Skip to main content
  • 96 Accesses

Abstract

Traditional pharmacokinetic/pharmacodynamic (PK/PD) modelling is based on a concept introduced by Segre1 more than thirty years ago: the concentration in the plasma compartment, C(t), of a mammillary compartmental model is linked to the time course of the pharmacological effect, E(t), via a simple first order delay (time constant τ = 1/k eo) determining a hypothetical concentration-time curve at the effect site [biophase level, C B (t)] and a static, nonlinear C B (t) -effect relationship (figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Segre C: Kinetics of interaction between drugs and biological systems. II Farmaco 1968;23:907–18

    CAS  Google Scholar 

  2. Modi NB, Veng-Pedersen P: Validation of a variable direction hysteresis minimization pharmacodynamic approach: Cardiovascular effects of alfentanil. Pharm Res 1994; 11: 128–35

    Article  PubMed  CAS  Google Scholar 

  3. Schwilden H, Schüttler J: Model-based adaptive control of volatile anesthetics by quantitative EEG, Control and Automation in Anaesthesia. Edited by H Schwilden, H Stoeckel. Berlin Heidelberg, Springer, 1995, pp 163–74

    Chapter  Google Scholar 

  4. Ducharme J, Varin F, Bevan DR, Donati F: Importance of early blood sampling on vecuronium pharmacokinetic and pharmacodynamic parameters. Clin Pharmacoki-net 1993; 24:507–18

    Article  CAS  Google Scholar 

  5. Weiss M, Hübner GH, Hübner Gl, Teichmann W: Effects of cardiac output on disposition kinetics of sorbitol: recirculatory modelling. Br J Clin Pharmacol 1996; 41:261–8

    Article  PubMed  CAS  Google Scholar 

  6. Stanski DR, Hudson RJ, Homer TD, Saidman LJ, Meathe E: Pharmacodynamic modeling of thiopental anesthesia. J Pharmacokin Biopharm 1984; 12:223–40

    Article  CAS  Google Scholar 

  7. Tuk B, Danhof M, Mandema JW: The impact of arteriovenous concentration differences on pharmacodynamic parameter estimates. J Pharmacokin Biopharm 1997; 25:39–62

    Article  CAS  Google Scholar 

  8. Cobelli C, Carson ER, Finkelstein L, Leaning MS: Validation of simple and complex models in physiology and medicine. Am J Physiol 1984; 246.R259-R66

    PubMed  CAS  Google Scholar 

  9. Björkman S, Wada DR, Stanski DR, Ebling WF: Comparative physiological pharmacokinetics of fentanyl and alfentanil in rats and humans based on parametric single-tissue models. J Pharmacokin Biopharm 1994; 22:381–410

    Article  Google Scholar 

  10. Ebling WF, Wada DR, Stanski DR: From piecewise to full physiologic pharmacokinetic modeling: Applied to thiopental disposition in the rat. J Pharmacokin Biopharm 1994;22:259–92

    Article  CAS  Google Scholar 

  11. Wada DR, Björkman S, Ebling WF, Harashima H, Harapat SR, Stanski DR: Computer simulation of the effects of alterations in blood flows and body composition on thiopental pharmacokinetics in humans. Anesthesiology 1997; 87:884–99

    Article  PubMed  CAS  Google Scholar 

  12. Björkman S, Wada DR, Stanski DR: Application of physiologic models to predict the influence of changes in body composition and blood flows on the pharmacokinetics of fentanyl and alfentanil in patients. Anesthesiology 1998; 88:657–67

    Article  PubMed  Google Scholar 

  13. Weiss M, Roberts MS: Tissue distribution kinetics as determinant of transit time dispersion of drugs in organs: application of a stochastic model to the rat hindlimb. J. Pharmacokin. Biopharm. 1996; 24:173–96

    Article  CAS  Google Scholar 

  14. Weiss M, Koester A, Wu Z.-Y, Roberts MS: Distribution kinetics of diazepam, lidocaine and antipyrine in the isolated perfused rat hindlimb. Pharm Res 1997a; 14:1640–3

    Article  CAS  Google Scholar 

  15. Boer F, Hoeft A, Scholz M, Bovill JG, Burm AGL, Hak A:. Pulmonary distribution of alfentanil and sufentanil studied with system dynamics analysis. J Pharmacokin Bio-pharm 1996;24:197–218

    Article  CAS  Google Scholar 

  16. Weiss M, Geschke D: Estimation and model selection in pharmacokinetics: the effect of model misspecification, Modelling and Control in Biomedical Systems. Edited by DA Linkens, E Carson, Elsevier, 1997, pp 123–27

    Google Scholar 

  17. Weiss M: The relevance of residence time theory to pharmacokinetics. Eur J Clin Pharmacol 1992;43:571–9

    Article  PubMed  CAS  Google Scholar 

  18. Weiss M, Förster W: Pharmacokinetic model based on circulatory transport. Eur J Clin Pharmacol 1979; 16:287–93

    Article  Google Scholar 

  19. Cutler DJ: A linear recirculation model for drug disposition. J Pharmacokin Biopharm 1979;7:101–16

    Article  CAS  Google Scholar 

  20. Weiss M, Ring A: Interpretation of general measures of distribution kinetics in terms of a mammillary compartmental model. J Pharm Sci 1997; 86: 1491–93

    Article  PubMed  CAS  Google Scholar 

  21. Henthorn TK, Krejcie TC, Avram MJ: The relationship between alfentanil distribution kinetics and cardiac output. Clin Pharmacol Ther 1992; 52:190–6

    Article  PubMed  CAS  Google Scholar 

  22. Weiss M, Sziegoleit W, Hübner GI: Effects of hemodynamics in the pharmacokinetics of sorbitol in healthy volunteers: Recirculatory vs. compartmental modeling. Eur J Pharm Sci 1999;8:A149

    Google Scholar 

  23. Wada DR, Ward DS: The hybrid model: A new pharmacokinetic model for computer-controlled infusion pumps. IEEE Trans Biomed Eng 1994; 41:134–42

    Article  PubMed  CAS  Google Scholar 

  24. Krejcie TC, Henthorn TK, Niemann CU, Klein C, Gupta DK, Gentry WB, Shanks CA, Avram MJ: Recirculatory pharmacokinetic models of markers of blood, extracellular fluid and total body water administered concomitantly. J Pharmacol Exp Ther 1996; 278:1050–57

    PubMed  CAS  Google Scholar 

  25. Avram MJ, Krejcie TC, Niemann CU, Klein C, Gentry WB, Shanks CA, Henthorn TK. The effect of halothane on the recirculatory pharmacokinetics of physiologic markers. Anesthesiology 1997; 87:1381–93

    Article  PubMed  CAS  Google Scholar 

  26. Kuipers JA, Boer F, Olofson E, Olieman W, Vletter AA, Burm AGL, Bovill JG: Recirculatory and compartmental pharmacokinetic modeling of alfentanil in pigs. Anesthesiology 1999; 90:1146–57

    Article  PubMed  CAS  Google Scholar 

  27. Weiss M: Errors in clearance estimation after bolus injection and arterial sampling: nonexistence of a central compartment. J Pharmacokin Biopharm 1997; 25: 255–60

    Article  CAS  Google Scholar 

  28. Upton RN, Ludbrook GL: A physiological model of induction of anaesthesia with propofol in sheep. 1. Structure and estimation of variables. Br J Anaesthesia 1997; 79:497–504

    Article  CAS  Google Scholar 

  29. Upton RN, Ludbrook GL, Grant C, Gray EC: In vivo relationships between the cerebral pharmacokinetics and pharmacodynamics of thiopentone in sheep after short-term administration. J Pharmacokin Biopharm 1996; 24:1–18

    Article  CAS  Google Scholar 

  30. Wada DR, Harashima H, Ebling WF, Osaki EW, Stanski DR: Effects of thiopental on regional blood flows in the rat. Anesthesiology 1996; 84:596–604

    Article  PubMed  CAS  Google Scholar 

  31. Wood M: Pharmacokinetic drug interactions in anaesthetic practice. Clin Pharmacokinet 1991; 21:285–307

    Article  PubMed  CAS  Google Scholar 

  32. Weiss M: A novel input function for the assessment of drug absorption in bioavailability studies. Pharm Res 1996; 13:1545–51

    Article  Google Scholar 

  33. Weiss M: Analysis of metabolite formation pharmacokinetics after intravenous and oral administration of the parent drug using inverse Laplace transformation. Drug Metab Disp 1998;26:562–65

    CAS  Google Scholar 

  34. Loetsch J, Weiss M, Kobal G, Geisslinger G: Pharmacokinetics of morphine-6-glu-coronide and its formation from morphine after intravenous administration. Clin Pharmacol Ther 1998; 63:629–39

    Article  Google Scholar 

  35. Lötsch J, Weiss M, Ahne G, Kobal G, Geisslinger G: Pharmacokinetic modeling of M6G formation after oral administration of morphine in healthy volunteers. Anesthesiology 1999; 90:1026–38

    Article  PubMed  Google Scholar 

  36. Ouellet DM-C, Pollack GM: A pharmacokinetic-pharmacodynamic model of tolerance to morphine analgesia during infusion in rats. J Pharmacokin Biopharm 1995; 23:531–49

    Article  CAS  Google Scholar 

  37. Mandema JW, Wada DR: Pharmacodynamic model for acute tolerance development to the electroencephalographic effects of alfentanil in the rat. J Pharmacol Exp Ther 1995;275:1185–94

    PubMed  CAS  Google Scholar 

  38. Dutta S, Matsumoto Y, Ebling WF: Is it possible to estimate the parameters of the sigmoid E max model with truncated data typical of clinical studies? J Pharm Sci 1996; 85:232–39

    Article  PubMed  CAS  Google Scholar 

  39. Zhu Y, Audibert G, Donati F, Varin F: Pharmacokinetic-pharmacodynamic modeling of doxacurium: effect of input rate. J Pharmacokin Biopharm 1997: 25:23–37

    Article  CAS  Google Scholar 

  40. Jusko WJ, Ko HC: Physiologic response models characterize diverse types of pharmacodynamic effects. Clin Pharmacol Ther 1994; 56:406–19

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weiss, M. (2000). Physiological Modelling and the Effect Site. In: Vuyk, J., Engbers, F., Groen-Mulder, S. (eds) On the Study and Practice of Intravenous Anaesthesia. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9604-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9604-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5366-4

  • Online ISBN: 978-94-015-9604-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics