Skip to main content

Computational Approaches to Modeling of Molecular Interactions in Multicellular Systems

  • Chapter
Intercellular Communication in Cancer
  • 656 Accesses

Abstract

Cells in metazoans co-exist as multicellular communities, where coordinated interactions within and between cells determine the phenotype of the cell community as a whole. With the recent technological advances in cell sorting and genome-wide molecular profiling techniques, it is now possible to perform unbiased systems analyses of heterogeneous cell populations within multicellular systems. Functional analyses of such multi-layered high throughput data is greatly facilitated by computational tools to build coherent models of molecular interactions in multicellular systems. I will discuss different computational techniques of pathway-level analyses of genomic data, and the recent efforts of their extension to the analyses of heterogeneous cell populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uetz P et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627

    Article  CAS  PubMed  Google Scholar 

  2. Tong AH et al (2004) Global mapping of the yeast genetic interaction network. Science 303(5659):808–813

    Article  CAS  PubMed  Google Scholar 

  3. Krogan NJ et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–643

    Article  CAS  PubMed  Google Scholar 

  4. Hughes TR et al (2000) Functional discovery via a compendium of expression profiles. Cell 102(1):109–126

    Article  CAS  PubMed  Google Scholar 

  5. Jeong H et al (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    Article  CAS  PubMed  Google Scholar 

  6. Ravasz E et al (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555

    Article  CAS  PubMed  Google Scholar 

  7. Han JD et al (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88–93

    Article  CAS  PubMed  Google Scholar 

  8. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296(5569):910–913

    Article  CAS  PubMed  Google Scholar 

  9. De Monte S et al (2007) Dynamical quorum sensing: population density encoded in cellular dynamics. Proc Natl Acad Sci U S A 104(47):18377–18381

    Article  PubMed  PubMed Central  Google Scholar 

  10. Henson MA (2003) Dynamic modeling of microbial cell populations. Curr Opin Biotechnol 14(5):460–467

    Article  CAS  PubMed  Google Scholar 

  11. Wolf J, Heinrich R (1997) Dynamics of two-component biochemical systems in interacting cells; synchronization and desynchronization of oscillations and multiple steady states. Biosystems 43(1):1–24

    Article  CAS  PubMed  Google Scholar 

  12. Wolf J, Heinrich R (2000) Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation. Biochem J 345(Pt 2):321–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Richard P et al (1996) Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells. Eur J Biochem 235(1–2):238–241

    Article  CAS  PubMed  Google Scholar 

  14. Henson MA (2013) Multicellular models of intercellular synchronization in circadian neural networks. Chaos Solitons Fractals 50:48–64

    Article  Google Scholar 

  15. Honma S et al (2000) Synaptic communication of cellular oscillations in the rat suprachiasmatic neurons. Neurosci Lett 294(2):113–116

    Article  CAS  PubMed  Google Scholar 

  16. Vasalou C, Herzog ED, Henson MA (2011) Multicellular model for intercellular synchronization in circadian neural networks. Biophys J 101(1):12–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bonzanni N et al (2009) Executing multicellular differentiation: quantitative predictive modelling of C. elegans vulval development. Bioinformatics 25(16):2049–2056

    Article  CAS  PubMed  Google Scholar 

  18. Ruths D et al (2008) The signaling petri net-based simulator: a non-parametric strategy for characterizing the dynamics of cell-specific signaling networks. PLoS Comput Biol 4(2), e1000005

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dobrin R et al (2009) Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease. Genome Biol 10(5):R55

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang B et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset alzheimer’s disease. Cell 153(3):707–720

    Google Scholar 

  21. Xiang Y, Zhang J, Huang K (2013) Mining the tissue-tissue gene co-expression network for tumor microenvironment study and biomarker prediction. BMC Genomics 14(Suppl 5):S4

    Article  PubMed  PubMed Central  Google Scholar 

  22. Droujinine IA, Perrimon N (2013) Defining the interorgan communication network: systemic coordination of organismal cellular processes under homeostasis and localized stress. Front Cell Infect Microbiol 3:82

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lewis NE et al (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28(12):1279–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Conrad TM, Lewis NE, Palsson BO (2011) Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 7:509

    Article  PubMed  PubMed Central  Google Scholar 

  25. Thiele I et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31(5):419–425

    Article  CAS  PubMed  Google Scholar 

  26. Bordbar A et al (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15(2):107–120

    Article  CAS  PubMed  Google Scholar 

  27. Kumar A et al (2014) Multi-tissue computational modeling analyzes pathophysiology of type 2 diabetes in MKR mice. PLoS One 9(7), e102319

    Article  PubMed  PubMed Central  Google Scholar 

  28. Vazquez A (2013) Metabolic states following accumulation of intracellular aggregates: implications for neurodegenerative diseases. PLoS One 8(5), e63822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bordbar A et al (2011) A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst Biol 5:180

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cui X et al (2014) A computational approach to estimate interorgan metabolic transport in a mammal. PLoS One 9(6), e100963

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cascone T et al (2011) Upregulated stromal EGFR and vascular remodeling in mouse xenograft models of angiogenesis inhibitor-resistant human lung adenocarcinoma. J Clin Invest 121(4):1313–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Iorns E et al (2012) Simultaneous analysis of tumor and stromal gene expression profiles from xenograft models. Breast Cancer Res Treat 131(1):321–324

    Article  PubMed  Google Scholar 

  33. Ma XJ et al (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11(1):R7

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gregg JL et al (2010) Analysis of gene expression in prostate cancer epithelial and interstitial stromal cells using laser capture microdissection. BMC Cancer 10:165

    Article  PubMed  PubMed Central  Google Scholar 

  35. Boersma BJ et al (2008) A stromal gene signature associated with inflammatory breast cancer. Int J Cancer 122(6):1324–1332

    Article  CAS  PubMed  Google Scholar 

  36. Komurov K, White MA, Ram PT (2010) Use of data-biased random walks on graphs for the retrieval of context-specific networks from genomic data. PLoS Comput Biol 6(8), e1000889

    Article  PubMed  PubMed Central  Google Scholar 

  37. Komurov K (2012) Modeling community-wide molecular networks of multicellular systems. Bioinformatics 28(5):694–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pavlides S et al (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8(23):3984–4001

    Article  CAS  PubMed  Google Scholar 

  39. Koukourakis MI et al (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 66(2):632–637

    Article  CAS  PubMed  Google Scholar 

  40. Colegio OR et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 13(7519):559–63

    Article  Google Scholar 

  41. Sonveaux P et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118(12):3930–3942

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Article  CAS  PubMed  Google Scholar 

  43. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113

    Article  CAS  PubMed  Google Scholar 

  44. Barzel B, Barabasi AL (2013) Universality in network dynamics. Nat Phys 9:673–681

    Google Scholar 

  45. Jeong H et al (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–654

    Article  CAS  PubMed  Google Scholar 

  46. Komurov K, White M (2007) Revealing static and dynamic modular architecture of the eukaryotic protein interaction network. Mol Syst Biol 3:110

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fraser HB (2005) Modularity and evolutionary constraint on proteins. Nat Genet 37(4):351–352

    Article  CAS  PubMed  Google Scholar 

  48. Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382

    Article  CAS  PubMed  Google Scholar 

  49. Mishra GR et al (2006) Human protein reference database–2006 update. Nucleic Acids Res 34(Database issue):D411–D414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bader GD et al (2001) BIND–the biomolecular interaction network database. Nucleic Acids Res 29(1):242–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chatr-aryamontri A et al (2007) MINT: the molecular interaction database. Nucleic Acids Res 35(Database issue):D572–D574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stark C et al (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34(Database issue):D535–D539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Calvano SE et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437(7061):1032–1037

    Article  CAS  PubMed  Google Scholar 

  54. Chuang HY et al (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nikolsky Y, Nikolskaya T, Bugrim A (2005) Biological networks and analysis of experimental data in drug discovery. Drug Discov Today 10(9):653–662

    Article  CAS  PubMed  Google Scholar 

  56. Segal E et al (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2):166–176

    Article  CAS  PubMed  Google Scholar 

  57. Tomlins SA et al (2007) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39(1):41–51

    Article  CAS  PubMed  Google Scholar 

  58. Muller FJ et al (2008) Regulatory networks define phenotypic classes of human stem cell lines. Nature 455(7211):401–405

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ulitsky I, Shamir R (2009) Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 25(9):1158–1164

    Article  CAS  PubMed  Google Scholar 

  60. Pujana MA et al (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39(11):1338–1349

    Article  CAS  PubMed  Google Scholar 

  61. Mitra K et al (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14(10):719–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baitaluk M et al (2006) Biological networks: visualization and analysis tool for systems biology. Nucleic Acids Res 34:W466–W471 (Web Server issue)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hu Z et al (2005) VisANT: data-integrating visual framework for biological networks and modules. Nucleic Acids Res 33:W352–W357 (Web Server issue)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Komurov K, White MA, Ram PT (2010) Use of data-biased random walks on graphs for the retrieval of context-specific networks from genomic data. PLoS Comput Biol 6(8), e1000889. doi:10.1371/journal.pcbi

    Article  PubMed  PubMed Central  Google Scholar 

  65. Smoot ME et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ekins S et al (2006) Algorithms for network analysis in systems-ADME/Tox using the MetaCore and MetaDrug platforms. Xenobiotica 36(10–11):877–901

    Article  CAS  PubMed  Google Scholar 

  67. Komurov K (2011) Modeling community-wide molecular networks of multicellular systems. Bioinformatics 28(5):694–700. doi:10.1093/bioinformatics/btr718

    Article  PubMed  PubMed Central  Google Scholar 

  68. Komurov K et al (2012) The glucose-deprivation network counteracts lapatinib-induced toxicity in resistant ErbB2-positive breast cancer cells. Mol Syst Biol 8:596

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakajan Komurov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Komurov, K. (2015). Computational Approaches to Modeling of Molecular Interactions in Multicellular Systems. In: Kandouz, M. (eds) Intercellular Communication in Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7380-5_11

Download citation

Publish with us

Policies and ethics