Skip to main content

The Annual Phenological Cycle

  • Chapter
  • First Online:
Boreal and Temperate Trees in a Changing Climate

Part of the book series: Biometeorology ((BIOMET))

Abstract

The hypothetico-deductive modelling framework introduced in Chap. 2 is applied to the modelling of the annual phenological cycle of boreal and temperate trees. The ecophysiological models of the annual phenological cycle predict the timing of discontinuous developmental events, such as bud burst and height growth cessation. With such events only one, or maximally a few, empirical observations per year are available for testing these models; but as in all other models of the annual cycle, the values of the state variables are nevertheless calculated for each day of the simulation period. The methodological problems caused by this discrepancy are discussed, and an ecophysiological explication of the models is introduced. Most effort is devoted to modelling the springtime developmental events, such as bud burst. The direct environmental regulation by air temperature is first discussed by examining the classical temperature sum (or day degree) models. The ecophysiological interpretation of these models, which use the arbitrary unit of day degree, is explicated, and the experimental research aimed at determining the real ecophysiological air temperature responses of the trees and thus supplementing the day degree approach is discussed. Subsequently, effects of dormancy are introduced into the modelling. Most models for growth cessation are conceptually more straightforward, so that they are not discussed at the same length as the models of springtime development. The chapter is concluded with a discussion of models for the entire annual phenological cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Only the activation visible to the naked eye is discussed here. At the anatomical level, the activation starts earlier (Fig. 2.2).

  2. 2.

    In addition to height growth onset, the concept “high temperature requirement” and the corresponding acronym Hcrit are used in the present volume for a wide range of spring phenological events, such as the bud burst, leaf unfolding, and flowering of the trees. In addition to these phenological events, the concept is also used for microscopic phases of meiosis prior to flowering.

  3. 3.

    This procedure is followed when the model is fitted to the data, which is the case discussed here. When the data are used for independent testing of the model, the value of Hcrit is also fixed on the basis of a priori information.

  4. 4.

    Except in the case where the value of the Hcrit is known a priori. In that case, the prediction of the model can be calculated by starting directly from step (3).

  5. 5.

    This model is discussed in Sect. 3.6.3.

  6. 6.

    Sarvas (1972) actually indicated that the multiplier 5 Δt10 was introduced in order to obtain this similarity.

  7. 7.

    Compare the corresponding case with day degree models in Figs. 3.3 and 3.5.

  8. 8.

    However, Myking (1997) found no such difference when studying the bud burst in seedlings of Betula pubescens.

  9. 9.

    Two of the potential explanations are related to the dormancy of the buds and will therefore be discussed in Sects. 3.4.1.2 and 3.4.4.2.

  10. 10.

    As the dormant condition is a physiological attribute of the bud in this case, plant physiologists often prefer to restrict the use of the concept ‘dormancy’ to this case only.

  11. 11.

    In order to keep the terminology consistent with that used elsewhere in this volume, Vegis’s (1964) original concepts predormancy, true dormancy, and postdormancy are replaced with the concepts pre-rest, true rest, and post-rest, respectively.

  12. 12.

    This definition, equating rest with the existence of an obligatory chilling requirement, is not used in the present volume.

  13. 13.

    For copyright reasons, the responses published by Gilreath and Buchanan (1981) and Erez and Couvillon (1987) are not redrawn here.

  14. 14.

    Cannell and Smith’s (1983) model is discussed further in Sect. 3.4.6.5.

  15. 15.

    The models address various springtime developmental events, such as bud burst, leaf unfolding, the growth onset of vegetative buds, and the flowering of generative buds, but for the sake of brevity, only growth onset will be referred to in the description of the generalised model.

  16. 16.

    The experimental results of Hänninen (1995a) are discussed in Sects. 3.4.6.1 and 8.3.2.2.

  17. 17.

    The concept originally used by Hänninen (1990b) was “growth competence”, which was then replaced with the more informative concept “ontogenetic competence” in Hänninen and Kramer’s (2007) review.

  18. 18.

    The alternating model is discussed in Sect. 3.4.6.5.

  19. 19.

    According to Junttila (2007) there is actually very little, if any, direct experimental evidence for this notion. However, as height growth cessation is needed for rest induction, this notion is plausible for species in which long nights cause height growth session (Sect. 3.5.2).

  20. 20.

    Following the nomenclature adopted for the present volume, the concept of dormancy refers here to both rest and quiescence, so that the deepness of the dormancy can be manifested in the values of both Ccrit and Hcrit. In some of the studies referred to in this section, the concept of dormancy refers to rest only.

  21. 21.

    In the modelling of the effects of night length on rest completion, it is the value of the critical night length (or the corresponding calendar day) that is estimated instead of the value of the chilling requirement of rest completion (Häkkinen et al. 1998).

  22. 22.

    The results are discussed in detail in Sect. 8.3.2.2.

  23. 23.

    The results are discussed in detail in Sect. 8.3.2.2.

  24. 24.

    Recently, Clark et al. (2014) addressed this problem and introduced a novel approach, the continuous development model (CDM), for phenological studies. While opening new avenues for phenological modelling, Clark et al.’s (2014) approach is substantially different from the one adopted in the present volume. Therefore the reader is referred to Clark et al.’s (2014) original study rather than discussing the CDM model here.

  25. 25.

    However, as shown by Linkosalo et al. (2008), Chuine’s (2000) unified model, like any other complex model with a high number of parameters, is susceptible to over-parameterisation in these studies.

  26. 26.

    In the present volume a similar change in the air temperature response was introduced as an extension of Vegis’s (1964) theory (Fig. 3.11b in Sect. 3.3.1.2). As no reference to Vegis (1964) is made in Caffarra et al.’s (2011b) study, their model is evidently not explicitly based on Vegis’s (1964) theory.

  27. 27.

    Cannell and Smith (1983) used the concept “thermal time” for the day degree model used in their study.

  28. 28.

    These studies are discussed in Sect. 8.3.1.3.

  29. 29.

    This illustrative point was made by Tapio Linkosalo.

  30. 30.

    Though autumn dormancy belongs to the autonomous theory, it has an effect somewhat similar to the regulation by short-term signals such as night length. After the active period is completed, the development does not proceed further until the ‘signal’ of air temperatures dropping below +10 °C is received from the environment. This synchronises the development of different tree genotypes that attain autumn dormancy at different times in late summer (Sarvas 1974).

References

  • Arnold, C. Y. (1959). The determination and significance of the base temperature in a linear heat unit system. Proceedings of the American Society of Horticultural Science, 74, 430–445.

    Google Scholar 

  • Arora, R., Rowland, L. J., & Tanino, K. (2003). Induction and release of bud dormancy in woody perennials: A science comes of age. HortScience, 38, 911–921.

    Google Scholar 

  • Bakkenes, M., Alkemade, J. R. M., Ihle, F., Leemans, R., & Latour, J. B. (2002). Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology, 8, 390–407.

    Article  Google Scholar 

  • Basler, D., & Körner, C. (2012). Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agricultural and Forest Meteorology, 165, 73–81.

    Article  Google Scholar 

  • Blümel, K., & Chmielewski, F.-M. (2012). Shortcomings of classical phenological forcing models and a way to overcome them. Agricultural and Forest Meteorology, 164, 10–19.

    Article  Google Scholar 

  • Boyer, W. D. (1973). Air temperature, heat sums, and pollen shedding phenology of longleaf pine. Ecology, 54, 420–426.

    Article  Google Scholar 

  • Brunner, A., Evans, L. M., Hsu, C.-Y., & Sheng, X. (2014). Vernalization and the chilling requirement to exit bud dormancy: Shared or separate regulation? Frontiers in Plant Science, 5, Article 732. doi:10.3389/fpls.2014.00732.

  • Caffarra, A. (2007). Quantifying the environmental drivers of tree phenology. Thesis submitted for the degree of Doctor of Philosophy, School of Natural Sciences, Trinity College, University of Dublin.

    Google Scholar 

  • Caffarra, A., & Donnelly, A. (2011). The ecological significance of phenology in four different tree species: Effects of light and temperature on bud burst. International Journal of Biometeorology, 55, 711–721.

    Article  Google Scholar 

  • Caffarra, A., Donnelly, A., Chuine, I., & Jones, M. B. (2011a). Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: A conceptual model. Climate Research, 46, 147–157.

    Article  Google Scholar 

  • Caffarra, A., Donnelly, A., & Chuine, I. (2011b). Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Climate Research, 46, 159–170.

    Article  Google Scholar 

  • Campbell, R. K. (1974). Use of phenology for examining provenance transfers in reforestation of Douglas-fir. Journal of Applied Ecology, 11, 1069–1080.

    Article  Google Scholar 

  • Campbell, R. K. (1978). Regulation of bud-burst timing by temperature and photoregime during dormancy. In C. A. Hollis & A. E. Squillace (Eds.), Proceedings: Fifth North American forest biology workshop (pp. 19–33). Gainesville: University of Florida, Forestry Department.

    Google Scholar 

  • Campbell, R. K., & Sugano, A. I. (1975). Phenology of bud burst in Douglas-fir related to provenance, photoperiod, chilling, and flushing temperature. Botanical Gazette, 136, 290–298.

    Article  Google Scholar 

  • Cannell, M. G. R. (1985). Analysis of risks of frost damage to forest trees in Britain. In P. M. A. Tigerstedt, P. Puttonen, & V. Koski (Eds.), Crop physiology of forest trees (pp. 153–166). Helsinki: Helsinki University Press.

    Google Scholar 

  • Cannell, M. G. R. (1989). Chilling, thermal time and the date of flowering of trees. In C. J. Wright (Ed.), Manipulation of fruiting (pp. 99–113). London: Butterworths.

    Chapter  Google Scholar 

  • Cannell, M. G. R., & Smith, R. I. (1983). Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology, 20, 951–963.

    Article  Google Scholar 

  • Cannell, M. G. R., & Smith, R. I. (1986). Climatic warming, spring budburst and frost damage on trees. Journal of Applied Ecology, 23, 177–191.

    Google Scholar 

  • Cannell, M. G. R., Murray, M. B., & Sheppard, L. J. (1985). Frost avoidance by selection for late budburst in Picea sitchensis. Journal of Applied Ecology, 22, 931–941.

    Article  Google Scholar 

  • Chuine, I. (2000). A unified model for budburst of trees. Journal of Theoretical Biology, 207, 337–347.

    Article  CAS  Google Scholar 

  • Chuine, I., Cour, P., & Rousseau, D. D. (1998). Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant, Cell and Environment, 21, 455–466.

    Article  Google Scholar 

  • Chuine, I., Cour, P., & Rousseau, D. D. (1999). Selecting models to predict the timing of flowering of temperate trees: Implications for tree phenology modelling. Plant, Cell and Environment, 22, 1–13.

    Article  Google Scholar 

  • Chuine, I., Morin, X., & Bugmann, H. (2010). Warming, photoperiods, and tree phenology. Science, 329, 277–278.

    Article  Google Scholar 

  • Chuine, I., de Cortazar-Atauri, I. G., Kramer, K., & Hänninen, H. (2013). Plant development models. In M. D. Schwartz (Ed.), Phenology: An integrative environmental science (2nd ed., pp. 275–293). Dordrecht: Springer Science+Business Media B.V.

    Chapter  Google Scholar 

  • Chung, M. (1981). Flowering characteristics of Pinus sylvestris L. with special emphasis on the reproductive adaptation to local temperature factor. Acta Forestalia Fennica, 169, 1–69.

    Google Scholar 

  • Clark, J. S., Salk, C., Melillo, J., & Mohan, J. (2014). Tree phenology responses to winter chilling, spring warming, at north and south range limits. Functional Ecology, 28, 1344–1355.

    Article  Google Scholar 

  • Cooke, J. E. K., Eriksson, M. E., & Junttila, O. (2012). The dynamic nature of bud dormancy in trees: Environmental control and molecular mechanisms. Plant, Cell and Environment, 35, 1707–1728.

    Article  CAS  Google Scholar 

  • Coville, F. V. (1920). The influence of cold in stimulating the growth of plants. Journal of Agricultural Research, 20, 151–160.

    CAS  Google Scholar 

  • Delbart, N., & Picard, G. (2007). Modeling the date of leaf appearance in low-arctic tundra. Global Change Biology, 13, 2551–2562.

    Article  Google Scholar 

  • Delpierre, N., Dufrȇ, E., Soudani, K., Ulrich, E., Cecchini, S., Boé, J., & François, S. (2009). Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology, 149, 938–948.

    Google Scholar 

  • Delpierre, N., Vitasse, Y., Chuine, I., Guillemot, J., Bazot, S., Rutishauser, T., & Rathgeber, C. B. K. (2015). Temperate and boreal forest tree phenology: From organ-scale processes to terrestrial ecosystem models. Annals of Forest Science, 73, 5–25. doi:10.1007/s13595-015-0477-6.

    Google Scholar 

  • Dennis, F. G., Jr. (1994). Dormancy – What we know (and don’t know). HortScience, 29, 1249–1255.

    Google Scholar 

  • Doorenbos, J. (1953). Review of the literature on dormancy in buds of woody plants. Mededelingen van de Landbouwhogeschool te Wageningen/Nederland, 53. 23 p.

    Google Scholar 

  • Dormling, I. (1989). The role of photoperiod and temperature in the induction and release of dormancy in Pinus sylvestris L. seedlings. Annals of Forest Science, 46(suppl), 228–232.

    Article  Google Scholar 

  • Dormling, I., Gustafsson, Å., & von Wettstein, D. (1968). The experimental control of the life cycle in Picea abies (L.) Karst. I. Some basic experiments on the vegetative cycle. Silvae Genetica, 17, 44–64.

    Google Scholar 

  • Ekberg, I., Eriksson, G., & Dormling, I. (1979). Photoperiodic reactions in conifer species. Holarctic Ecology, 2, 255–263.

    Google Scholar 

  • Emmingham, W. H. (1977). Comparison of selected Douglas-fir seed sources for cambial and leader growth patterns in four western Oregon environments. Canadian Journal of Forest Research, 7, 154–164.

    Article  Google Scholar 

  • Erez, A., & Couvillon, G. A. (1987). Characterization of the influence of moderate temperatures on rest completion in peach. Journal of the American Society for Horticultural Science, 112, 677–680.

    Google Scholar 

  • Erez, A., & Lavee, S. (1971). The effect of climatic conditions on dormancy development of peach buds. I. Temperature. Journal of the American Society for Horticultural Science, 96, 711–714.

    Google Scholar 

  • Erez, A., Couvillon, G. A., & Hendershott, C. H. (1979a). Quantitative chilling enhancement and negation in peach buds by high temperatures in a daily cycle. Journal of the American Society for Horticultural Science, 104, 536–540.

    Google Scholar 

  • Erez, A., Couvillon, G. A., & Hendershott, C. H. (1979b). The effect of cycle length on chilling negation by high temperatures in dormant peach leaf buds. Journal of the American Society for Horticultural Science, 104, 573–576.

    Google Scholar 

  • Falusi, M., & Calamassi, R. (1990). Bud dormancy in beech (Fagus sylvatica L.). Effect of chilling and photoperiod on dormancy release of beech seedlings. Tree Physiology, 6, 429–438.

    Article  Google Scholar 

  • Farmer, R. E., Jr. (1968). Sweetgum dormancy release: Effects of chilling, photoperiod, and genotype. Physiologia Plantarum, 21, 1241–1248.

    Article  Google Scholar 

  • Fisher, J. I., Richardson, A. D., & Mustard, J. F. (2007). Phenology model from surface meteorology does not capture satellite-based greenup estimations. Global Change Biology, 13, 707–721.

    Article  Google Scholar 

  • Fishman, S., Erez, A., & Couvillon, G. A. (1987a). The temperature dependence of dormancy breaking in plants: Mathematical analysis of a two-step model involving a cooperative transition. Journal of Theoretical Biology, 124, 473–483.

    Article  Google Scholar 

  • Fishman, S., Erez, A., & Couvillon, G. A. (1987b). The temperature dependence of dormancy breaking in plants: Computer simulation of processes studied under controlled temperatures. Journal of Theoretical Biology, 126, 309–321.

    Article  Google Scholar 

  • Fu, Y. H., Campioli, M., Van Oijen, M., Deckmyn, G., & Janssens, I. A. (2012). Bayesian comparison of six different temperature-based budburst models for four temperate tree species. Ecological Modelling, 230, 92–100.

    Article  Google Scholar 

  • Fu, Y. S. H., Campioli, M., Vitasse, Y., De Boeck, H. J., Van den Berge, J., AbdElgawad, H., Asard, H., Piao, S., Deckmyn, G., & Janssens, I. A. (2014). Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. PNAS, 111, 7355–7360.

    Article  CAS  Google Scholar 

  • Fu, Y. H., Piao, S., Vitasse, Y., Zhao, H., De Boeck, H. J., Liu, Q., Yang, H., Weber, U., Hänninen, H., & Janssens, I. A. (2015). Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: Effects of chilling, precipitation and insolation. Global Change Biology, 21, 2687–2697.

    Article  Google Scholar 

  • Fuchigami, L. H., & Nee, C.-C. (1987). Degree growth stage model and rest-breaking mechanisms in temperate woody perennials. HortScience, 22, 836–845.

    Google Scholar 

  • Fuchigami, L. H., & Wisniewski, M. (1997). Quantifying bud dormancy: Physiological approaches. HortScience, 32, 618–623.

    Google Scholar 

  • Fuchigami, L. H., Weiser, C. J., Kobayashi, K., Timmis, R., & Gusta, L. V. (1982). A degree growth stage (°GS) model and cold acclimation in temperate woody plants. In P. H. Li & A. Sakai (Eds.), Plant cold hardiness and freezing stress. Mechanisms and crop implications (Vol. 2, pp. 93–116). New York: Academic Press.

    Google Scholar 

  • Garner, W. W., & Allard, H. A. (1923). Further studies in photoperiodism, the response of the plant to relative length of day and night. Journal of Agricultural Research, 23, 871–920.

    Google Scholar 

  • Gilreath, P. R., & Buchanan, D. W. (1981). Rest prediction model for low-chilling ‘Sungold’ nectarine. Journal of the American Society of Horticultural Science, 106, 426–429.

    Google Scholar 

  • Grace, J., Allen, S. J., & Wilson, C. (1989). Climate and the meristem temperatures of plant communities near the tree-line. Oecologia, 79, 198–204.

    Article  Google Scholar 

  • Granhus, A., Fløistad, I. S., & Søgaard, G. (2009). Bud burst timing in Picea abies seedlings as affected by temperature during dormancy induction and mild spells during chilling. Tree Physiology, 29, 497–503.

    Article  Google Scholar 

  • Håbjørg, A. (1972). Effects of photoperiod and temperature on growth and development of three latitudinal and three altitudinal populations of Betula pubescens Ehrh. Scientific Reports of the Agricultural University of Norway, 51(2). 27 p.

    Google Scholar 

  • Häkkinen, R. (1999a). Analysis of bud-development theories based on long-term phenological and air temperature time series: Application to Betula sp. leaves. Finnish Forest Research Institute, Research Papers, 754. 59 p.

    Google Scholar 

  • Häkkinen, R. (1999b). Statistical evaluation of bud development theories: Application to bud burst of Betula pendula leaves. Tree Physiology, 19, 613–618.

    Google Scholar 

  • Häkkinen, R., Linkosalo, T., & Hari, P. (1995). Methods for combining phenological time series: Application to bud burst in birch (Betula pendula) in central Finland for the period 1896–1955. Tree Physiology, 15, 721–726.

    Article  Google Scholar 

  • Häkkinen, R., Linkosalo, T., & Hari, P. (1998). Effects of dormancy and environmental factors on timing of bud burst in Betula pendula. Tree Physiology, 18, 707–712.

    Article  Google Scholar 

  • Hammond, M. W., & Seeley, S. D. (1978). Spring bud development of Malus and Prunus species in relation to soil temperature. Journal of the American Society for Horticultural Science, 103, 655–657.

    Google Scholar 

  • Hannerz, M. (1999). Evaluation of temperature models for predicting bud burst in Norway spruce. Canadian Journal of Forest Research, 29, 1–11.

    Google Scholar 

  • Hannerz, M., Ekberg, I., & Norell, L. (2003). Variation in chilling requirements for completing bud rest between provenances of Norway spruce. Silvae Genetica, 52, 161–168.

    Google Scholar 

  • Hänninen, H. (1984). A method for identifying the flowering season from aerobiological data. In S. Nilsson & B. Raj (Eds.), Nordic aerobiology. 5th Nordic symposium on aerobiology, Abisko 1983 (pp. 51–57). Stockholm: Almqvist & Wiksell International.

    Google Scholar 

  • Hänninen, H. (1987). Effects of temperature on dormancy release in woody plants: Implications of prevailing models. Silva Fennica, 21, 279–299.

    Article  Google Scholar 

  • Hänninen, H. (1990a). Modelling the annual growth rhythm of trees: conceptual, experimental, and applied aspects. In: H. Jozefek (Ed.) Modelling to understand forest functions. Silva Carelica, 15, 35–45

    Google Scholar 

  • Hänninen, H. (1990b). Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica, 213, 1–47.

    Google Scholar 

  • Hänninen, H. (1991). Does climatic warming increase the risk of frost damage in northern trees? Plant, Cell and Environment, 14, 449–454.

    Article  Google Scholar 

  • Hänninen, H. (1995a). Effects of climatic change on trees from cool and temperate regions: An ecophysiological approach to modelling of bud burst phenology. Canadian Journal of Botany, 73, 183–199.

    Article  Google Scholar 

  • Hänninen, H. (1995b). Assessing ecological implications of climatic change: Can we rely on our simulation models? Climatic Change, 31, 1–4.

    Article  Google Scholar 

  • Hänninen, H. (1996). Effects of climatic warming on northern trees: Testing the frost damage hypothesis with meteorological data from provenance transfer experiments. Scandinavian Journal of Forest Research, 11, 17–25.

    Article  Google Scholar 

  • Hänninen, H. (2009). Sarvaksen vuosisyklimalli. In S. Ruotsalainen & J. Häggman (Eds.), Kutsumuksena metsätiede. Risto Sarvaksen 100-vuotisjuhlakirja (pp. 53–60). Jyväskylä: Gummerus kirjapaino Oy.

    Google Scholar 

  • Hänninen, H., & Hari, P. (1996). The implications of geographical variation in climate for differentiation of bud dormancy ecotypes in Scots pine. In P. Hari, J. Ross, M. Mecke (Eds.), Production process of Scots pine; Geographical variation and models. Acta Forestalia Fennica, 254, 11–21.

    Google Scholar 

  • Hänninen, H., & Kramer, K. (2007). A framework for modelling the annual cycle of trees in boreal and temperate regions. Silva Fennica, 41, 167–205.

    Google Scholar 

  • Hänninen, H., & Lundell, R. (2007). Dynamic models in plant ecophysiology. In K. Taulavuori & E. Taulavuori (Eds.), Physiology of northern plants under changing environment (pp. 157–175). Trivandrum, Kerala: Research Signpost.

    Google Scholar 

  • Hänninen, H., & Pelkonen, P. (1988). Effects of temperature on dormancy release in Norway spruce and Scots pine seedlings. Silva Fennica, 22, 241–248.

    Article  Google Scholar 

  • Hänninen, H., & Pelkonen, P. (1989). Dormancy release in Pinus sylvestris L. and Picea abies (L.) Karst. seedlings: Effects of intermittent warm periods during chilling. Trees, 3, 179–184.

    Article  Google Scholar 

  • Hänninen, H., & Tanino, K. (2011). Tree seasonality in a warming climate. Trends in Plant Science, 16, 412–416.

    Article  CAS  Google Scholar 

  • Hänninen, H., Slaney, M., & Linder, S. (2007). Dormancy release of Norway spruce under climatic warming: Testing ecophysiological models of bud burst with a whole-tree chamber experiment. Tree Physiology, 27, 291–300.

    Article  Google Scholar 

  • Hänninen, H., Lundell, R., & Junttila, O. (2013). A fifty-year-old conceptual plant dormancy model provides new insights into dynamic phenology modelling. In: R. Sievänen, E. Nikinmaa, C. Godin, A. Lintunen, & P. Nygren Proceedings of the 7th international conference on functional-structural plant models, Saariselkä, Finland, 9–14 June 2013. http://www.metal.fi/fspm2013/proceedings. ISBN 978-951-651-408-9. p. 176.

  • Harding, P. H., Cochrane, J., & Smith, L. P. (1976). Forecasting the flowering stages of apple varieties in Kent, England, by the use of meteorological data. Agricultural Meteorology, 17, 49–54.

    Article  Google Scholar 

  • Hari, P. (1972). Physiological stage of development in biological models of growth and maturation. Annales Botanici Fennici, 9, 107–115.

    Google Scholar 

  • Hari, P., & Häkkinen, R. (1991). The utilization of old phenological time series of budburst to compare models describing annual cycles of plants. Tree Physiology, 8, 281–287.

    Article  Google Scholar 

  • Hari, P., Leikola, M., & Räsänen, P. (1970). A dynamic model of the daily height increment of plants. Annales Botanici Fennici, 7, 375–378.

    Google Scholar 

  • Harrington, C. A., Gould, P. J., & St. Clair, J. B. (2010). Modeling the effects of winter environment on dormancy release of Douglas-fir. Forest Ecology and Management, 259, 798–808.

    Article  Google Scholar 

  • Heide, O. M. (1974). Growth and dormancy in Norway spruce ecotypes (Picea abies) I. Interaction of photoperiod and temperature. Physiologia Plantarum, 30, 1–12.

    Article  Google Scholar 

  • Heide, O. M. (1993a). Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiologia Plantarum, 88, 531–540.

    Article  Google Scholar 

  • Heide, O. M. (1993b). Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days. Physiologia Plantarum, 89, 187–191.

    Article  Google Scholar 

  • Heide, O. M. (2003). High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warning. Tree Physiology, 23, 931–936.

    Article  CAS  Google Scholar 

  • Heide, O. M. (2011). Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species. Journal of Experimental Botany, 62, 5397–5404.

    Article  CAS  Google Scholar 

  • Heide, O. M., & Prestrud, A. K. (2005). Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology, 25, 109–114.

    Article  CAS  Google Scholar 

  • Heikinheimo, M., & Lappalainen, H. (1997). Dependence of the flower bud burst of some plant taxa in Finland on effective temperature sum: Implications for climate warming. Annales Botanici Fennici, 34, 229–243.

    Google Scholar 

  • Horvath, D. P., Anderson, J. V., Chao, W. S., & Foley, M. E. (2003). Knowing when to grow: Signals regulating bud dormancy. Trends in Plant Science, 8, 534–540.

    Article  CAS  Google Scholar 

  • Howe, G. T., Hackett, W. P., Furnier, G. R., & Klevorn, R. E. (1995). Photoperiodic responses of a northern and southern ecotype of black cottonwood. Physiologia Plantarum, 93, 695–708.

    Article  CAS  Google Scholar 

  • Höyhtyä, R., & Hänninen, H. (1991). Effect of photon flux density on bud dormancy release in Norway spruce seedlings. Silva Fennica, 25, 177–180.

    Article  Google Scholar 

  • Huikari, O., & Paarlahti, K. (1967). Results of field experiments on the ecology of pine, spruce, and birch. Communicationes Instituti Forestalis Fenniae, 64(1), 1–135.

    Google Scholar 

  • Hunter, A. F., & Lechowicz, M. J. (1992). Predicting the timing of budburst in temperate trees. Journal of Applied Ecology, 29, 597–604.

    Article  Google Scholar 

  • Jones, H. G., Gordon, S. L., & Brennan, R. M. (2015). Chilling requirement of Ribes cultivars. Frontiers in Plant Science, Article 5, 767. doi:10.3389/fpls.2014.00767.

  • Junttila, O. (1970). Effects of stratification, gibberellic acid and germination temperature on the germination of Betula nana. Physiologia Plantarum, 23, 425–433.

    Article  CAS  Google Scholar 

  • Junttila, O. (1976). Seed germination and viability in five Salix species. Astarte, 9, 19–24.

    Google Scholar 

  • Junttila, O. (1980). Effect of photoperiod and temperature on apical growth cessation in two ecotypes of Salix and Betula. Physiologia Plantarum, 48, 347–352.

    Article  Google Scholar 

  • Junttila, O. (2007). Regulation of annual shoot growth cycle in northern tree species. In K. Taulavuori & E. Taulavuori (Eds.), Physiology of northern plants under changing environment (pp. 177–210). Trivandrum, Kerala: Research Signpost.

    Google Scholar 

  • Junttila, O., & Hänninen, H. (2012). The minimum temperature for budburst in Betula depends on the state of dormancy. Tree Physiology, 32, 337–345.

    Article  Google Scholar 

  • Junttila, O., & Nilsen, J. (1993). Growth and development of northern forest trees as affected by temperature and light. In J. N. Alden, S. Ødum, & J. L. Mastrantonio (Eds.), Forest development in cold climates (pp. 43–57). New York: Plenum Press.

    Chapter  Google Scholar 

  • Junttila, O., & Skaret, G. (1990). Growth and survival of seedlings of various Picea species under northern climatic conditions. Scandinavian Journal of Forest Science, 5, 69–81.

    Article  Google Scholar 

  • Junttila, O., Nilsen, J., & Igeland, B. (2003). Effect of temperature on the induction of bud dormancy in ecotypes of Betula pubescens and Betula pendula. Scandinavian Journal of Forest Research, 18, 208–217.

    Article  Google Scholar 

  • Kalcsits, L. A., Silim, S., & Tanino, K. (2009). Warm temperature accelerates short photoperiod-induced growth cessation and dormancy induction in hybrid poplar (Populus x spp.). Trees, 23, 971–979.

    Article  Google Scholar 

  • Kalliola, R. (1973). Suomen kasvimaantiede. Porvoo: Werner Söderström Osakeyhtiön kirjapaino. 308 p.

    Google Scholar 

  • Kanninen, M., Hari, P., & Kellomäki, S. (1982). A dynamic model for above-ground growth and dry matter production in a forest community. Journal of Applied Ecology, 19, 465–476.

    Article  Google Scholar 

  • Kasap, O. E., & Alten, B. (2005). Laboratory estimation of degree-day developmental requirements of Phlebotomus papatasi (Diptera: Psychodidae). Journal of Vector Ecology, 30, 328–333.

    Google Scholar 

  • Keenan, T. F., & Richardson, A. D. (2015). The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models. Global Change Biology, 21, 2634–2641.

    Article  Google Scholar 

  • Kellomäki, S., Väisänen, H., Hänninen, H., Kolström, T., Lauhanen, R., Mattila, U., & Pajari, B. (1992). A simulation model for the succession of the boreal forest ecosystem. Silva Fennica, 26, 1–18.

    Article  Google Scholar 

  • Kellomäki, S., Hänninen, H., & Kolström, M. (1995). Computations on frost damage to Scots pine under climatic warming in boreal conditions. Ecological Applications, 5, 42–52.

    Article  Google Scholar 

  • Kilpeläinen, A., Peltola, H., Rouvinen, I., & Kellomäki, S. (2006). Dynamics of daily height growth in Scots pine trees at elevated temperature and CO2. Trees, 20, 16–27.

    Article  Google Scholar 

  • Kobayashi, K. D., & Fuchigami, L. H. (1983a). Modelling temperature effects in breaking rest in red-osier dogwood (Cornus sericea L.). Annals of Botany, 52, 205–215.

    Google Scholar 

  • Kobayashi, K. D., & Fuchigami, L. H. (1983b). Modeling bud development during the quiescent phase in red-osier dogwood (Cornus sericea L.). Agricultural Meteorology, 28, 75–84.

    Article  Google Scholar 

  • Kobayashi, K. D., Fuchigami, L. H., & English, M. J. (1982). Modeling temperature requirements for rest development in Cornus sericea. Journal of the American Society for Horticultural Science, 107, 914–918.

    Google Scholar 

  • Kobayashi, K. D., Fuchigami, L. H., & Weiser, C. J. (1983). Modeling cold hardiness of red-osier dogwood. Journal of the American Society for Horticultural Science, 108, 376–381.

    Google Scholar 

  • Koch, E., Donelly, A., Lipa, W., Menzel, A., & Nekovář, J. (2009). Final scientific report of COST 725. Establishing a European dataplatform for climatological applications. Luxembourg: Publications Office of the European Union. 85 p.

    Google Scholar 

  • Körner, C., & Basler, D. (2010a). Phenology under global warming. Science, 327, 1461–1462.

    Article  Google Scholar 

  • Körner, C., & Basler, D. (2010b). Response. Science, 329, 278.

    Article  Google Scholar 

  • Koski, V. (2009). Siemensadosta vuosisyklimalliin. In S. Ruotsalainen & J. Häggman (Eds.), Kutsumuksena metsätiede. Risto Sarvaksen 100-vuotisjuhlakirja (pp. 43–52). Jyväskylä: Gummerus kirjapaino Oy.

    Google Scholar 

  • Koski, V., & Selkäinaho, J. (1982). Experiments on the joint effect of heat sum and photoperiod on seedlings of Betula pendula. Communicationes Instituti Forestalis Fenniae, 105, 1–34.

    Google Scholar 

  • Koski, V., & Sievänen, R. (1985). Timing of growth cessation in relation to the variations in the growing season. In P. M. A. Tigerstedt, P. Puttonen, & V. Koski (Eds.), Crop physiology of forest trees (pp. 167–193). Helsinki: Helsinki University Press.

    Google Scholar 

  • Kramer, K. (1994a). Selecting a model to predict the onset of growth of Fagus sylvatica. Journal of Applied Ecology, 31, 172–181.

    Article  Google Scholar 

  • Kramer, K. (1994b). A modelling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in The Netherlands and Germany. Plant, Cell and Environment, 17, 367–377.

    Article  Google Scholar 

  • Kramer, K., Leinonen, I., Bartelink, H. H., Berbigier, P., Borghetti, M., Bernhofer, C., Cienciala, E., Dolman, A. J., Froer, O., Gracia, C. A., Granier, A., Grünwald, T., Hari, P., Jans, W., Kellomäki, S., Loustau, D., Magnani, F., Markkanen, T., Matteucci, G., Mohren, G. M. J., Moors, E., Nissinen, A., Peltola, H., Sabaté, S., Sanchez, A., Sontag, M., Valentini, R., & Vesala, T. (2002). Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Global Change Biology, 8, 213–230.

    Article  Google Scholar 

  • Kubin, E., Kotilainen, E., Poikolainen, J., Hokkanen, T., Nevalainen, S., Pouttu, A., Karhu, J., & Pasanen, J. (2007). Monitoring instructions of the Finnish National Phenological Network. Muhos: Finnish Forest Research Institute, Muhos Research Unit. 43 p.

    Google Scholar 

  • Lana, E. P., & Haber, E. S. (1952). Seasonal variability as indicated by cumulative degree hours with sweet corn. Proceedings of the American Society for Horticultural Science, 59, 389–392.

    Google Scholar 

  • Landsberg, J. J. (1974). Apple fruit bud development and growth; analysis and an empirical model. Annals of Botany, 38, 1013–1023.

    Google Scholar 

  • Landsberg, J. J. (1977). Effects of weather on plant development. In J. J. Landsberg & C. V. Cutting (Eds.), Environmental effects on crop physiology (pp. 289–307). London: Academic Press.

    Google Scholar 

  • Lang, G. A., Early, J. D., Martin, G. C., & Darnell, R. L. (1987). Endo-, para-, and ecodormancy: Physiological terminology and classification for dormancy research. HortScience, 22, 371–377.

    Google Scholar 

  • Lappalainen, H., & Heikinheimo, M. (1992). Relations between climate and plant phenology. In Part 1. Survey of plant phenological observations in Finland from 1896 to 1965. Helsinki: Meteorological Publications 20. Finnish Meteorological Institute. 74 p.

    Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology. Ecophysiology and stress physiology of functional groups (4th ed.). Berlin: Springer. 513 p.

    Google Scholar 

  • Lavender, D. P., Sweet, G. B., Zaerr, J. B., & Hermann, R. K. (1973). Spring shoot growth in Douglas-fir may be initiated by gibberellins exported from the roots. Science, 182, 838–839.

    Article  CAS  Google Scholar 

  • Lawrence, E. (Ed.). (2011). Henderson’s dictionary of biology (15th ed.). Essex: Pearson Education Limited. 758 p.

    Google Scholar 

  • Leinonen, I. (1996a). Dependence of dormancy release on temperature in different origins of Pinus sylvestris and Betula pendula seedlings. Scandinavian Journal of Forest Research, 11, 122–128.

    Article  Google Scholar 

  • Leinonen, I. (1996b). A simulation model for the annual frost hardiness and freeze damage of Scots pine. Annals of Botany, 78, 687–693.

    Article  Google Scholar 

  • Leinonen, I., & Hänninen, H. (2002). Adaptation of the timing of bud burst of Norway spruce to temperate and boreal climates. Silva Fennica, 36, 695–701.

    Article  Google Scholar 

  • Lindfors, A., & Kupila-Ahvenniemi, S. (1988). Metabolic and structural responses of pine buds under climate chamber conditions. Physiologia Plantarum, 72, 407–413.

    Article  Google Scholar 

  • Linkosalo, T. (2000). Mutual regularity of spring phenology of some boreal tree species: Predicting with other species and phenological models. Canadian Journal of Forest Research, 30, 667–673.

    Article  Google Scholar 

  • Linkosalo, T., & Lechowicz, M. (2006). Twilight far-red treatment advances leaf bud burst of silver birch (Betula pendula). Tree Physiology, 26, 1249–1256.

    Article  Google Scholar 

  • Linkosalo, T., Häkkinen, R., & Hari, P. (1996). Improving the reliability of a combined phenological time series by analyzing observation quality. Tree Physiology, 16, 661–664.

    Article  Google Scholar 

  • Linkosalo, T., Carter, T. R., Häkkinen, R., & Hari, P. (2000). Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: A comparison of two models. Tree Physiology, 20, 1175–1182.

    Article  Google Scholar 

  • Linkosalo, T., Häkkinen, R., & Hänninen, H. (2006). Models of the spring phenology of boreal and temperate trees: Is there something missing? Tree Physiology, 26, 1165–1172.

    Article  Google Scholar 

  • Linkosalo, T., Lappalainen, H. K., & Hari, P. (2008). A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiology, 28, 1873–1882.

    Article  Google Scholar 

  • Linkosalo, T., Häkkinen, R., Terhivuo, J., Tuomenvirta, H., & Hari, P. (2009). The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming. Agricultural and Forest Meteorology, 149, 453–461.

    Article  Google Scholar 

  • Luomajoki, A. (1977). Effects of temperature on spermatophyte male meiosis. Hereditas, 85, 33–47.

    Article  Google Scholar 

  • Luomajoki, A. (1982). Temperature and dates of male meiosis in trees. Hereditas, 97, 167–178.

    Article  Google Scholar 

  • Luomajoki, A. (1984). The tetrad phase of microsporogenesis in trees with reference to the annual cycle. Hereditas, 101, 179–197.

    Article  Google Scholar 

  • Luomajoki, A. (1986a). The latitudinal and yearly variation in the timing of microsporogenesis in Alnus, Betula and Corylus. Hereditas, 104, 231–243.

    Article  Google Scholar 

  • Luomajoki, A. (1986b). Timing of microsporogenesis in trees with reference to climatic adaptation. A review. Acta Forestalia Fennica, 196, 1–33.

    Google Scholar 

  • Luomajoki, A. (1993a). Climatic adaptation of Scots pine (Pinus sylvestris L.) in Finland based on male flowering phenology. Acta Forestalia Fennica, 237, 1–27.

    Google Scholar 

  • Luomajoki, A. (1993b). Climatic adaptation of Norway spruce (Picea abies (L.) Karsten) in Finland based on male flowering phenology. Acta Forestalia Fennica, 242, 1–28.

    Google Scholar 

  • Luomajoki, A. (1999). Climatic adaptation of Silver Birch (Betula pendula) and Downy Birch (B. pubescens) in Finland based on male flowering phenology. Acta Forestalia Fennica, 263, 1–35.

    Google Scholar 

  • Madariaga, F. J., & Knott, J. E. (1951). Temperature summations in relation to lettuce growth. Proceedings of the American Society for Horticultural Science, 58, 147–152.

    Google Scholar 

  • Menzel, A., & Fabian, P. (1999). Growing season extended in Europe. Nature, 397, 659.

    Article  CAS  Google Scholar 

  • Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kübler, K., Bissolli, P., Braslavská, O., Briede, A., Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Måke, F., Mestre, A., Nordli, Ø., Peñuelas, J., Pirinen, P., Remišová, V., Scheifinger, H., Striz, M., Susnik, A., van Lieth, A. J. H., Wielgolaski, F.-E., Zach, S., & Zust, A. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–1976.

    Article  Google Scholar 

  • Mikola, J. (1982). Bud-set phenology as an indicator of climatic adaptation of Scots pine in Finland. Silva Fennica, 16, 178–184.

    Google Scholar 

  • Mohr, H., & Schoffer, P. (1995). Plant physiology. Berlin: Springer. 629 p.

    Book  Google Scholar 

  • Morin, X., Lechowicz, M. J., Augspurger, C., O’Keefe, J., Viner, D., & Chuine, I. (2009). Leaf phenology in 22 North American tree species during the 21st century. Global Change Biology, 15, 961–975.

    Article  Google Scholar 

  • Murray, M. B., Cannell, M. G. R., & Smith, R. I. (1989). Date of budburst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology, 26, 693–700.

    Article  Google Scholar 

  • Murray, M. B., Smith, R. I., Leith, I. D., Fowler, D., Lee, H. S. J., Friend, A. D., & Jarvis, P. G. (1994). Effects of elevated CO2, nutrition and climatic warming on bud phenology in Sitka spruce (Picea sitchensis) and their impact on the risk of frost damage. Tree Physiology, 14, 691–706.

    Article  Google Scholar 

  • Myking, T. (1997). Effects of constant and fluctuating temperature on time to budburst in Betula pubescens and its relation to bud respiration. Trees, 12, 107–112.

    Google Scholar 

  • Myking, T. (1998). Interrelations between respiration and dormancy in buds of three hardwood species with different chilling requirements for dormancy release. Trees, 12, 224–229.

    Article  Google Scholar 

  • Myking, T., & Heide, O. M. (1995). Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiology, 15, 697–704.

    Article  Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702.

    Article  CAS  Google Scholar 

  • Nienstaedt, H. (1966). Dormancy and dormancy release in white spruce. Forest Science, 12, 374–384.

    Google Scholar 

  • Nienstaedt, H. (1967). Chilling requirements in seven Picea species. Silvae Genetica, 16, 65–68.

    Google Scholar 

  • Nizinski, J. J., & Saugier, B. (1988). A model of leaf budding and development for a mature Quercus forest. Journal of Applied Ecology, 25, 643–652.

    Article  Google Scholar 

  • Nygren, M. (1987). Germination characteristics of autumn collected Pinus sylvestris seeds. Acta Forestalia Fennica, 201, 1–42.

    Google Scholar 

  • Overcash, J. P., & Campbell, J. A. (1955). The effects of intermittent warm and cold periods on breaking the rest period of peach leaf buds. Proceedings of the American Society for Horticultural Science, 66, 87–92.

    Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.

    Article  CAS  Google Scholar 

  • Partanen, J. (2004). Dependence of photoperiodic response of growth cessation on the stage of development in Picea abies and Betula pendula seedlings. Forest Ecology and Management, 188, 137–148.

    Article  Google Scholar 

  • Partanen, J., & Beuker, E. (1999). Effects of photoperiod and thermal time on the growth rhythm of Pinus sylvestris seedlings. Scandinavian Journal of Forest Research, 14, 487–497.

    Article  Google Scholar 

  • Partanen, J., Koski, V., & Hänninen, H. (1998). Effects of photoperiod and temperature on the timing of bud burst in Norway spruce (Picea abies). Tree Physiology, 18, 811–816.

    Article  Google Scholar 

  • Partanen, J., Hänninen, H., & Häkkinen, R. (2005). Bud burst in Norway spruce (Picea abies): Preliminary evidence for age-specific rest patterns. Trees, 19, 66–72.

    Article  Google Scholar 

  • Perry, T. O. (1971). Dormancy of trees in winter. Science, 171, 29–36.

    Article  CAS  Google Scholar 

  • Picard, G., Quegan, S., Delbart, N., Lomas, M. R., Le Toan, T., & Woodward, F. I. (2005). Bud-burst modelling in Siberia and its impact on quantifying the carbon budget. Global Change Biology, 11, 2164–2176.

    Article  Google Scholar 

  • Pitacco, A. (1990). The “Dynamic Model” of chilling accumulation: Its structure and performance under simulated and real thermal regimes. Advances in Horticultural Science, 3, 167–171.

    Google Scholar 

  • Polgar, C. A., & Primack, R. B. (2011). Leaf-out phenology of temperate woody plants: From trees to ecosystems. New Phytologist, 191, 926–941.

    Article  Google Scholar 

  • Pudas, E., Leppälä, M., Tolvanen, A., Poikolainen, J., Venäläinen, A., & Kubin, E. (2008). Trends in phenology of Betula pubescens across the boreal zone in Finland. International Journal of Biometeorology, 52, 251–259.

    Article  Google Scholar 

  • Raulo, J., & Leikola, M. (1974). Tutkimuksia puiden vuotuisen pituuskasvun ajoittumisesta. Summary: Studies on the annual height growth of trees. Communicationes Instituti Forestalis Fenniae, 81(2), 1–19.

    Google Scholar 

  • Réaumur, M de. (1735). Observations du thermomètre faites à Paris pendant l'année 1735 comparées avec celles qui ont été faites sous la ligne à l’ Ile de France, à Alger et en quelques-unes de nos ȋles de l’Amérique. Académie royale des sciences – Année 1735.

    Google Scholar 

  • Repo, T., Hänninen, H., & Kellomäki, S. (1996). The effects of long-term elevation of air temperature and CO2 on the frost hardiness of Scots pine. Plant, Cell and Environment, 19, 209–216.

    Article  Google Scholar 

  • Repo, T., Kalliokoski, T., Domisch, T., Lehto, T., Mannerkoski, H., Sutinen, S., & Finér, L. (2005). Effects of timing of soil frost thawing on Scots pine. Tree Physiology, 25, 1053–1062.

    Article  Google Scholar 

  • Repo, T., Lehto, T., & Finér, L. (2008). Delayed soil thawing affects root and shoot functioning and growth in Scots pine. Tree Physiology, 28, 1583–1591.

    Article  Google Scholar 

  • Richardson, E. A., Seeley, S. D., & Walker, D. R. (1974). A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. HortScience, 9, 331–332.

    Google Scholar 

  • Rinne, P. L. H., & van der Schoot, C. (2003). Plasmodesmata at the crossroads between development, dormancy, and defence. Canadian Journal of Botany, 81, 1182–1197.

    Article  CAS  Google Scholar 

  • Rohde, A., & Bhalerao, R. P. (2007). Plant dormancy in the perennial context. Trends in Plant Science, 12, 217–223.

    Article  CAS  Google Scholar 

  • Romberger, J. A. (1963). Meristems, growth, and development in woody plants. An analytical review of anatomical, physiological, and morphogenetic aspects. USDA Technical Bulletin 1292. U.S. Government Printing Office. 214 p.

    Google Scholar 

  • Rousi, M., & Heinonen, J. (2007). Temperature sum accumulation effects on within-population variation and long-term trends in date of bud burst of European white birch (Betula pendula). Tree Physiology, 27, 1019–1025.

    Article  Google Scholar 

  • Ruttink, T., Arend, M., Morreel, K., Storme, V., Rombauts, S., Fromm, J., Bhalerao, R. P., Boerjan, W., & Rohde, A. (2007). A molecular timetable for apical bud formation and dormancy induction in poplar. The Plant Cell, 19, 2370–2390.

    Article  CAS  Google Scholar 

  • Salažs, A., & Ievinsh, G. (2004). The impact of the Latvian plant physiologist Auseklis Veğis (1903–1973) in modern natural sciences. Acta Universitatis Latviensis, Biology, 676, 7–15.

    Google Scholar 

  • Salminen, H., & Jalkanen, R. (2015). Modeling of bud break of Scots pine in northern Finland in 1908–2014. Frontiers in Plant Science, Article 6, 104. doi:10.3389/fpls.2015.00104.

  • Samish, R. M. (1954). Dormancy in woody plants. Annual Review of Plant Physiology, 5, 183–204.

    Article  CAS  Google Scholar 

  • Sarvas, R. (1967). The annual period of development of forest trees. Proceedings of the Finnish Academy of Science and Letters, 1965, 211–231.

    Google Scholar 

  • Sarvas, R. (1972). Investigations on the annual cycle of development of forest trees. Active period. Communicationes Instituti Forestalis Fenniae, 76(3), 1–110.

    Google Scholar 

  • Sarvas, R. (1974). Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy. Communicationes Instituti Forestalis Fenniae, 84(1), 1–101.

    Google Scholar 

  • Saure, M. C. (1985). Dormancy release in deciduous fruit trees. Horticultural Reviews, 7, 239–300.

    Google Scholar 

  • Schaber, J., & Badeck, F. W. (2003). Physiology-based phenology models for forest tree species in Germany. International Journal of Biometeorology, 47, 193–201.

    Article  Google Scholar 

  • Schwartz, M. D. (2013). Introduction. In M. D. Schwartz (Ed.), Phenology: An integrative environmental science (2nd ed., pp. 1–5). Dordrecht: Springer Science+Business Media B.V.

    Chapter  Google Scholar 

  • Slaney, M., Wallin, G., Medhurst, J., & Linder, S. (2007). Impact of elevated carbon dioxide concentration and temperature on bud burst and shoot growth of boreal Norway spruce. Tree Physiology, 27, 301–312.

    Article  Google Scholar 

  • Smolander, H. (1984). Measurement of fluctuating irradiance in field studies of photosynthesis. Acta Forestalia Fennica, 187, 1–56.

    Google Scholar 

  • Søgaard, G., Johnsen, Ø., Nilsen, J., & Junttila, O. (2008). Climatic control of bud burst in young seedlings of nine provenances of Norway spruce. Tree Physiology, 28, 311–320.

    Article  Google Scholar 

  • Sorensen, F. C., & Campbell, R. K. (1978). Comparative roles of soil and air temperatures in the timing of spring bud flush in seedling Douglas-fir. Canadian Journal of Botany, 56, 2307–2308.

    Article  Google Scholar 

  • Sutinen, S., Partanen, J., Viherä-Aarnio, A., & Häkkinen, R. (2009). Anatomy and morphology in developing vegetative buds on detached Norway spruce branches in controlled conditions before bud burst. Tree Physiology, 29, 1457–1465.

    Article  Google Scholar 

  • Sutinen, S., Partanen, J., Viherä-Aarnio, A., & Häkkinen, R. (2012). Development and growth of primordial shoots in Norway spruce buds before visible bud burst in relation to time and temperature in the field. Tree Physiology, 32, 987–997.

    Article  Google Scholar 

  • Tanino, K. K., Kalcsits, L., Silim, S., Kendall, E., & Gray, G. R. (2010). Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: A working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Molecular Biology, 73, 49–65.

    Article  CAS  Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427, 145–148.

    Article  CAS  Google Scholar 

  • Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. PNAS, 102, 8245–8250.

    Article  CAS  Google Scholar 

  • Tooke, F., & Battey, N. H. (2010). Flowering newsletter review. Temperate flowering phenology. Journal of Experimental Botany, 61, 2853–2862.

    Article  CAS  Google Scholar 

  • Tuhkanen, S. (1980). Climatic parameters and indices in plant geography. Acta Phytogeographica Suecica, 67. 105 p.

    Google Scholar 

  • Ununger, J., Ekberg, I., & Kang, H. (1988). Genetic control and age-related changes of juvenile growth characters in Picea abies. Scandinavian Journal of Forest Research, 3, 55–66.

    Article  Google Scholar 

  • Vaartaja, O. (1959). Evidence of photoperiodic ecotypes in trees. Ecological Monographs, 29, 91–111.

    Google Scholar 

  • Van den Driessche, R. (1975). Flushing response of Douglas fir buds to chilling and to different air temperatures after chilling. British Columbia Forest Service, Research Note, 71, 1–22.

    Google Scholar 

  • Vegis, A. (1964). Dormancy in higher plants. Annual Review of Plant Physiology, 15, 185–224.

    Article  CAS  Google Scholar 

  • Viherä-Aarnio, A., Häkkinen, R., Partanen, J., Luomajoki, A., & Koski, V. (2005). Effects of seed origin and sowing time on timing of height growth cessation of Betula pendula seedlings. Tree Physiology, 25, 101–108.

    Article  Google Scholar 

  • Viherä-Aarnio, A., Sutinen, S., Partanen, J., & Häkkinen, R. (2014). Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures. Tree Physiology, 34, 547–556.

    Article  Google Scholar 

  • Vitasse, Y. (2013). Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytologist, 198, 149–155.

    Article  Google Scholar 

  • Vitasse, Y., & Basler, D. (2013). What role for photoperiod in the bud burst phenology of European beech. European Journal of Forest Research, 132, 1–8.

    Article  Google Scholar 

  • Wang, J. Y. (1960). A critique of the heat unit approach to plant response studies. Ecology, 41, 785–790.

    Article  Google Scholar 

  • Wareing, P. F. (1953). Growth studies in woody species V. Photoperiodism in dormant buds of Fagus sylvatica L. Physiologia Plantarum, 6, 692–706.

    Article  Google Scholar 

  • Wareing, P. F. (1956). Photoperiodism in woody plants. Annual Review of Plant Physiology, 7, 191–214.

    Article  CAS  Google Scholar 

  • Weiser, C. J. (1970). Cold resistance and injury in woody plants. Science, 169, 1269–1278.

    Article  CAS  Google Scholar 

  • Westergaard, L., & Eriksen, E. N. (1997). Autumn temperature affects the induction of dormancy in first-year seedlings of Acer platanoides L. Scandinavian Journal of Forest Research, 12, 11–16.

    Article  Google Scholar 

  • Wielgolaski, F.-E. (1999). Starting dates and basic temperatures in phenological observations of plants. International Journal of Biometeorology, 42, 158–168.

    Article  Google Scholar 

  • Worrall, J., & Mergen, F. (1967). Environmental and genetic control of dormancy in Picea abies. Physiologia Plantarum, 20, 733–745.

    Article  Google Scholar 

  • Young, E. (1992). Timing of high temperature influences chilling negation in dormant apple trees. Journal of the American Society for Horticultural Science, 117, 271–273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

List of Symbols

List of Symbols

t:

time

3.1.1 Time-Dependent Environmental Variables

T(t):

air temperature (°C)

Tmean(t):

daily mean air temperature (°C)

NL(t):

daily night length (h)

3.1.2 Time-Dependent Rate and State Variables

3.1.2.1 Ontogenetic Development

Ro,pot(t):

potential rate of ontogenetic development (% day−1)

Ro(t):

rate of ontogenetic development (% day−1)

So(t):

state of ontogenetic development (%)

Rdh :

accumulation rate of degree hour units (dh h−1)

Rdd(t):

accumulation rate of day degree units (dd day−1)

RHU(t):

accumulation rate of high temperature units (HU day−1)

RPU(t):

accumulation rate of period units (PU h−1)

RFU(t):

accumulation rate of forcing units (FU day−1)

RFU′(t):

accumulation rate of modified forcing units (FU′ day−1)

Sdd(t):

accumulated temperature sum (dd)

SPU(t):

accumulated period units (PU)

SDU(t):

accumulated dormancy units (DU)

SFU(t):

accumulated forcing units (FU)

SFU′(t):

accumulated modified forcing units (FU′)

3.1.2.2 Rest Break

Rr(t):

rate of rest break (% day−1)

Sr(t):

state of rest break (%)

RCU(t):

accumulation rate of chilling units (CU day−1, CU h−1)

SCU(t):

accumulated chilling units

3.1.2.3 Development During Growing Season

Sa :

state of active growth (%)

Sl :

state of lignification (%)

3.1.3 Variable Mediating the Effect of Rest Break on the Ontogenetic Development

Co(t):

ontogenetic competence

3.1.4 Model Parameters

3.1.4.1 Ontogenetic Development

t0 :

starting date of the simulations

Tthr :

air temperature threshold of ontogenetic development (and of accumulation of forcing units)

FUcrit :

Critical forcing unit sum (FU)

Hcrit :

high temperature requirement of growth onset (HU)

a:

steepness of air temperature response of rate of ontogenetic development (and of accumulation rate of forcing units) (°C−1)

b:

inflexion point of air temperature response of rate of ontogenetic development (and of accumulation rate of forcing units) (°C)

c:

Upper asymptote of air temperature response of accumulation rate of forcing units (FU)

NLcrit :

critical night length of growth cessation (h)

3.1.4.2 Rest Break

Ccrit :

chilling requirement of rest break (CU)

T1 :

minimum air temperature for rest break (°C)

T2 :

temperature for maximum rate of rest break (°C)

T3 :

maximum air temperature for rest break (°C)

3.1.5 Other Symbols

3.1.5.1 Ontogenetic Development

dd:

day degree unit

dh:

degree hour unit

PU:

period unit

FU:

forcing unit

FU’:

modified forcing unit

HU:

high temperature unit (general term covering all specific units)

Δt(T):

developmental time (time required for a given point event to occur in experimental conditions) in temperature T

Δt10 :

developmental time in the reference temperature 10 °C

3.1.5.2 Rest Break

CU:

chilling unit

3.1.5.3 Variables for a Regrowth Test

BB%:

bud burst percentage (%)

DBB:

days required for bud burst (day)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hänninen, H. (2016). The Annual Phenological Cycle. In: Boreal and Temperate Trees in a Changing Climate. Biometeorology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7549-6_3

Download citation

Publish with us

Policies and ethics