice seedlings under water stress. Sci Agric Sin. 2012a;45:2510–9 (In Chinese with English abstract).

    CAS  Google Scholar 

  • Ming DF, Pei ZF, Naeem MS, Gong HJ, Zhou WJ. Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci. 2012b;198:14–26.

    Article  CAS  Google Scholar 

  • Nayyar H, Walia DP. Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biol Plant. 2003;46:275–9.

    Article  CAS  Google Scholar 

  • Ogawa A, Yamauchi A. Root osmotic adjustment under osmotic stress in maize seedlings 1. Transient change of growth and water relations in roots in response to osmotic stress. Plant Prod Sci. 2006;9:27–38.

    Article  Google Scholar 

  • Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul. 2010;29:106–15.

    Article  CAS  Google Scholar 

  • Powles SB. Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol Plant Mol Biol. 1984;35:15–44.

    Article  CAS  Google Scholar 

  • Raven JA. The transport and function of silicon in plants. Bio Rev Cambridge Philos Soc. 1983;58:179–207.

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandanb M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol. 2004;161:1189–202.

    Article  CAS  Google Scholar 

  • Schwarz K. A bound form of silicon in glycosaminoglycans and polyuronides. Proc Natl Acad Sci U S A. 1973;70:1608–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shangguan ZP, Shao MA, Dyckmans J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. J Plant Physiol. 2000;156:46–51.

    Article  CAS  Google Scholar 

  • Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol. 2010;167:1248–52.

    Article  CAS  PubMed  Google Scholar 

  • Shinitzky M. Membrane fluidity and cellular functions. In: Shinitzky M, editor. Physiology of membrane fluidity, vol. 1. Boca Raton: CRC Press; 1984. p. 1–51.

    Google Scholar 

  • Siddique MRB, Hamid A, Islam MS. Drought stress effects on water relations of wheat. Bot Bull Acad Sinica. 2001;41:35–9.

    Google Scholar 

  • Sistani KR, Savant NK, Reddy KC. Effect of rice hull ash silicon on rice seedling growth. J Plant Nutr. 1997;20:195–201.

    Article  CAS  Google Scholar 

  • Sonobe K, Hattori T, An P, Tsuji W, Eneji AE, Kobayashi S, Kawamura Y, Tanaka K, Inanaga S. Effect of silicon application on sorghum root responses to water stress. J Plant Nutr. 2011;34:71–82.

    Article  CAS  Google Scholar 

  • Tao H-Z, Zhao C-L, Li W-Q. Photosynthetic response to low temperature in plant. Chine J Biochem Mol Biol. 2012;28:501–8 (In Chinese with English Abstract).

    CAS  Google Scholar 

  • Vaculík M, Landberg T, Greger M, Luxová M, Stoláriková LA. Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot. 2012;110:433–43.

    Article  PubMed Central  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006;45:523–39.

    Article  CAS  PubMed  Google Scholar 

  • Wang SY, Galletta GJ. Foliar application of potassium silicate induces metabolic changes in strawberry plants. J Plant Nutr. 1998;21:157–67.

    Article  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Gen. 2009;10:57–63.

    Article  CAS  Google Scholar 

  • Whiteman PC. Control of carbon dioxide and water vapour exchange between plantand atmosphere. Dissertation, Hebrew University, Jerusalem; 1965.

    Google Scholar 

  • Wong YC, Heits A, Ville DJ. Foliar symptoms of silicon deficiency in the sugarcane plant. Proc Cong Int Soc Sugarcane Technol. 1972;14:766–76.

    Google Scholar 

  • Yadav SK. Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev. 2010;30:515–27.

    Article  CAS  Google Scholar 

  • Yin LN, Wang SW, Liu P, Wang WH, Cao D, Deng XP, Zhang SQ. Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiol Biochem. 2014;80:268–77.

    Article  CAS  PubMed  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica. 2000;38:171–86.

    Article  CAS  Google Scholar 

  • Yoshida S. Chemical aspect of silicon in physiology of the rice plant. Bull Natl Agric Sci B. 1965;15:1–58.

    Google Scholar 

  • Zhang W, Chen Q, Liu Y. Relationship between H+-ATPase activity and fluidity of tonoplast in barley roots under NaCl stress. Acta Bot Sin. 2002;44:292–6.

    CAS  Google Scholar 

  • Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 2002;53:247–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu J, Liang Y-C, Ding Y-F, Li Z-J. Effect of silicon on photosynthesis and its related physiological parameters in two winter wheat cultivars under cold stress. Sci Agric Sin. 2006;39:1780–8 (In Chinese with English abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liang, Y., Nikolic, M., Bélanger, R., Gong, H., Song, A. (2015). Silicon-Mediated Tolerance to Drought and Low-Temperature Stress. In: Silicon in Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9978-2_7

Download citation

Publish with us

Policies and ethics