Skip to main content

Plant Development Models

  • Chapter
  • First Online:
Phenology: An Integrative Environmental Science

Abstract

In this chapter we provide a brief overview of plant phenology modeling, focusing on mechanistic phenological models. After a brief history of plant phenology modeling, we present the different models which have been described in the literature so far and highlight the main differences between them, i.e. their degree of complexity and the different types of response function to temperature they use. We also discuss the different approaches used to build and parameterize such models. Finally, we provide a few examples of applications mechanistic plant phenological models have been successfully used for, such as frost hardiness modeling, tree growth modeling, tree species distribution modeling and temperature reconstruction of the last millennium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson JL, Kesner CD, Richardson EA (1986) Validation of chill unit and flower bud phenology models for Montmorency sour cherry. Acta Hortic 184:71–77

    Google Scholar 

  • Aono Y, Omoto Y (1993) Variation in the March mean temperature deduced from cherry blossom in Kyoto since the 14th century. J Agric Meteorol 48:635–638

    Article  Google Scholar 

  • Aono Y, Saito S (2010) Clarifying springtime temperature reconstructions of the medieval period by gap-filling the cherry blossom phenological data series at Kyoto, Japan. Int J Biometeorol 54(2):211–219

    Article  PubMed  Google Scholar 

  • Bennett JP (1949) Temperature and bud rest period. Calif Agric 3(11):9–12

    Google Scholar 

  • Bidabé B (1967) Action de la température sur l’évolution des bourgeons de pommier et comparaison de méthodes de contrôle de l’époque de floraison. Ann Physiol Vég 1:65–86

    Google Scholar 

  • Bonhomme M, Rageau R, Lacointe A (2010) Optimization of endodormancy release models using series of endodormancy release data collected in France. Acta Hortic 872:51–60

    Google Scholar 

  • Boyer WD (1973) Air temperature, heat sums, and pollen shedding phenology of longleaf pine. Ecology 54:421–425

    Google Scholar 

  • Brazdil R, Pfister C, Wanner H, Von Storch H, Luterbacher J (2005) Historical climatology in Europe – the state of the art. Clim Change 70(3):363–430. doi:10.1007/s10584-005-5924-1

    Article  Google Scholar 

  • Caffarra A, Donnelly A, Chuine I (2011a) Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Clim Res 46:159–170. doi:10.3354/cr00983

    Article  Google Scholar 

  • Caffarra A, Donnelly A, Chuine I, Jones MB (2011b) Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: a conceptual model. Clim Res 46:147–157

    Google Scholar 

  • Campbell RK, Sugano AI (1975) Phenology of bud burst in Douglas-fir related to provenance, photoperiod, chilling and flushing temperature. Bot Gaz 136:290–298

    Google Scholar 

  • Cannell MGR (1985) Analysis of risks of frost damage to forest trees in Britain. In: Tigerstedt PMA, Puttonen P, Koski V (eds) Crop physiology of forest trees. Helsinki University Press, Helsinki

    Google Scholar 

  • Cannell MGR, Smith RI (1983) Thermal time, chill days and prediction of budburst in Picea sitchensis. J Appl Ecol 20:951–963

    Article  Google Scholar 

  • Cannell MGR, Smith RI (1986) Climatic warming, spring budburst and frost damage on trees. J Appl Ecol 23:177–191

    Article  Google Scholar 

  • Chatfield C (1988) Problem solving: a statistician guide. Chapman & Hall, London

    Google Scholar 

  • Chuine I (2000) A unified model for the budburst of trees. J Theor Biol 207:337–347

    Article  PubMed  CAS  Google Scholar 

  • Chuine I (2010) Why does phenology drive species distribution? Philos Trans R Soc Lond B 365:3149–3160

    Article  Google Scholar 

  • Chuine I, Beaubien E (2001) Phenology is a major determinant of temperate tree range. Ecol Lett 4(5):500–510

    Article  Google Scholar 

  • Chuine I, Belmonte J (2004) Improving prophylaxis for pollen allergies: predicting the time course of the pollen load of the atmosphere of major allergenic plants in France and Spain. Grana 43:1–17

    Article  Google Scholar 

  • Chuine I, Cour P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ 21:455–466

    Article  Google Scholar 

  • Chuine I, Cour P, Rousseau DD (1999) Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ 22(1):1–13

    Article  Google Scholar 

  • Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Ladurie EL (2004) Grape ripening as a past climate indicator. Nature 432:289–290

    Google Scholar 

  • Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Ladurie EL (2004a) Grape ripening as a past climate indicator. Nature 432(7015):289–290. doi:10.1038/432289a

    Article  PubMed  CAS  Google Scholar 

  • Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Ladurie ELR (2004b) Grape ripening as an indicator of past climate. Nature 432:289–290

    Article  PubMed  CAS  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Changing plant phenology in response to climate change. TREE 22(7):357–365

    PubMed  Google Scholar 

  • Delpierre N, Dufrêne E, Soudani K, Ulrich E, Cecchini S, Boé J, François C (2009) Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric For Meteorol 149(6):938–948

    Article  Google Scholar 

  • Dose V, Menzel A (2004) Bayesian analysis of climate change impacts in phenology. Glob Change Biol 10(2):259–272

    Article  Google Scholar 

  • Emberlin J, Mullins J, Corden J, Millington W, Brooke M, Savage M, Jones S (1997) The trend to earlier Birch pollen season in the U. K.: a biotic response to changes in weather conditions? Grana 36:29–33

    Google Scholar 

  • Erez A, Fishman S, Linsley-Noakes GC, Allan P (1990) The dynamic model for rest completion in peach buds. Acta Hortic 276:165–174

    Google Scholar 

  • Etien N, Daux V, Masson-Delmotte V, Stievenard M, Bernard V, Durost S, Guillemin MT, Mestre O, Pierre M (2008) A bi-proxy reconstruction of Fontainebleau (France) growing season temperature from AD 1596 to 2000. Clim Past 4(2):91–106

    Article  Google Scholar 

  • Etien N, Daux V, Masson-Delmotte V, Mestre O, Stievenard M, Guillemin M, Boettger T, Breda N, Haupt M, Perraud P (2009) Summer maximum temperature in northern France over the past century: instrumental data versus multiple proxies (tree-ring isotopes, grape harvest dates and forest fires). Clim Change 94(3):429–456

    Article  CAS  Google Scholar 

  • Falusi M, Calamassi R (1996) Geographic variation and bud dormancy in beech seedlings (Fagus sylvatica L). Ann Sci Forestieres 53:967–979

    Google Scholar 

  • Fishman S, Erez A, Couvillon GA (1987) The temperature dependence of dormancy breaking in plants: mathematical analysis of a two-step model involving a cooperative transition. J Theor Biol 124(4):473–483

    Article  Google Scholar 

  • Frenguelli G, Bricchi E (1998) The use of pheno-climatic model for forecasting the pollination of some arboreal taxa. Aerobiologia 14:39–44

    Article  Google Scholar 

  • Fu YH, Campioli M, Demaree G, Deckmyn A, Hamdi R, Janssens IA, Deckmyn G (2012) Bayesian calibration of the Unified budburst model in six temperate tree species. Int J Biometeorol 56(1):153–164. doi:10.1007/s00484-011-0408-7

    Article  PubMed  Google Scholar 

  • García de Cortázar-Atauri I, Daux V, Garnier E, Yiou P, Viovy N, Seguin B, Boursiquot JM, Parker AK, Van Leeuwen C, Chuine I (2010) Climate reconstructions from grape harvest dates: methodology and uncertainties. Holocene 20(4):599–608

    Article  Google Scholar 

  • Garcia-Mozo H, Chuine I, Aira M-J, Belmonte J, Bermejo D, Guardia CD, Elvira B, Gutierrez M, Rodriguez-Rajo J, Ruiz L, Trigo MM, Tormo R, Valencia R, Galan C (2007) Regional phenological models for forecasting the start and peak of the Quercus pollen season in Spain. Agric For Manag 148(3):372–380

    Article  Google Scholar 

  • Garcia-Mozo H, Galán C, Belmonte J, Bermejo D, Candau P, Guardia CD, Elvira B, Gutierrez M, Jato V, Silva I, Trigo MM, Valencia R, Chuine I (2008a) Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agric For Meteorol 149:256–262

    Article  Google Scholar 

  • Garcia-Mozo H, Orlandi F, Galan C, Fornaciari M, Romano B, Ruiz L, Guardia CD, Trigo M, Chuine I (2008b) Olive flowering phenology variation between different cultivars in Spain and Italy: modelling analysis. Theor Appl Climatol 95:385–395. doi:10/1007/s00704-008-0016-6

    Article  Google Scholar 

  • Gritti ES, Duputié A, Massol F, Chuine I (2013) Estimating consensus and associated uncertainty between inherently different species distribution models. Methods in Ecology and Evolution 4:442–452

    Google Scholar 

  • Häkkinen R (1999) Statistical evaluation of bud development theories: application to bud burst of Betula pendula leaves. Tree Physiol 19:613–618

    Article  PubMed  Google Scholar 

  • Hammer GL, Carberry PS, Muchow RC (1993) Modelling genotypic and environmental control of leaf area dynamics in grain sorghum. I. Whole plant level. Field Crop Res 33(3):293–310

    Article  Google Scholar 

  • Hänninen H (1987) Effects of temperature on dormancy release in woody plants: implications of prevailing models. Silva Fenn 21(3):279–299

    Google Scholar 

  • Hänninen H (1990) Modelling bud dormancy release in trees from cool and temperate regions. Acta For Fenn 213:1–47

    Google Scholar 

  • Hänninen H (1991) Does climatic warming increase the risk of frost damage in northern trees? Plant Cell Environ 14:449–454

    Article  Google Scholar 

  • Hänninen H (1995) Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of budburst phenology. Can J Bot 73:183–199

    Article  Google Scholar 

  • Hänninen, H, Kramer K (2007) A framework for modelling the annual cycle of trees in boreal and temperate regions. Silva Fennica 41:167–205

    Google Scholar 

  • Hanninen H, Tanino K (2011) Tree seasonality in a warming climate. Trends Plant Sci 16(8):412–416. doi:10.1016/j.tplants.2011.05.001

    Article  PubMed  CAS  Google Scholar 

  • Hänninen H, Slaney M, Linder S (2007) Dormancy release of Norway spruce under climatic warming: testing ecophysiological models of bud burst with a whole-tree chamber experiment. Tree Physiol 27(2):291–300

    Article  PubMed  Google Scholar 

  • Hartkamp AD, Hoogenboom G, White JW (2002) Adaptation of the CROPGRO growth model to velvet bean (Mucuna pruriens): I. Model development. Field Crop Res 78(1):9–25

    Article  Google Scholar 

  • Heide OM (1993a). Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol Plant 88:531–540

    Google Scholar 

  • Heide OM (1993b) Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days. Physiol Plant 89:187–191

    Google Scholar 

  • Hunt LA, Pararajasingham S (1995) CROPSIM – WHEAT: a model describing the growth and development of wheat. Can J Plant Sci 75(3):619–632

    Article  Google Scholar 

  • Kellomäki S, HÄnninnen H, Kolström M (1995) Computations on frost damage to scots pine under climatic warming in boreal conditions. Ecol Appl 5(1):42–52

    Article  Google Scholar 

  • Kikuzawa K (1991) A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am Nat 138:1250–1263

    Google Scholar 

  • Kikuzawa K (1995a) The basis for variation in leaf longevity of plants. Vegetatio 121:89–100

    Google Scholar 

  • Kikuzawa K (1995b) Leaf phenology as an optimal strategy for carbon gain in plants. Can J Bot 73:158–163

    Google Scholar 

  • Kikuzawa K (1996) Geographical distribution of leaf life span and species diversity of trees simulated by a leaf-longevity model. Vegetatio 122:61–67

    Google Scholar 

  • Kikuzawa K, Kudo G (1995) Effects of the length of the snow-free period on leaf longevity in alpine shrubs: a cost-benefit model. Oikos 73:214–220

    Google Scholar 

  • Kobayashi KD, Fuchigami LH (1983a) Modeling bud development during the quiescent phase in red-osier dogwood (Cornus sericea L.). Agric Meteorol 28:75–84

    Article  Google Scholar 

  • Kobayashi KD, Fuchigami LH (1983b) Modelling temperature effects in breaking rest in Red-osier Dogwood (Cornus sericea L.). Ann Bot 52:205–215

    Google Scholar 

  • Kobayashi KD, Fuchigami LH, English MJ (1982) Modelling temperature requirements for rest development in Cornus sericea. J Am Soc Hortic Sci 107:914–918

    Google Scholar 

  • Kramer K (1994a) A modelling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in The Netherlands and Germany. Plant Cell Environ 17:367–377

    Article  Google Scholar 

  • Kramer K (1994b) Selecting a model to predict the onset of growth of Fagus sylvatica. J Appl Ecol 31:172–181

    Article  Google Scholar 

  • Kramer K (1995) Modelling comparison to evaluate the importance of phenology for the effects of climate change in growth of temperate-zone deciduous trees. Clim Res 5:119–130

    Article  Google Scholar 

  • Kramer K, Hänninen H (2009) The tree’s annual cycle of development and the process-based modelling of growth to scale up from the tree to the stand. In: Noormets A (ed) Phenology of ecosystem processes. Applications in global change research. Springer, London

    Google Scholar 

  • Kramer K, Mohren GMJ (1996) Sensitivity of FORGRO to climatic change scenarios: a case study on Betula pubescens, Fagus sylvatica and Quercus robur in the Netherlands. Clim Change 34:231–237

    Article  CAS  Google Scholar 

  • Kramer K, Van der Werf DC (2010) Equilibrium and non-equilibrium concepts in forest genetic modelling: population- and individually-based approaches. For Syst 19:100–112

    Google Scholar 

  • Kramer K, Friend A, Leinonen I (1996) Modelling comparison to evaluate the importance of phenology and spring frost damage for the effects of climate change on growth of mixed temperate-zone deciduous forests. Clim Res 7:31–41

    Article  Google Scholar 

  • Kramer K, Buiteveld J, Forstreuter M, Geburek T, Leonardi S, Menozzi P, Povillon F, Schelhaas M, Cros ET, Vendramin GG, Werf DC (2008) Bridging the gap between ecophysiological and genetic knowledge to assess the adaptive potential of European beech. Ecol Model 216:333–353

    Article  Google Scholar 

  • Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT, de Winter W (2010) Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change-range, abundance, genetic diversity and adaptive response. For Ecol Manag 259(11):2213–2222. doi:10.1016/j.foreco.2009.12.023

    Article  Google Scholar 

  • Krinner G, Viovy N, Noblet-Ducoudrée N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmospheric-biospheric system. Glob Biogeochem Cycles 19:1–33

    Article  CAS  Google Scholar 

  • Kupias R, Mäkinen Y (1980) Correlations of Alder pollen occurrence to climatic variables. In: First international conference on aerobiology, Munich

    Google Scholar 

  • Lamb RC (1948) Effects of temperature above and below freezing on the breaking of rest in the Latham raspberry. J Am Soc Hortic Sci 51:313–315

    Google Scholar 

  • Landsberg JJ (1974) Apple fruit bud development and growth; analysis and an empirical model. Ann Bot 38:1013–1023

    Google Scholar 

  • Lang GA, Early JD, Arroyave NJ, Darnell RL, Martin GC, Stutte GW (1985) Dormancy–toward a reduced, universal terminology. Hortscience 20:809–812

    Google Scholar 

  • Lechowicz MJ, Koike T (1995) Phenology and seasonality of woody-plants – an unappreciated element in global change research. Can J Bot 73(2):147–148

    Article  Google Scholar 

  • Leinonen I (1996) A simulation model for the annual frost hardiness and freeze damage of Scots pine. Ann Bot 78(6):687–693

    Article  Google Scholar 

  • Leinonen I, Kramer K (2002) Applications of phenological models to predict the future carbon sequestration potential of boreal forests. Clim Change 55(1–2):99–113

    Article  CAS  Google Scholar 

  • Leinonen I, Repo T, Hänninen H, Burr K (1995) A second-order dynamics model for the frost hardiness of trees. Ann Bot 76:89–95

    Article  Google Scholar 

  • Linkosalo T, Carter TR, Hakkinen R, Hari P (2000) Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: a comparison of two models. Tree Physiol 20(17):1175–1182

    Article  PubMed  Google Scholar 

  • Linkosalo T, Lappalainen HK, Hari P (2008) A comparison of phenological models of leaf bud burst and flowering of boreal trees using independent observations. Tree Physiol 28(12):1873–1882

    Article  PubMed  Google Scholar 

  • Linsley-Noakes GC, Louw M, Allan P (1995) Estimating daily positive Utah chill units from maximum and minimum temperatures. J S Afr Soc Hortic Sci 5:19–24

    Google Scholar 

  • Maurer C, Koch E, Hammer C, Hammer T, Pokorny E (2009) BACCHUS temperature reconstruction for the period 16th to 18th centuries from Viennese and Klosterneuburg grape harvest dates. J Geophys Res D Atmos 114(22):1–13

    Google Scholar 

  • Mohren GMJ (1987) Simulation of forest growth, applied to Douglas fir stands in The Netherlands, Landbouw Universiteit Wageningen, Wageningen

    Google Scholar 

  • Maurer C, Hammerl C, Koch E, Hammerl T, Pokorny E (2011) Extreme grape harvest data of Austria, Switzerland and France from AD 1523 to 2007 compared to corresponding instrumental/reconstructed temperature data and various documentary sources. Theor Appl Climatol 106(1–2):55–68. doi:10.1007/s00704-011-0410-3

    Article  Google Scholar 

  • Meier N, Rutishauser T, Pfister C, Wanner H, Luterbacher J (2007) Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. Geophys Res Lett 34:1–6. doi:10.1029/2007GL031381

    Article  Google Scholar 

  • Menzel A (2005) A 500 year pheno-climatological view on the 2003 heatwave in Europe assessed by grape harvest dates. Meteorol Z 14(1):75–77

    Article  Google Scholar 

  • Morin X, Augspurger C, Chuine I (2007) Process-based modeling of species’ distributions: what limits temperate tree species’ range boundaries? Ecology 88(9):2280–2291

    Article  PubMed  Google Scholar 

  • Morin X, Viner D, Chuine I (2008) Tree species range shifts at a continental scale: new predictive insights from a process-based model. J Ecol 96:784–794

    Article  Google Scholar 

  • Morin X, Lechowicz MJ, Augspurger C, Keef JO, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree species during the 21st century. Glob Change Biol 15:961–975

    Article  Google Scholar 

  • Možný M, Brázdil R, Dobrovolný P, Trnka M (2010) Cereal harvest dates in the Czech Republic between 1501 and 2008 as a proxy for March–June temperature reconstruction. Clim Change 110(3–4):810–821

    Google Scholar 

  • Murray MB, Cannell MGR, Smith RI (1989) Date of budburst of fifteen tree species in Britain following climatic warming. J Appl Ecol 26:693–700

    Article  Google Scholar 

  • Myking T, Heide OM (1995) Dormancy release and chilling requirements of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiol 15:697–704

    Google Scholar 

  • Phillipp M, Böcher J, Mattson O, Woodell SLJ (1990) A quantitative approach to the sexual reproductive biology and population structure in some Arctic flowering plants: Dryas integrifolia, Silene acaulis and Ranunculus nivalis. Medd Grönl Biosci 34:1–60

    Google Scholar 

  • Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang JY, Barr L, Chen AP, Grelle A, Hollinger D, Laurila T, Lindroth A, Richardson AD, Vesala T (2007) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52. doi:10.1038/nature06444

    Article  CAS  Google Scholar 

  • Pigott CD, Huntley JP (1981) Factors controlling the distribution of Tilia cordata at the northern limits of its geographical range. III nature and cause of seed sterility. New Phytol 87:817–839

    Article  Google Scholar 

  • Poirier M, Lacointe A, Améglio T (2010) A semi-physiological model of cold hardening and dehardening in walnut stem. Tree Physiol 30(12):1555–1569

    Article  PubMed  Google Scholar 

  • Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10(1):23–36

    Article  Google Scholar 

  • Pouget R (1968) Nouvelle conception du seuil de croissance chez la vigne. Vitis 7:201–205

    Google Scholar 

  • Pouget R (1972) Considérations générales sur le rythme végétatif et la dormance des bourgeons de la vigne. Vitis 11:198–217

    Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989) Numerical recipes in Pascal. Cambridge University Press, Cambridge

    Google Scholar 

  • Reaumur RAF (1735) Observations du thermomètre, faites à Paris pendant l’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’isle de France, à Alger et quelques unes de nos isles de l’Amérique. Mem Paris Acad Sci 1735:545

    Google Scholar 

  • Reich PB (1994) Phenology of tropical forests: patterns, causes, and consequences. Can J Bot 73:164–174

    Article  Google Scholar 

  • Repo T, Mäkelä A, Hänninen H (1990) Modelling frost resistance of trees. Silva Carelica 15:61–74

    Google Scholar 

  • Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees. Hortscience 9:331–332

    Google Scholar 

  • Richardson EA, Anderson JL, Hatch AH, Seeley SD Asymcur (1982) An asymetric curvilinear fruit tree model. In: 21st international horticultural congress, Hamburg, p 2078

    Google Scholar 

  • Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, Munger JW, Moors E, Piao SL, Rebmann C, Reichstein M, Saigusa N, Tomelleri E, Vargas R, Varlagin A (2010) Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos Trans R Soc B Biol Sci 365(1555):3227–3246. doi:10.1098/rstb.2010.0102

    Article  Google Scholar 

  • Riou C (1994) The effect of climate on grape ripening: application to the zoning of sugar content in the European community. Office des Publications Officielles des Communautés Européennes, Luxembourg

    Google Scholar 

  • Robertson GW (1968) A biometeorological time scale for a cereal crop involving day and night temperatures and photoperiod. Int J Biometeorol 12:191–223

    Article  Google Scholar 

  • Ruml M, Vuković A, Vujadinović M, Djurdjević V, Ranković-Vasić Z, Atanacković Z, Sivčev B, Marković N, Matijašević S, Petrović N (2012) On the use of regional climate models: implications of climate change for viticulture in Serbia. Agric For Meteorol 158:53–62

    Article  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants, vol 62, Ecological studies. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Sarvas R (1972) Investigations on the annual cycle of development on forest trees active period. Commun Inst For Fenn 76(3):110

    Google Scholar 

  • Sarvas R (1974) Investigations on the annual cycle of development of forest trees. Autumn dormancy and winter dormancy. Commun Inst For Fenn 84:1–101

    Google Scholar 

  • Schwartz MD (1997) Spring index models: an approach to connecting satellite and surface phenology. In: Lieth H, Schwartz MD (eds) Phenology in seasonal climates. Backhuys Publishers, Leiden, pp 23–38

    Google Scholar 

  • Schwartz MD, Marotz GA (1986) An approach to examining regional atmosphere-plant interactions with phenological data. J Biogeogr 13:551–560

    Article  Google Scholar 

  • Schwartz MD, Marotz GA (1988) Synoptic events and spring phenology. Phys Geogr 9:151–161

    Google Scholar 

  • Schwartz MD, Ault TR, Betancourt JL (2012) Spring onset variations and trends in the continental USA: past and regional assessment using temperature-based indices. Int J Climatol (published online. doi: 10.1002/joc.3625)

  • Siminovitch D, Wilson CM, Briggs DR (1953) Studies on the chemistry of the living bark of the black locust in relation to its frost hardiness. V. Seasonal transformations and variations in the carbohydrates: starch-sucrose interconversions. Plant Physiol 28:383–400

    Article  PubMed  CAS  Google Scholar 

  • Sinclair TR, Kitani S, Bruniard J, Horide T (1991) Soybean flowering date: linear and logistic models based on temperature and photoperiod. Crop Sci 31:786–790

    Article  Google Scholar 

  • Soltani A, Hammer GL, Torabi B, Robertson MJ, Zeinali E (2006) Modeling chickpea growth and development: phenological development. Field Crops Res 99(1):1–13

    Article  Google Scholar 

  • Spieksma FTH, Emberlin J, Hjelmroos M, Jðger S, Leuschner RM (1995) Atmospheric birch (Betula) pollen in Europe: trends and fluctuations in annual quantities and the starting dates of the seasons. Grana 34:51–57

    Google Scholar 

  • Stone M (1977) An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J R Stat Soc B 38:44–47

    Google Scholar 

  • Thorhallsdottir TE (1998) Flowering phenology in the central highland of Iceland and implications for climatic warming in the Arctic. Oecologia 114:43–49

    Article  Google Scholar 

  • Thorsen SM, Hoglind M (2010) Modelling cold hardening and dehardening in timothy. Sensitivity analysis and Bayesian model comparison. Agric For Meteorol 150(12):1529–1542. doi:10.1016/j.agrformet.2010.08.001

    Article  Google Scholar 

  • Vegis A (1964) Dormancy in higher plants. Annu Rev Plant Physiol 15:185–224

    Article  CAS  Google Scholar 

  • Vesala T, Haataja J, Aalto P, Altimir N, Buzorius G, Garam E, Hämeri K, Ilvesniemi H, Jokinen V, Keronen P, Lahti T, Markkanen T, Mäkelä JM, Nikinmaa E, Palmroth S, Palva L, Pohja T, Pumpanen J, Rannik Ü, Siivola E, Ylitalo H, Hari P, Kulmala M (1998) Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat Mass Momentum Transf 4:17–35

    CAS  Google Scholar 

  • Wang JY (1960) A critique of the heat unit approach to plant response studies. Ecology 41(4):785–789

    Article  Google Scholar 

  • Wang E, Engel T (1998) Simulation of phenological development of wheat crops. Agric Syst 58(1):1–24

    Article  Google Scholar 

  • Wareing PF (1953) Growth studies in woody species. V. Photoperiodism in dormant buds of Fagus sylvatica L. Physiologia Plantarum 6:692–706

    Google Scholar 

  • Weinberger JH (1950) Chilling requirements of peach varieties. Proc Am Soc Hortic Sci 56:122–128

    Google Scholar 

  • White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob Biogeochem Cycles 11:217–234

    Article  CAS  Google Scholar 

  • Yan W, Hunt LA (1999) An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann Bot 84(5):607–614

    Article  Google Scholar 

  • Yin X, Kropff MJ, McLaren G, Visperas RM (1995) A nonlinear model for crop development as a function of temperature. Agric For Meteorol 77(1–2):1–16

    Article  Google Scholar 

  • Yiou P, García de Cortázar-Atauri I, Chuine I, Daux V, Garnier E, Viovy N, Leeuwen C, Parker AK, Boursiquot J-M (2012) Continental atmospheric circulation over Europe during the Little Ice Age inferred from grape harvest dates. Clim Past 8:577–588

    Article  Google Scholar 

Download references

Acknowledgments

IC was financially supported by project SCION (ANR-05-BDIV-009) of the French National Research Agency. KK was financially supported by project DynTerra (project no. 5238821) of the Knowledge Base of the Dutch Ministry of Economy, Agriculture and Innovation and the large-scale integrative project MOTIVE (FP7 contract no. 226544). HH was financially supported by the Academy of Finland (project 122194). The authors are most grateful to Jacques Régnière for his thorough review and his corrections which greatly improved the quality of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Chuine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chuine, I., de Cortazar-Atauri, I.G., Kramer, K., Hänninen, H. (2013). Plant Development Models. In: Schwartz, M. (eds) Phenology: An Integrative Environmental Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6925-0_15

Download citation

Publish with us

Policies and ethics