Skip to main content

Environmental Regulation of Phycobilisome Biosynthesis

  • Chapter
Light-Harvesting Antennas in Photosynthesis

Summary

Photosynthetic activity and the composition of the photosynthetic apparatus are strongly regulated by environmental conditions. Some of the most visually dramatic changes in pigmentation of cyanobacteria during changing nutrient and light conditions reflect marked alterations in components of the major light-harvesting complex in these organisms, the phycobilisome. In some cyanobacteria the composition of the phycobilisome is very sensitive to the wavelengths of light in the environment. The populations of the different pigmented polypeptides or phycobiliproteins, phycocyanin and phycoerythin, of the phycobilisome are adjusted to optimize absorption of excitation energy present in the environment. This process, called complementary chromatic adaptation, is controlled by a photoreceptor that binds a bilin chromophore and has some similarity to phytochrome of vascular plants. This photoreceptor is thought to represent the first element of a phosphorelay system that regulates genes encoding the phycobiliprotein subunits and linker polypeptides. Phycobilisomes are also sensitive to nutrient levels and during starvation conditions there is both reduced synthesis and elevated breakdown of phycobilisomes. The degradation of phycobilisomes during nutrient-limited growth results in cells that lose their brilliant blue-green color and appear yellow green or bleached. This bleaching response is controlled by a ‘global’ regulatory system that may sense the redox state of the cell, the generation of reactive oxygen species and the quality of light in the environment. Some of the regulatory elements critical for controlling nutrient stress responses are also involved in modulating photosynthetic activity when cyanobacteria experience high light conditions. The analyses of these systems highlight the molecular flexibility incorporated into the biosynthetic processes required for construction and maintenance of a light harvesting complex and the nature of the key control elements that interface with environmental cues. At a more basic level, these studies suggest the robustly dynamic nature of the entire photosynthetic apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AP:

allophycocyanin

α PC:

the alpha subunit of phycocyanin

β PC:

the beta subunit of phycocyanin

CCA:

complementary chromatic adaptation

DBMIB:

2,5-bromo-3-methyl-6-isopropyl-ρ-benzoquinone

DCMU:

3-(3,4-dichlorophenyl)-l, l-dimethylurea

GL:

green light

FAD:

flavin adenine dinucleotide

FMN:

flavin mononucleotide

GUS:

β-glucuronidase

L:

linker polypeptides

LHC:

light harvesting complex

PAS:

from the PER, ARNT and SIM proteins, in which the domain was first identified; it is often involved in sensing light, redox potential, oxygen and overall energy metabolism in cells

PBS:

phycobilisomes

PC:

phycocyanin

PCc :

constitutively expressed PC subunits

PCi :

red light inducible PC subunits

PCs :

PC subunits expressed during sulfur limited growth

PE:

phycoerythrin

PEC:

phycoerythrocyanin

QA :

the primary quinone acceptor of Photosystem II

RL:

red light

References

  • Aiba H, Nagaya M and Mizuno T (1993) Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC 7942 that belong to the bacterial signal-transduction protein families: implication in the adaptive response to phosphate limitation. Mol Microbiol 8: 81–91

    Article  PubMed  CAS  Google Scholar 

  • Alfonso M, Perewoska I, Constant S and Kirilovsky D (1999) Redox control of psbA expression in cyanobacteria Synecho-cystis strains. J Photochem Photobiol 48: 104–113

    Article  CAS  Google Scholar 

  • Allen MM and Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Microbiol 69: 114–120

    CAS  Google Scholar 

  • Appleby JL, Parkinson, JS and Bourret, RB (1996) The multistep phosphorelay: Not necessarily a road less traveled. Cell 86: 845–848

    Article  PubMed  CAS  Google Scholar 

  • Apt KE, and Grossman AR (1993) Characterization and transcript analysis of the major phycobiliprotein subunit genes from Aglaothamnion neglectum (Rhodophyta). Plant Mol. Biol 21: 27–38

    Article  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH and Mullineaux PM (eds) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, pp 77–104. CRC Press, Boca Raton

    Google Scholar 

  • Ashby MK and Mullineaux CW (1999) The role of ApcD and ApcF in energy transfer from phycobilisomes to PSI and PSII in a cyanobacterium. Photosynth Res 61: 169–179

    Article  CAS  Google Scholar 

  • Baier K, Nicklisch S, Grundner C, Reinecke J and Locknau W (2001) Expression of two nblA -homologous genes is required for phycobilisome degradation in nitrogen-starved Synecho-cystis sp. PCC 6803. FEMS Microbiol Lett 195: 35–39

    Article  PubMed  CAS  Google Scholar 

  • Belknap WR and Haselkorn R (1987) Cloning and light regulation of expression of the phycocyanin operon of the cyanobacterium Anabaena. EMBO J 6: 871–884

    PubMed  CAS  Google Scholar 

  • Bennett A and Bogorad L (1971) Properties of subunits and aggregates of blue-green algal biliproteins. Biochemistry 10: 3625–3634

    Article  PubMed  CAS  Google Scholar 

  • Bennett A and Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58: 419–435

    Article  PubMed  CAS  Google Scholar 

  • Bhalerao RP, Lind LK and Gustafsson P (1994) Cloning of the cpcE and cpcF genes from Synechococcus sp. PCC 6301 and their inactivation in Synechococcus sp. PCC 7942. Plant Mol Biol 26: 313–326

    Article  PubMed  CAS  Google Scholar 

  • Bogorad L (1975) Phycobiliproteins and complementary chromatic adaptation. Annu Rev Plant Physiol 26: 369–401

    Article  CAS  Google Scholar 

  • Boyd JM and Lory S (1996) Dual function of PilS during transcriptional activation of the Pseudomonas aeruginosa pilin subunit gene. J Bacteriol 178: 831–839

    PubMed  CAS  Google Scholar 

  • Brans B, Briggs WR and Grossman AR (1989) Molecular characterization of phycobilisome regulatory mutants in Fremyella diplosiphon. J Bacteriol 171: 901–908

    Google Scholar 

  • Bryant DA (1981) The photoregulated expression of multiple phycocyanin species: General mechanism for control of phycocyanin synthesis in chromatically adapting cyanobacteria. Eur J Biochem 119: 425–429

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA and Cohen-Bazire G (1981). Effects of chromatic illumination on cyanobacterial phycobilisomes: Evidence for the specific induction of a second pair of phycocyanin subunits in Pseudanabaena 7409 grown in red light. Eur J Biochem 119: 415–424

    Article  PubMed  CAS  Google Scholar 

  • Burbulys D, Trach K and Hoch JA (1991) Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64: 545–552

    Article  PubMed  CAS  Google Scholar 

  • Capuano V, Braux A-S, Tandeau de Marsac N and Houmard J (1991) The ‘anchor polypeptide’ of cyanobacterial phyco-bilisomes. Molecular characterization of the Synechococcus sp. PCC 6301 apcE gene. J Biol Chem 266: 7239–7247

    PubMed  CAS  Google Scholar 

  • Casey, ES and Grossman AR (1994) In vivo and in vitro characterization of the light-regulated cpcB2A2 promoter of Fremyella diplosiphon. J Bacteriol 176: 6362–6374

    PubMed  CAS  Google Scholar 

  • Casey ES, Kehoe DM and Grossman AR (1997) Suppression of mutants aberrant in light intensity responses of complementary chromatic adaptation. J Bacteriol 179: 4599–4606

    PubMed  CAS  Google Scholar 

  • Cavicchioli R, Schroder I, Constanti M and Gunsalus RP (1995) The NarX andNarQ sensor-transmitter proteins of Escherichia coli each require two conserved histidines for nitrate-dependent signal transduction to NarL. J Bacteriol 177: 2416–2424

    PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB and Meyerowitz, EM (1993) Arabidopsis ethylene-response gene ETR1: Similarity of product to two-component regulators. Science 262: 539–544

    Article  PubMed  CAS  Google Scholar 

  • Chiang GG, Schaefer MR and Grossman AR (1992) Complementation of a red-light indifferent cyanobacterial mutant. Proc Natl Acad Sci USA 89: 9415–9419

    Article  PubMed  CAS  Google Scholar 

  • Clegg, D and Koshland, D (1984) The role of a signaling protein in bacterial sensing: Behavioral effects of increased gene expression. Proc Natl Acad Sci USA 81: 5056–5060

    Article  PubMed  CAS  Google Scholar 

  • Cobley JG and Miranda RD (1983) Mutations affecting chromatic adaptation in the cyanobacterium Fremyella diplosiphon. J Bacteriol 153: 1486–1492

    PubMed  CAS  Google Scholar 

  • Collier JL and Grossman AR (1992) Chlorosis induced by nutrient deprivation in Synechococcus sp. Strain PCC 7942: Not all bleaching is the same. J Bacteriol 174: 4718–4726

    PubMed  CAS  Google Scholar 

  • Collier JL and Grossman AR (1994) A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J 13: 1039–1047

    PubMed  CAS  Google Scholar 

  • Collier JL, Herbert SK, Fork DC and Grossman AR (1994) Changes in the cyanobacterial photosynthetic apparatus in response to macronutrient deprivation. Photosynth Res 42: 173–183

    Article  CAS  Google Scholar 

  • Conley PB, Lemaux PG and Grossman AR (1985) Cyanobacterial light-harvesting complex subunits encoded in two red light-induced transcripts. Science 230: 550–553

    Article  PubMed  CAS  Google Scholar 

  • Conley PB, Lemaux PG, Lomax TL and Grossman AR (1986) Genes encoding major light-harvesting polypeptides are clustered on the genome of the cyanobacterium Fremyella diplosiphon. Proc Natl Acad Sci USA 83: 3924–3928

    Article  PubMed  CAS  Google Scholar 

  • Conley PB, Lemaux PG and Grossman AR (1988) Molecular characterization and evolution of sequences encoding light harvesting components in the chromatically adapting cyanobacterium Fremyella diplosiphon. J Mol Biol 199: 447–465

    Article  PubMed  CAS  Google Scholar 

  • de Hostos EL, Togasaki RK and Grossman AR (1988) Purification and biosynthesis of a derepressible periplasmic arylsulfatase from Chlamydomonas reinhardtii. J Cell Biol 106: 29–37

    Article  PubMed  Google Scholar 

  • Diakoff S and Scheibe S (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol 51: 382–385

    Article  PubMed  CAS  Google Scholar 

  • Dolganov N and Grossman AR (1999) A polypeptide with similarity to phycocyanin a subunit phycocyanobilin lyase involved in degradation of phycobilisomes. J Bacteriol 181: 610–617

    PubMed  CAS  Google Scholar 

  • Dubbs JM and Bryant DA (1993) Organization and transcription of the genes encoding two differentially expressed phyco-cyanins in the cyanobacterium Pseudoanabaena sp. PCC 7409. Photosynth Res 36: 169–183

    Article  CAS  Google Scholar 

  • Durnford DG and Falkowski PG (1997) Chloroplast redox regulation of nuclear gene transcription during photo-acclimation. Photosynth Res 53: 229–241

    Article  CAS  Google Scholar 

  • Durnford DG, Deane JA, Tan S, McFadden Gl, Gantt E and Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins with implications for plastid evolution. J Mol Evol 48: 59–68

    Article  PubMed  CAS  Google Scholar 

  • El Bissati K and Kirilovsky D (2001) Regulation of psbA and psaE expression by light quality in Synechocystis species PCC 6803. A redox control mechanism. Plant Physiol 125: 1988–2000

    Article  PubMed  Google Scholar 

  • Engelmann TW (1883a) Farbe und Assimilation. Assimilation findet nur in den farbstoffhaltigen Plasmathielchen statt. II. Näherer Zusamennhang Zwischen Lichtabsorption und Assimilation. Botanische Zeitung 41: 1–13

    Google Scholar 

  • Engelmann TW (1883b) Farbe und Assimilation. III. Weitere Folgerungen. Botanische Zeitung 41: 17–29

    Google Scholar 

  • Engelmann TW (1884) Untersuchungen über die qualitativen Beziehungen Zwischen Absorption des Lichtes und Assimilation in Planzenzellen. I. Das Mikrospectrophotometer ein Apparat zur quantitativen Mikrospectralanalyse. II. Experimentelle Grundlagen zur Ermittelung der quantitativen Beziehungen zwischen Assimilationsenergie und Absorp-tionsgrösse. Botanische Zeitung 42: 97–105

    Google Scholar 

  • Eraso JM and Kaplan S (1994)prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol 176: 32–43

    Google Scholar 

  • Escoubas J-M, Lomas M, LaRoche J and Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92: 10237–10241

    Article  PubMed  CAS  Google Scholar 

  • Fairchild CD and Glazer AN (1994) Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin a subunit phycocyanobilin lyase. J Biol Chem 269: 8686–8694

    PubMed  CAS  Google Scholar 

  • Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA and Glazer AN (1992) Phycocyanin a-subunit phycocyanobilin lyase. Proc Natl Acad Sci USA 89: 7017–7021

    Article  PubMed  CAS  Google Scholar 

  • Federspiel NA and Grossman AR (1990) Characterization of the light-regulated operon encoding the phycoerythrin-associated linker proteins from the cyanobacterium Fremyella diplosiphon. J Bacteriol 172: 4072–4081

    PubMed  CAS  Google Scholar 

  • Federspiel NA and Scott L (1992) Characterization of a lightregulated gene encoding a new phycoerythrin-associated linker protein from the cyanobacterium Fremyella diplosiphon. J Bacteriol 179: 5994–5998

    Google Scholar 

  • Feng J, Atkinson MR, McCleary W, Stock JB, Wanner BL and Ninfa AJ (1992) Role of phosphorylated metabolic intermediates in the regulation of glutamine synthetase synthesis in Escherichia coli. J Bacteriol 174: 6061–6070

    PubMed  CAS  Google Scholar 

  • Fiedler U and Weiss V (1995) A common switch in activation of the response regulators NtrC and PhoB: Phosphorylation induces dimerization of the receiver modules. EMBO J 14: 3696–3705

    PubMed  CAS  Google Scholar 

  • Forst SA, Delgado J and Inouye M. (1989) Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompFmd ompC genes in Escherichia coli. Proc Natl Acad Sci USA 86: 6052–6056

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Murakami A and Ohki K (1987) Regulation of photosystem composition in the cyanobacterial photosynthetic system: The regulation occurs in response to the redox state of the electron pool located between the two photosystems. Plant Cell Physiol 28: 283–292

    Google Scholar 

  • Fujita Y, Murakami A, Aizawa K and Ohki K (1994) Short-term and long-term adaptation of the photosynthetic apparatus: Homeostatic properties of thylakoids. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 677–692. Bryant DA (ed) Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Gaidukov N (1903) Die Farbervänderung bei den Prozessen der Komplementären chromatischen Adaptation. Berichte der Deutschen Botanischen Gesellschaft 21: 517–522

    CAS  Google Scholar 

  • Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol 32: 327–347

    Article  CAS  Google Scholar 

  • Gilles-Gonzalez MA, Ditta GS and Helinski DR (1991) A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350: 170–172

    Article  PubMed  CAS  Google Scholar 

  • Gilles-Gonzalez MA, Gonzalez G, Perutz MF, Kiger L, Marden MC and Poyart C (1994) Heme-based sensors, exemplified by the kinase FixL, are a new class of heme protein with distinctive ligand binding and autoxidation. Biochem 33: 8067–8073

    Article  CAS  Google Scholar 

  • Glazer AN (1982) Phycobilisomes: structure and dynamics. Ann Rev Microbiol 36: 173–198

    Article  CAS  Google Scholar 

  • Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophy Biophysical Chem 14: 47–77

    Article  CAS  Google Scholar 

  • Glazer AN, Lundell DJ, Yamanaka G and Williams RC (1983) The structure of a ‘simple’ phycobilisome. Annals Institut Pasteur/Microbiol 134B: 159–180

    Article  Google Scholar 

  • Green BR and Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714

    Article  PubMed  CAS  Google Scholar 

  • Green LS and Grossman AR (1988) Changes in sulfate transport characteristics and protein composition of Anacystis nidulans R2 during sulfur deprivation. J Bacteriol 170: 583–587

    PubMed  CAS  Google Scholar 

  • Green LS, Laudenbach DE and Grossman AR (1989) A region of a cyanobacterial genome required for sulfate transport. Proc Natl Acad Sei USA 86: 1949–1953

    Article  CAS  Google Scholar 

  • Grillo JF and Gibson J (1979) Regulation of phosphate accumulation in the cyanobacterium Synechococcus. J Bacteriol 140: 508–517

    PubMed  CAS  Google Scholar 

  • Grossman AR (1990) Chromatic adaptation and the events involved in phycobilisome biosynthesis. Plant Cell Environ 13: 651–666

    Article  CAS  Google Scholar 

  • Grossman AR and Kehoe DM (1997) Phosphorelay control of phycobilisome biogenesis during complementary chromatic adaptation. Photosynth Res 53: 95–108

    Article  CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG and Collier JL (1993) The phycobilisome: A light harvesting complex responsive to environmental conditions. Microbiol Rev 57: 725–749

    Google Scholar 

  • Grossman AR, Schaefer M, Chiang G and Collier J (1994) The responses of cyanobacteria to environmental conditions: Light and nutrients. In: Bryant D (ed) The Molecular Biology of Cyanobacteria, pp 641–675. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Grossman AR, Bhaya D, Apt KE and Kehoe DM (1995) Light-harvesting complexes in oxygenic photosynthesis: Diversity, control and evolution. Annu Rev Genet 29: 231–287

    Google Scholar 

  • Hall MN and Silhavy TJ (1981) The ompB locus and the regulation of the major outer membrane porin proteins of Escherichia coli K12. J Mol Biol 146: 23–43

    Article  PubMed  CAS  Google Scholar 

  • Haury JF and Bogorad L (1977) Action spectra for phyco-biliprotein synthesis in a chromatically adapting cyanophyte, Fremyella diplosiphon. Plant Physiol 60: 835–839

    Article  PubMed  CAS  Google Scholar 

  • Herbert SK, Fork DC and Malkin S (1990) Photoacoustic measurements in vivo of energy storage by cyclic electron flow in algae and higher plants. Plant Physiol 94: 926–934

    Article  PubMed  CAS  Google Scholar 

  • Hershko A (1988) Ubiquitin-mediated protein degradation. J Biol Chem 263: 15237–15240

    PubMed  CAS  Google Scholar 

  • Hertig C, Li RY, Louarn A-M, Garnerone A-M, David M, Batut J, Kahn D and Boistard P (1989) Rhizobium meliloti regulatory gene fixJ activates transcription of R. meliloti nifA and fixK genes in Escherichia coli. J Bacteriol 171: 1736–1738

    Google Scholar 

  • Hiller RG, Anderson JM and Larkum AWD (1991) The chlorophyll-protein complexes of algae. In: Scheer H (ed) Chlorophylls, pp 529–547. CRC Press, Boca Raton

    Google Scholar 

  • Hofmann E, Wrench PM, Sharpies FP, Hiller RG, Welte W and Diederichs K (1996) Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788–1791

    Article  PubMed  CAS  Google Scholar 

  • Houmard J, Capuano V, Cousin T and Tandeau de Marsac N (1988a) Genes encoding core components of the phycobilisome in the cyanobacterium Calothrix sp. strain 7601. Occurrence of a multigene family. J Bacteriol 170: 5512–552

    Google Scholar 

  • Houmard J, Capuano V, Cousin T and Tandeau de Marsac N (1988b) Isolation and molecular characterization of the gene encoding allophycocyanin B, a terminal energy acceptor in cyanobacterial phycobilisomes. Mol Microbiol 2: 101–107

    Article  PubMed  CAS  Google Scholar 

  • Houmard J, Capuano V, Columbano, Coursin T and Tandeau de Marsac N (1990) Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 87: 2152–2156

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Chang C, Sun Q and Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269: 1712–1714

    Article  PubMed  CAS  Google Scholar 

  • Ishige K, Nagasawa S, Tokishita S-I and Mizuno T (1994) A novel device of bacterial signal transducers. EMBO J 13: 5195–5202

    PubMed  CAS  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll «-binding proteins. Biochim Biophys Acta 1184: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Jeanjean R and Broda E (1977) Dependence of sulfate uptake by Anacystis nidulans on energy, osmotic shock, and on sulfate starvation. Arch Microbiol 114: 19–23

    Article  PubMed  CAS  Google Scholar 

  • Jung LJ, Chan CF and Glazer AN (1995) Candidate genes for the phycoerythrocyanin a subunit lyase. J Biol Chem. 270: 12877–12884

    PubMed  CAS  Google Scholar 

  • Kahn K and Schaefer MR (1997) rpbA controls transcription of the constitutive phycocyanin gene set in Fremyella diplosiphon. J Bacteriol 179: 7695–7704

    Google Scholar 

  • Kahn K and Schaefer MR (1998) Cyanobacterial transposons TN5469 and TN5541 represent a novel noncomposite transposon family. J Bacteriol 180, 6059–6063

    PubMed  Google Scholar 

  • Kahn K, Mazel D, Houmard J, Tandeau de Marsac N and Schaefer MR (1997) A role for CpeYZ in cyanobacterial phycoerythrin biosynthesis. J Bacteriol 179: 998–1006

    PubMed  CAS  Google Scholar 

  • Kehoe DM and Grossman AR (1995) The use of site directed mutagenesis in the analysis of complementary chromatic adaptation. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, pp 501–504. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kehoe DM and Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273: 1409–1412

    Article  PubMed  CAS  Google Scholar 

  • Kehoe DM and Grossman AR (1997) New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system. J Bacteriol 179: 3914–3921

    PubMed  CAS  Google Scholar 

  • Kendrick RE and Kronenberg GHM (eds) (1994). Photo-morphogenesis in Plants, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Keren N and Ohad I (1998) State transition and photoinhibition. In: Rochaix J-D, Goldschmidt-Clermont M and Merchant S (eds) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, pp 569–596. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kim J and Mayfield SP (1997) Protein disulfide isomerase as a regulator of chloroplast translational activation. Science 278: 1954–1957

    Article  PubMed  CAS  Google Scholar 

  • Klose KE, Weiss DS, and Kustu S (1993) Glutamate at the site of phosphorylation of nitrogen-regulatory protein NTRC mimics aspartyl-phosphate and activates the protein. J Mol Biol 232: 67–78

    Article  PubMed  CAS  Google Scholar 

  • LaRoche J, Van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD and Green BR (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93: 15244–15248

    Article  CAS  Google Scholar 

  • Laudenbach DE and Grossman AR (1991) Characterization and mutagenesis of sulfur-regulated genes in a cyanobacterium: Evidence for function in sulfate transport. J Bacteriol 173: 2739–2750

    PubMed  CAS  Google Scholar 

  • Laudenbach DE, Ehrhardt D, Green L, and Grossman AR (1991) Isolation and characterization of a sulfur-regulated gene encoding a periplasmically-localized protein with sequence similarity to rhodanese. J Bacteriol 173: 2751–2760

    PubMed  CAS  Google Scholar 

  • Li H and Sherman LA (2000) A redox-responsive regulator of photosynthesis gene expression in the cyanobacterium Synechocystis sp strain PCC 6803. J Bacteriol 182: 4268–4277

    Article  PubMed  CAS  Google Scholar 

  • Lomax TL, Conley PB, Schilling J and Grossman AR (1987) Isolation and characterization of light-regulated phycobilisome linker polypeptide genes and their transcription as a polycistronic mRNA. J Bacteriol 169: 2675–2684

    PubMed  CAS  Google Scholar 

  • Lukat GS, McCleary WR, Stock AM and Stock JB (1992) Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc Natl Acad Sci. USA 89: 718–722

    Google Scholar 

  • Luque I, Flores E and Herrero A (1994) Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J 13: 2862–2869

    PubMed  CAS  Google Scholar 

  • Luque I, Zàbulon G, Contreras A and Houmard J (2001) Convergence of two global transcriptional regulators on nitrogen induction of the stress-acclimation gene nblA in the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol 41: 937–947

    Article  PubMed  CAS  Google Scholar 

  • Makino K, Shinagawa H, Amemura M and Nakata A (1986) Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia coli K-12. J Mol Biol 190: 37–44

    Article  PubMed  CAS  Google Scholar 

  • Manna P, Nieder RP, Schaefer MR (2000) DNA-binding properties of the Fremyella diplosiphon RpbA repressor. J Bacteriol 182: 51–56

    Article  PubMed  CAS  Google Scholar 

  • Mazel D and Marliere P (1989) Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature 341: 245–248

    Article  PubMed  CAS  Google Scholar 

  • Mazel D, Guglielmi G, Houmard H, Sidler W, Bryant DA and Tandeau de Marsac N (1986) Green light induces transcription of the phycoerythrin operon in the cyanobacterium Calothrix 7601. Nucleic Acids Res 14: 8279–8290

    Article  PubMed  CAS  Google Scholar 

  • Mazel D, Houmard J and Tandeau de Marsac N (1988) A multigene family in Calothrix sp. PCC 7601 encodes phycocyanin, the major component of the cyanobacterial light-harvesting antenna. Mol Gen Genet 211: 296–304

    Article  CAS  Google Scholar 

  • Mettke I, Fiedler U and Weiss V (1995) Mechanism of activation of a response regulator: Interaction of NtrC-P dimers induces ATPase activity. J Bacteriol 177: 5056–5061

    Google Scholar 

  • Mills SD, Jasalavich CA and Cooksey DA (1993) A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. J Bacteriol 175: 1656–1664

    PubMed  CAS  Google Scholar 

  • Nagaya M, Aiba H and Mizuno T (1994) The sphR product, a two-component system response regulator protein, regulates phosphate assimilation in Synechococcus sp. strain PCC 7942 by binding to two sites upstream from the phoA promoter. J Bacteriol 176: 2210–2215

    PubMed  CAS  Google Scholar 

  • Nicholson ML and Laudenbach DE (1995) Genes encoded on a cyanobacterial plasmid are transcriptionally regulated by sulfur availability and CysR. J Bacteriol 177: 2143–2150

    PubMed  CAS  Google Scholar 

  • Nicholson ML, Gaasenbeek M and Laudenbach DE (1995) Two enzymes together capable of cysteine biosynthesis are encoded on a cyanobacterial plasmid. Mol Gen Genet 247: 623–632

    Article  PubMed  CAS  Google Scholar 

  • Oelmiiller R, Conley PB, Federspiel N, Briggs WR and Grossman AR (1988a) Changes in accumulation and synthesis of transcripts encoding phycobilisome components during acclimation of Fremyella diplosiphon to different light qualities. Plant Physiol 88: 1077–1083

    Article  Google Scholar 

  • Oelmiiller R, Grossman AR and Briggs WR (1988b) Photo-reversibility of the effect of red and green light pulses on the accumulation in darkness of mRNAs coding for phycocyanin and phycoerythrin in Fremyella diplosiphon. Plant Physiol 88: 1084–1091

    Article  Google Scholar 

  • Omata T, Andriesse X and Hirano A (1993) Identification and characterization of a gene cluster involved in nitrate transport of the cyanobacterium Synechococcus sp. PCC 7942 Mol. Gen Genet 236: 193–202

    CAS  Google Scholar 

  • Parkinson JS and Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26: 71–112

    Article  PubMed  CAS  Google Scholar 

  • Perego M and Hoch J A (1991) Negative regulation of Bacillus subtilis sporulation by spoOE gene product. J Bacteriol 173: 2514–2520

    PubMed  CAS  Google Scholar 

  • Perego M and Hoch JA (1996) Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genet 12: 97–101

    Article  PubMed  CAS  Google Scholar 

  • Porter G, Tredwell CJ, Searle GFW and Barber J (1978) Picosecond time-resolved energy transfer in Porphyridium cruentum. Part I. In the intact alga. Biochim Biophys Acta 501: 232–245

    Google Scholar 

  • Posas R, Wurgler-Murphy SM, Maeda T, Witten EA, Tha TC and Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1–YPD1–SSK1 ‘two-component’ osmosensor. Cell 86: 865–875

    Article  PubMed  CAS  Google Scholar 

  • Quisel J, Wykoff D and Grossman AR (1996) Biochemical characterization of the extracellular phosphatases produced by phosphorus-deprived Chlamydomonas reinhardtii. Plant Physiol 11: 839–848

    Article  Google Scholar 

  • Ravid S, Matsumura P and Eisenbach, M (1986) Restoration of flagellar clockwise rotation in bacterial envelopes by insertion of the chemotaxis protein CheY. Proc Natl Acad Sci USA 83: 7157–7161

    Article  PubMed  CAS  Google Scholar 

  • Ray JM, Bhaya D, Block MA and Grossman, AR (1991) Translation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. Strain PCC 7942. J Bacteriol 173: 4297–1309

    PubMed  CAS  Google Scholar 

  • Richaud C, Zàbulon G, Joder A, and Thomas J-C (2001) Nitrogen and sulfur starvation differentially affect phycobilisome degradation and expression of the nblA gene in Synechocystis Strain PCC6803. J Bacteriol 183: 2989–2994

    Article  PubMed  CAS  Google Scholar 

  • Rogowsky PM, Close TJ, Chimera JA, Shaw JJ and Kado CI (1987) Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J Bacteriol 169: 5101–5112

    PubMed  CAS  Google Scholar 

  • Sauer J, Gòrl M and Forchhammer K (1999) Nitrogen starvation in Synechococcus PCC 7942: Involvement of glutamine synthetase and NtcA in phycobilisome degradation and survival. Arch Microbiol 172: 247–255

    Article  PubMed  CAS  Google Scholar 

  • Schaefer MR, Chiang GG, Cobley JG and Grossman AR (1993) Plasmids from two morphologically distinct cyanobacterial strains share a novel replication origin. J Bacteriol 175: 5701–5705

    PubMed  CAS  Google Scholar 

  • Schmitt-Goff CM and Federspeil NA (1993) In vivo and in vitro footprinting of a light-regulated promoter in the cyanobacterium Fremyella diplosiphon. J Bacteriol 175: 1806–1813

    Google Scholar 

  • Schwarz R and Grossman AR (1998) A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions. Proc Natl Acad Sci USA 95: 11008–11013

    Article  PubMed  CAS  Google Scholar 

  • Searle GFW, Barber J, Porter G and Tredwell CJ (1978) Picosecond time-resolved energy transfer in Porphyridium cruentum. Part II. In the isolated light-harvesting complex (phycobilisomes). Biochim Biophys Acta 501: 246–256

    Google Scholar 

  • Seib LO and Kehoe DM (2002) A turquoise mutant genetically separates expression of genes encoding phycoerythrin and its associated linker peptides. J Bacteriol 184: 962–970

    Article  PubMed  CAS  Google Scholar 

  • Shattuck-Eidens DM, and Kadner RJ (1983) Molecular cloning of the uhp region and evidence for a positive activator for expression of the hexose phosphate transport system of Escherichia coli. J Bacteriol 155: 1062–1070

    PubMed  CAS  Google Scholar 

  • Sherman DM and Sherman LA (1983) Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans. J Bacteriol 156: 393–401

    PubMed  CAS  Google Scholar 

  • Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant D (ed) The Molecular Biology of Cyanobacteria, pp 139–216. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Sobczyk A, Schyns G, Tandeau de Marsac N and Houmard J (1993) Transduction of the light signal during complementary chromatic adaptation in the cyanobacterium Calothrix sp. PCC 7601: DNA-binding proteins and modulation by phosphorylation. EMBO J 12: 997–1004

    Google Scholar 

  • Sobczyk A, Bely A, Tandeau de Marsac N and Houmard J (1994) A phosphorylated DNA binding protein is specific for the red light signal during complementary chromatic adaptation in cyanobacteria. Mol Microbiol 13: 875–885

    Article  PubMed  CAS  Google Scholar 

  • Stevens SE and Poane DAM (1981) Accumulation of cyanophycin granules as a result of phosphate limitation in Agmenellum quadruplicatum. Plant Physiol 67: 716–719

    Article  PubMed  CAS  Google Scholar 

  • Swanson RV, Zhou J, Leary JA, Williams T, de Lorimier R, Bryant DA and Glazer AN (1992) Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment. J Biol Chem 267: 16146–16154

    PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130: 82–91

    Google Scholar 

  • Tandeau de Marsac N (1983) Phycobilisomes and complementary adaptation in cyanobacteria. Bulletin de L’Institut Pasteur 81: 201–254

    Google Scholar 

  • Tandeau de Marsac N and Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: New steps towards molecular mechanisms. FEMS Microbiology Reviews 104: 119–190

    Article  Google Scholar 

  • Tandeau de Marsac D, Mazel D, Damerval T, Guglielmi G, Capuano V and Houmard J (1988) Photoregulation of gene expression in the filamentous cyanobacterium Calothrix sp. PCC7601. Photosyn. Res 18: 99–132

    Google Scholar 

  • Taylor BL and Zhulin IB (1999) PAS Domains: Internal sensors of oxygen, redox potential, and light. Microbiol Molec Biol Rev 63: 479–506

    CAS  Google Scholar 

  • Uhl MA and Miller JF (1996) Integration of multiple domains in a two-component sensor protein: The Bordetella pertussis BvgAS phosphorelay. EMBO J 15: 1028–1036

    PubMed  CAS  Google Scholar 

  • Utkilen HC, Heldal M and Knutsen G (1976) Characterization of sulfate uptake in Anacystis nidulans Physiol Plant 38: 217–220

    CAS  Google Scholar 

  • van der Staay GWM, Moon-van der Staay SY, Garczarek L and Partensky F (1998) Characterization of the Photosystem-I subunits Psal and PsaL from 2 strains of the marine oxyphoto-trophic prokaryote Prochlorococcus. Photosynth Res 57: 183–191

    Google Scholar 

  • van Waasbergen LG, Dolganov N and Grossman AR (2002) Environmental control depends on PAS domain-bearing sensor protein. J Bacteriol 184: 2481–2490

    Article  PubMed  CAS  Google Scholar 

  • Vega-Palas MA, Flores E and Herrero A (1992) NtcA, a global nitrogen regulator from the cyanobacterium Synechococcus that belongs to the Crp family of bacterial regulators. Mol Microbiol 6: 1853–1859

    Article  PubMed  CAS  Google Scholar 

  • Vogelmann TC and Scheibe J (1978) Action spectrum for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143: 233–239

    Article  CAS  Google Scholar 

  • Wanner BL (1993) Gene regulation by phosphate in enteric bacteria. J Cell Biochem 51: 47–54

    Article  PubMed  CAS  Google Scholar 

  • Wanner BL (1994) Phosphate-regulated genes for the utilization of phosphonates in members of the family Enterobacteriaceae. In: Torriani-Gorini A, Yagil E and Silver S (eds) Phosphate in Microorganisms. Cellular and Molecular Biology, pp 215–222. ASM Press, Washington, DC

    Google Scholar 

  • Wanner BL and Wilmes-Riesenberg MR (1992) Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in the control of the phosphate regulation in an Escherichia coli. J Bacteriol 174: 2124–2130

    PubMed  CAS  Google Scholar 

  • Wanner G, Henkelmann G, Schmidt A and Kost H-P (1986) Nitrogen and sulfur starvation of the cyanobacterium Synechococcus 6301. An ultrastructural, morphometrical, and biochemical comparison. Z Naturforsch 41c: 741–750

    Google Scholar 

  • Wilbanks SM and Glazer AN (1993) Rod Structure of a phycoerythrin-II-containing phycobilisome. 1. Organization and sequence of the gene-cluster encoding the major phycobiliprotein rod components in the genome of marine Synechococcus WH 8020. J Biol Chem 268: 1226–1235

    PubMed  CAS  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Yen H-C, Giovannoni J J and Klee HJ (1995) An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270: 1807–1809

    Article  PubMed  CAS  Google Scholar 

  • Wolfe AJ, Conley P, Kramer TJ and Berg HC (1987) Reconstitution of signaling in bacterial Chemotaxis. J Bacteriol 169: 1878–1885

    PubMed  CAS  Google Scholar 

  • Wood NB and Haselkorn R (1979) Proteinase activity during heterocyst differentiation in nitrogen-fixing cyanobacteria. In: Cohen GN and Holzer H (eds) Limited Proteolysis in Microorganisms, pp 159–166. US DHEW Publication No. (NIH) 79–1591, Bethesda

    Google Scholar 

  • Wood NB and Haselkorn R (1980) Control of phycobiliprotein proteolysis and heterocyst differentiation in Anabaena. J Bacteriol 141: 1375–1385

    PubMed  CAS  Google Scholar 

  • Yamaguchi S, Aizawa S-I, Kihara M, Isomura M, Jones CJ and Macnab RM (1986) Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J Bacteriol 168: 1172–1179

    PubMed  CAS  Google Scholar 

  • Yamanaka G and Glazer AN (1980) Dynamic aspects of phycobilisome structure. Phycobilisome turnover during nitrogen starvation in Synechocoeeus sp. Arch Microbiol 124: 39–7

    Article  CAS  Google Scholar 

  • Yeh KC and Lagarias JC (1998) Eukaryotic phytochromes: Light-regulated serine/threonine protein-kinases with histidine kinase ancestry. Proc Natl Acad Sci 95: 13976–13981

    Article  PubMed  CAS  Google Scholar 

  • Yeh KC, Wu S-H, Murphy JT and Lagarias JC (1997) A cyano-bacterial phytochrome two-component light sensory system. Science 277: 1505–1508

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Gasparich GE, Stirewalt VL deLorimier R and Bryant DA (1992) The epeE and epeF genes of Synechocoeeus sp. PCC 7002. Construction and phenotypic characterization of interposon mutants. J Biol Chem 267: 16138–16145

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grossman, A.R., van Waasbergen, L.G., Kehoe, D. (2003). Environmental Regulation of Phycobilisome Biosynthesis. In: Green, B.R., Parson, W.W. (eds) Light-Harvesting Antennas in Photosynthesis. Advances in Photosynthesis and Respiration, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2087-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2087-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5468-5

  • Online ISBN: 978-94-017-2087-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics