Skip to main content

Abstract

In a recent review of self-incompatibility (SI) in flowering plants, Dickinson (1990) noted that ‘SI in angiosperms is probably the best defined cellular communication system in the plant kingdom. Its genetic basis is now well established, the cells involved are clearly identifiable, the time of interaction is known, and the consequences of the communication are easy to detect’. This statement may be true for the better known examples of SI in which multiple alleles of an incompatibility (S) gene control arrest of self-pollen tubes in the stigmatic or stylar regions. It is not true, however, for an increasing number of species that have been found to have ovarian or ovular arrest (Seavey and Bawa 1986). These systems of ovarian self-incompatibility (OSI) remain poorly defined but, nevertheless are likely to be evolutionarily important (Barrett 1988). The scarcity of attention given to the characterization of OSI systems has occurred in part because they were initially assumed to be uncommon (de Nettancourt 1977), a notion which Seavy and Bawa (1986) pointed out to be erroneous. Although OSI systems have been reported to occur primarily in woody species, incompatible pollen tube arrest within the ovary has now been reported for a number of herbaceous monocotyledonous and dicotyledonous species as well (Seavey and Bawa 1986). Kenrick et al. (1986) noted that the rarity of ovarian incompatibility may have been exaggerated by the preference of investigators for small, short-lived, herbaceous plants for studies of breeding systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen, G.S. (1963) Origin and development of the ovule in douglas-fir. For. Sci. 9: 386–393.

    Google Scholar 

  • Arbeloa, A. and Herrero, M. (1987) The significance of the obturator in the control of pollen tube entry into the ovary in peach (Prunus persica) Ann. Bot. 60: 681–685.

    Google Scholar 

  • Bailey, I.W. and Swamy, B.G.L. (1951) The conduplicate carpel of dicotyledons and its initial trends of specialization. Am. J. Bot. 38: 373–378.

    Google Scholar 

  • Barrett, S.C.H. (1988) The evolution, maintenance, and loss of self-incompatibility systems. In: J. Lovett Doust and L. Lovett Doust (eds.), Plant Reproductive Ecology: Patterns and Strategies, pp. 98–124. Oxford University Press, New York.

    Google Scholar 

  • Bateman, A.J. (1952) Self-incompatibility systems in angiosperms I. Theory. Heredity 6: 285–310.

    Google Scholar 

  • Bateman, A.J. (1956) Cryptic self-incompatibility in the wallflower; Cheiranthus cheiri L. Heredity 10: 257–261.

    Google Scholar 

  • Bawa, K.S., Perry, D.R. and Beach, J.H. (1985) Reproductive biology of tropical lowland rain forest trees. I. Sexual systems and incompatibility mechanisms. Am. J. Bot. 72: 331–345.

    Google Scholar 

  • Beach, J.H. and Kress, W.J. (1980) Sporophyte versus gametophyte: A note on the origin of selfincompatibility in flowering plants. Syst. Bot. 5: 1–5.

    Google Scholar 

  • Beardsell, D.V. (1991) The reproductive biology of Thryptomene calycina (Lindl.) Stapf. Ph.D. dissertation, University of Melbourne, Australia.

    Google Scholar 

  • Bernhardt, P. and Thien, L.B. (1987) Self-isolation and insect pollination in the primitive angiosperms: a new evaluation of older hypotheses. Pl. Syst. Evol. 156: 159–176.

    Google Scholar 

  • Bertin, R.I. and Sullivan, M. (1988) Pollen interference and cryptic self-fertility in Campsis radicans. Am. J. Bot. 75: 1140–1147.

    Google Scholar 

  • Bertin, R.I., Barnes, C. and Guttman, S.I. (1989) Self-sterility and cryptic self-fertility in Campsis radicans (Bignoniaceae). Bot. Gaz. 150: 397–403.

    Google Scholar 

  • Boesewinkel, D. and Been, W. (1979) Development of ovule and testa of Geranium pratense L. and some other representatives of the Geraniaceae. Acta Bot. Neerl. 28: 335–348.

    Google Scholar 

  • Bowman, R. (1987) Cryptic self-incompatibility and the breeding system of Clarkia unguiculata (Onagraceae). Am. J. Bot. 74: 471–476.

    Google Scholar 

  • Brandham, P.E. and Owens, S.J. (1978) The genetic control of self-incompatibility in the genus Gasteria ( Liliaceae ). Heredity 40: 165–169.

    Google Scholar 

  • Brewbaker, J.L. (1957) Pollen cytology and self-incompatibility systems in plants. J. Hered. 48: 217–277.

    Google Scholar 

  • Brewbaker, J.L. and Gorrez, D.D. (1967) Genetics of self-incompatibility in the monocot genera Ananas (pineapple) and Gasteria. Am. J. Bot. 54: 611–616.

    Google Scholar 

  • Broyles, S.B. and Wyatt, R. (1993) The consequences of self-pollination in Asclepias exaltata, a self-incompatible milkweed. Am. J. Bot. 80: 41–44.

    Google Scholar 

  • Camp, W.H. and Hubbard, M.M. (1963) On the origins of the ovule and cupule in Lyginopterid pteridosperms. Am. J. Bot. 50: 235–243.

    Google Scholar 

  • Chao, C.Y. (1971) A periodic acid-Schiff’s substance related to the directional growth of pollen tube into embryo sac in Paspalum ovules. Am. J. Bot. 58: 649–654.

    Google Scholar 

  • Charlesworth, D. (1985) Distribution of dioecy and self-incompatibility in angiosperms. In: P.J. Greenwood and M. Slatkin (eds.), Evolution: Essays in Honour of John Maynard Smith, pp. 237–268. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Clarke, A.E., Considine, J.A., Ward, R. and Knox, R.B. (1977) Mechanism of pollination in Gladiolus: roles of stigma and pollen-tube guide. Ann. Bot. 41: 15–20.

    Google Scholar 

  • Cope, F.W. (1962) The mechanism of pollen incompatibility in Theobroma cacao L. Heredity 17: 157–182.

    Google Scholar 

  • Cornish, E.C., Pettitt, J.M., Bonig, I. and Clarke, A.E. (1987) Developmentally-controlled expression of a gene associated with self-incompatibility in Nicotiana alata. Nature 326: 99–102.

    CAS  Google Scholar 

  • Cornish, E.C., Anderson, M.A. and Clarke, A.E. (1988) Molecular aspects of fertilization in flowering plants. Ann. Rev. Cell Biol. 4: 209–228.

    CAS  Google Scholar 

  • Davis, G.L. (1966) Systematic Embryology of the Angiosperms. John Wiley and Sons, New York, 528 pp.

    Google Scholar 

  • de Nettancourt, D. (1977) Incompatibility in Angiosperms. Springer-Verlag, New York, 230 pp.

    Google Scholar 

  • Dickinson, H.G. (1990) Self-incompatibility in flowering plants. Bioessays 12: 155–161.

    Google Scholar 

  • Dickinson, T.A. and Phipps, J.B. (1986) Studies in Crateagus (Rosaceae: Maloideae) XIV. The breeding system of Crataegus crus-galli sensu lato in Ontario. Am. J. Bot. 73: 116–130.

    Google Scholar 

  • Dilcher, D. (1979) Early angiosperm reproduction: An introductory report. Rev. Paleobot. Palynol. 27: 291–328.

    Google Scholar 

  • Dobrofsky, S. and Grant, W.F. (1979) Elecrophoretic evidence supporting self-incompatibility in Lotus corniculatus. Can. J. Bot. 58: 712–716.

    Google Scholar 

  • Doyle, J. (1945) Developmental lines in pollination mechanisms in the Coniferales. Sci. Proc. R. Dublin Soc. 24: 43–62.

    Google Scholar 

  • Doyle, J.A. (1978) Origin of angiosperms. Ann. Rev. Ecol. Syst. 9: 365–392.

    Google Scholar 

  • Doyle, J.A. and Donoghue, M.J. (1986) Seed plant phylogeny and the origin of angiosperms; an experimental cladistic approach. Bot. Rev. 52: 321–431.

    Google Scholar 

  • Doyle, J.A., Donoghue, M.J. and Zimmer, E.A. (1994) Integration of morphological and rRNA data on the origin of angiosperms. Ann. Miss. Bot. Gar. (in press).

    Google Scholar 

  • Dulberger, R. (1964) Flower dimorphism and self-incompatibility in Narcissus tazetta L. Evolution 18: 361–363.

    Google Scholar 

  • East, E.M. (1940) The distribution of self-sterility in flowering plants. Proc. Am. Phil. Soc. 82: 449–518.

    Google Scholar 

  • Endress, P.K. (1980a) The reproductive structures and systematic position of the Austrobaileyaceae. Bot. Jahrb. Syst. 101: 393–433.

    Google Scholar 

  • Endress, P.K. (1980b) Ontogeny, function and evolution of extreme floral construction in Monimiaceae. Pl. Syst. Evol. 134: 79–120.

    Google Scholar 

  • Endress, P.K. (1986) Reproductive structures and phylogenetic significance of extant primitive angiosperms. Pl. Syst. Evol. 152: 1–28.

    Google Scholar 

  • Endress, P.K. (1987) The Chloranthaceae; reproductive structures and phylogenetic position. Bot. Jahrb. Syst. 109: 153–226.

    Google Scholar 

  • Endress, P.K. (1990) Evolution of reproductive structures and functions in primitive angiosperms (Magnoliidae). Mem. of the New York Bot. Garden 55: 5–34.

    Google Scholar 

  • Franssen-Verheijen, M.A.W. and Willemse, M.T.M. (1993) Micropylar exudate in Gasteria (Aloaceae) and its possible function in pollen tube growth. Am. J. Bot. 80: 253–262.

    Google Scholar 

  • Friis, E.M. and Crepet, W.L. (1987) Time of appearance of floral features. In: E.M. Friis, W.G. Chaloner and P.R. Crane (eds.), The Origin of Angiosperms and Their Biological Consequences, pp. 145–179. Cambridge University Press, New York.

    Google Scholar 

  • Gibbs, P.E. (1986) Do homomorphic and heteromorphic self-incompatibility systems have the same sporophytic mechanisms? Pl. Syst. Evol. 154: 285–323.

    Google Scholar 

  • Gibbs, P.E. (1991) The `Zavada hypothesis’: a rebuttal rebutted. Taxon. 40: 583–595.

    Google Scholar 

  • Gibbs, P.E. and Bianchi, M. (1993) Post-pollination events in species of Chorisia (Bombacaceae) and Tabebuia ( Bignoniaceae) with late-acting self-incompatibility Bot. Acta 106: 64–71.

    Google Scholar 

  • Gibbs, P.E. and Ferguson, I.K. (1987) Correlations between pollen exine sculpturing and angiosperm self-incompatibility systems — a reply. Pl. Syst. Evol. 157: 143–159.

    Google Scholar 

  • Godley, E.J. and Smith, D.H:(1981) Breeding systems in New Zealand plants 5. Pseudowintera colorata (Winteraceae). N. Z. J. Bot. 19: 151–156.

    Google Scholar 

  • Gottsberger, G. (1988) The reproductive biology of primitive angiosperms. Taxon. 37: 630–643.

    Google Scholar 

  • Haines, R.J., Prakish, N. and Nikles, D.G. (1984) Pollination in Araucaria Juss. Aust. J. Bot. 32: 583–594.

    Google Scholar 

  • Hamby, R.K. and Zimmer, E.A. (1992) Ribosomal RNA as a phylogenetic tool in plant systematics. In: P.S. Soltis, D.E. Soltis and J.J. Doyle (eds.), Molecular Systematics of Plants, pp. 50–91. Chapman and Hall, New York.

    Google Scholar 

  • Haring, V., Gray, J.E., McClure, B.A., Anderson, M.A. and Clarke, A.E. (1990) Self-incompatibility: a self recognition system in plants. Science 250: 937–941.

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison, Y., Heslop-Harrison, J. and Reger, B.J. (1985) The pollen-stigma interaction in the grasses. 7. Pollen-tube guidance and the regulation of tube number in Zea mays L. Acta Bot. Neerl. 34: 193–211.

    Google Scholar 

  • Hessing, M.B. (1989) Differential pollen tube success in Geranium caespitosum. Bot. Gaz. 150: 404–410.

    Google Scholar 

  • Hill, J.P. and Lord, E.M. (1987) Dynamics of pollen tube growth in the wild radish Raphanus raphanistrum (Brassicaceae). II. Morphology, cytochemistry and ultrastructure of transmitting tissues, and path of pollen tube growth. Am. J. Bot. 74: 988–997.

    Google Scholar 

  • Jackson, J.F. and Linskens, H.F. (1990) Bioassays for incompatibility. Sex. Plant Reprod. 3: 207–212.

    Google Scholar 

  • Kaul, V,. Rouse, J.L. and Williams, E.G. (1986) Early events in the embryo sac after intraspecific and interspecific pollinations in Rhododendron kawakamii and R. retusum. Can. J. Bot. 64: 282–291.

    Google Scholar 

  • Kenrick, J., Kaul, V. and Williams, E.G. (1986) Self-incompatibility in Acacia retinodes: Site of pollen-tube arrest is the nucellus. Planta 169: 245–250.

    Google Scholar 

  • Klekowski, E.J., Jr. (1988) Mutation, Developmental Selection, and Plant Evolution. Columbia University Press, New York.

    Google Scholar 

  • Klekowski, E.J., Jr. and Godfrey, P.J. (1989) Ageing and mutation in plants. Nature 340: 389–391.

    Google Scholar 

  • Knox, R.B. and Kenrick, J. (1983) Polyad function in relation to the breeding system of Acacia. In: D. Mulcahy and E. Ottoviano (eds.), Pollen: Biology and Implications for Plant Breeding, pp. 411–417, Elsevier, New York.

    Google Scholar 

  • Knox, R.B., Williams, E.G. and Dumas, C. (1986) Pollen, pistil, and reproductive function in crop plants. Plant Breeding Rev. 4: 9–73.

    Google Scholar 

  • Kostoff, D. (1930) Ontogeny, genetics, and cytology of Nicotiana hybrids. Genetica 12: 33–139.

    Google Scholar 

  • Krebs, S.L. and Hancock, J.F. (1991) Embryonic genetic load in the highbush blueberry, Vaccinium corymbosum (Ericaceae). Am. J. Bot. 78: 1427–1437.

    Google Scholar 

  • Levin, D.A. (1984) Inbreeding depression and proximity-dependent crossing success in Phlox drummondii. Evolution 38: 116–127.

    Google Scholar 

  • Lloyd, D.G. and Wells, M.S. (1992) Reproductive biology of a primitive angiosperm, Pseudowintera colora ta (Winteraceae) and the evolution of pollination systems in the Anthophyta. Pl. Syst. Evol. 181: 77–95.

    Google Scholar 

  • Lord, E.M. and Kohorn, L.U. (1986) Gynoecial development, pollination, and the path of pollen tube growth in the tepary bean, Phaseolus acutifolius. Am. J. Bot. 73: 70–78.

    Google Scholar 

  • Lundqvist, A. (1964) The nature of the two-loci incompatibility system in grasses. IV. Interaction between the loci in relation to pseudo-compatibility in Festuca pratensis Huds. Hereditas 52: 221–234.

    Google Scholar 

  • Manasse, R.S. and Pinney, K. (1991) Limits to reproductive success in a partially self-incompatible herb: fecundity depression at serial life cycle stages. Evolution 45: 712–720.

    Google Scholar 

  • Martin, F.W. and Ortiz, S. (1967) Anatomy of the stigma and style of sweet potato. New Phytol. 66: 109–113.

    Google Scholar 

  • McKay, J.W. (1942) Self-sterility in the chinese chestnut (Castanea mollissima). Am. Soc. Hort. Sci. 41: 156–160.

    Google Scholar 

  • Mulcahy, D.L. (ed.) (1975) Gamete Competition in Plants and Animals. North-Holland Publ., Amsterdam.

    Google Scholar 

  • Oliveira, P.E., Gibbs, P.E., Barbosa, A.A. and Talavera, S. (1992) Contrasting breeding systems in two Eriotheca (Bombacaceae) species of the Brazilian cerrados. Pl. Syst. Evol. 179: 207–219.

    Google Scholar 

  • Olson, A.R. (1991) Gynoecial pathway for pollen tube growth in the genus Monotropa. Bot. Gaz. 152: 154–163.

    Google Scholar 

  • Owens, J.N. and Blake, M.D. (1984) The pollination mechanism of Sitka spruce (Picea sitchensis). Can. J. Bot. 62: 1136–1148.

    Google Scholar 

  • Owens, J.N., Simpson, S.J. and Caron, G.E. (1987) The pollination mechanism in Engelmann spruce (Picea engelmanni). Can. J. Bot. 65: 1439–1450.

    Google Scholar 

  • Palser, B.F., Rouse, J.L. and Williams, E.G. (1992) A scanning electron microscopic study of the pollen tube pathway in pistils of Rhododendron. Can. J. Bot. 70: 1039–1060.

    Google Scholar 

  • Pandey, K.K. (1958). Time of S-allele action. Nature 181: 1220–1221.

    PubMed  CAS  Google Scholar 

  • Peck, C.J. and Lersten, N.R. (1991) Gynoecial ontogeny and morphology, and pollen tube pathway in black maple Acer saccharum ssp. nigrum (Aceraceae). Am. J. Bot. 78: 247–259.

    Google Scholar 

  • Reger, B.J., Chaubal, R. and Pressey, R. (1992) Chemotropic responses by pearl millet pollen tubes. Sex. Plant Reprod. 5: 47–56.

    Google Scholar 

  • Sage, T.L. and Williams, E.G. (1991) Self-incompatibility in Asclepias. Plant Cell Incompat. Newsl. 23: 55–57.

    Google Scholar 

  • Sage, T.L. and Williams, E.G. (1993) Structure, ultrastructure and histochemistry of the pollen tube pathway in the milkweed Asclepias exalta. Sex Plant Reprod. (in press).

    Google Scholar 

  • Schmitt, D. and Perry, T.O. (1964) Self-sterility in sweetgum. For. Sci. 10: 302–305.

    Google Scholar 

  • Schou, O. and Philipp, M. (1983) An unusual heteromorphic incompatibility system. II. Pollen tube growth and seed sets following compatible and incompatible crossings within Anchusa officinalis L. (Boraginaceae) In: D.L. Mulcahy and E. Ottaviano (eds.), Pollen: Biology and Implications for Plant Breeding, pp. 219–227. Elsevier Science Publishing, Inc., New York, 446 pp.

    Google Scholar 

  • Scribailo, R.W. and Barrett, S.C.H. (1991) Pollen-pistil interactions in tristylous Pontederia sagittata (Pontederiaceae). II. Patterns of pollen tube growth. Am. J. Bot. 78: 1662–1682.

    Google Scholar 

  • Sears, E.R. (1937) Self-sterility in plants. Genetics 22: 130–181.

    PubMed  CAS  Google Scholar 

  • Seavey, S.R. and Bawa, K.S. (1986) Late-acting self-incompatibility in angiosperms. Bot. Rev. 52: 195–218.

    Google Scholar 

  • Sedgley, M. and Scholefield, P.B. (1980) Stigma secretion in the watermelon before and after pollination. Bot. Gaz. 141: 428–434.

    Google Scholar 

  • Sparrow, I.K. and Pearson, N.L. (1948) Pollen compatibility in Asclepias syriaca. J. Agric. Res. 77: 187–199.

    Google Scholar 

  • Sterling, C. (1964) Comparative morphology of the carpel in the Rosaceae. I. Prunoideae: Prunus. Am. J. Bot. 51: 36–44.

    Google Scholar 

  • Swamy, B.G.L. (1949) Further contributions to the morphology of the Degeneriaceae. J. Arnold Arboretum 15: 10–38.

    Google Scholar 

  • Taroda, N. and Gibbs, P.E. (1982) Floral biology and breeding system of Sterculia chicha St. Hil. ( Sterculiaceae ). New Phytol. 90: 735–743.

    Google Scholar 

  • Taylor, T.N. and Millay, M.A. (1979) Pollination biology and reproduction in early seed plants. Rev. Paleobot. Palynol. 27: 329–355.

    Google Scholar 

  • Thien, L.B. (1980) Patterns of pollination in the primitive angiosperms. Biotropica 12: 1–13.

    Google Scholar 

  • Thien, L.B., White, D.A. and Yatsu, L.Y. (1983) The reproductive biology of a relict - Illicium floridanum Ellis. Am. J. Bot. 70: 719–727.

    Google Scholar 

  • Thomas, H.H. (1934) The nature and origin of the stigma. New Phytol. 33: 173–198.

    Google Scholar 

  • Tilton, V. (1980) The nucellar epidermis and micropyle of Ornithogalum caudatum (Liliaceae) with a review of these structures in other taxa. Can. J. Bot. 58: 1872–1884.

    Google Scholar 

  • Tilton, V.R. and Homer, H.T. (1980) Stigma, style, and obturator of Ornithogalum caudatum (Liliaceae) and their function in the reproductive process. Am. J. Bot. 67: 1113–1131.

    Google Scholar 

  • Tilton, V.R. and Lersten, N.R. (1982) An annotated bibliography and subject index on female reproductive anatomy and fertilization in angiosperms. Proc. Iowa Acad. Sci. 89: 23–43.

    Google Scholar 

  • Tilton, V.R., Wilcox, L.W. Palmer, R.G. and Albertsen, M.C. (1984) Stigma, style, and obturator of soybean, Glycine max (L.) Merr. (Leguminosae) and their function in the reproductive process. Am. J. Bot. 71: 676–686.

    Google Scholar 

  • Vasil, I.K. and Johri, M.M. (1964) The style, stigma and pollen tube–I. Phytomorphology 14: 352–369.

    Google Scholar 

  • Visser, T. and Marcucci, M.C. (1984) The interaction between compatible and self-incompatible pollen of apple and pear as influenced by their ratio in the pollen cloud. Euphytica 33: 699–704.

    Google Scholar 

  • Waser, N.M. and Price, M.V. (1991) Reproductive costs of self pollination in Ipomopsis aggregate (Polemoniaceae): are ovules usurped ? Am. J. Bot. 78: 1036–1043.

    Google Scholar 

  • Webb, M.C. and Williams, E.G. (1988) The pollen tube pathway in the pistil of Lycopersicon peruvianum. Ann. Bot. 61: 415–423.

    Google Scholar 

  • Welk, S.M., Millington, W.F. and Rosen, W.G. (1965) Chemotropic activity and the pathway of the pollen tube in lily. Am. J. Bot. 52: 774–781.

    Google Scholar 

  • Weller, S.G. and Ornduff, R. (1991) Pollen tube growth and inbreeding depression in Amsinckia grandis fora (Boraginaceae). Am. J. Bot. 78: 801–804.

    Google Scholar 

  • Whitehouse, H.L.K. (1950) Multiple-allomorph incompatibility of pollen and style in the evolution of angiosperms. Ann. Bot. 14: 198–216.

    Google Scholar 

  • Wiens, D., Calvin, C.L., Wilson, C.A., Davern, C.I., Frank, D. and Seavey, S.R. (1987) Reproductive success, spontaneous embryo abortion, and genetic load in flowering plants. Oecologia 71: 501–509.

    Google Scholar 

  • Willemse, M.T.M. and Franssen-Verheijen, M.A.W. (1986) Stylar development in the open flower of Gasteria verrucosa (Mill) H. Duval. Acta Bot. Neerl. 35: 297–309.

    Google Scholar 

  • Williams, E.G. and Knox, R.B. (1982) Quantitative analysis of pollen tube growth in Lycopersicon peruvianum. J. Palynol. 18: 65–74.

    Google Scholar 

  • Williams, E.G., Kaul, V., Rouse, J.L. and Knox, R.B. (1984) Apparent self-incompatibility in Rhododendron ellipticum, R. championae, and R. amamiense: a post-zygotic mechanism. Incompat. Newsl. 16: 10–11.

    Google Scholar 

  • Willson, M.F. and Burley, N. (1983) Mate Choice in Plants. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Wojciechowska, B. (1963) Embryological studies in the genus Lotus. Part I. Fertilization and seed development following open-and self-pollination of Lotus corniculatus L. Genetica Polonica 4: 53–63.

    Google Scholar 

  • Zavada, M.S. (1984) The relation between pollen exine sculpturing and self-incompatibility mechanisms. Pl. Syst. Evol. 147: 63–78.

    Google Scholar 

  • Zavada, M.S. (1990) Correlations between pollen exine sculpturing and angiosperm self-incompatibility systems–a rebuttal. Taxon. 39: 442–447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sage, T.L., Bertin, R.I., Williams, E.G. (1994). Ovarian and other late-acting self-incompatibility systems. In: Williams, E.G., Clarke, A.E., Knox, R.B. (eds) Genetic control of self-incompatibility and reproductive development in flowering plants. Advances in Cellular and Molecular Biology of Plants, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1669-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1669-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4340-5

  • Online ISBN: 978-94-017-1669-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics