Skip to main content

Surfactant-Enhanced Bioremediation

A Review of the Effects of Surfactants on the Bioavailability of Hydrophobic Organic Chemicals in Soils

  • Chapter
Bioavailability of Organic Xenobiotics in the Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 64))

Abstract

Hydrophobic organic chemicals (HOCs) often exhibit limited bioavailability to microorganisms and can persist in the subsurface for long periods of time. The use of surfactants has been proposed to enhance the effectiveness of both in-situ bioremediation and ex-situ slurry-reactor bioremediation by increasing HOC bioavailability. However, the fate of HOCs in response to surfactant addition at both the laboratory and field scale is difficult to predict; in some cases, surfactants sometimes even inhibit HOC biodegradation. The objective of this review is to identify factors that influence the effectiveness of surfactant-enhanced bioremediation (SEB) of soils contaminated with HOCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huesemann, M.H. (1997) Incomplete hydrocarbon biodegradation in contaminated soils: limitations in bioavailability or inherent recalcitrance? Bioreniedicrtion Journal, 1, 27–39.

    Article  CAS  Google Scholar 

  2. Mihelcic, J.R., Lueking, D.R., Mitzel, R. and Stapleton, J.M. (1993) Bioavailability of sorbed-and separate-phase organic chemicals. Biodegradation, 4, 141–153.

    Article  CAS  Google Scholar 

  3. Rouse, J.D., Sabatini, D.A., Suflita, J.M. and Harwell, J.H. (1994) Influence of surfactants on microbial degradation of organic compounds. Crit. Rev. Environ. Sei. Technol. 24, 325–370.

    Article  CAS  Google Scholar 

  4. Bouwer, E.J., Zhang, W., Wilson, L.P. and Durant, N.D. (1997) Biodegradation of coal tar constituents in aquifer sediments, in H. Rubin, N. Narkis and J. Carberry (eds.), Soil and Aquifer Pollution: Non-Aqueous Phase Liquids Contamination and Reclamation, Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  5. Guerin, W.F. and Boyd, S.A. (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl. Environ. Microbiol. 58, 1 142–1 152.

    Google Scholar 

  6. Miller, M.E. and Alexander, M. (1991) Kinetics of bacterial degradation of benzylamine in a montmorillonite suspension. Environ. Sci. Technol. 25, 240–245.

    Article  CAS  Google Scholar 

  7. Mihelcic,.I.R. and Luthy, R.G. (1991) Sorption and microbial degradation of naphthalene in soil-water systems under denitrification conditions. Environ. Sei. Technol. 25, 169–177.

    Article  Google Scholar 

  8. Scow, K.M. and Hudson, J. (1992) Effect of diffusion and sorption on the kinetics of biodegradation: theoretical considerations. Soil Sci. Soc. Am. J. 56, 119–127.

    CAS  Google Scholar 

  9. Scow, K.M. and Alexander, M. (1992) Effect of diffusion on the kinetics of biodegradation: experimental results with synthetic aggregates. Soil Sei. Soc. Am. J. 56, 128–134.

    Article  CAS  Google Scholar 

  10. Guha, S. and Jaffe, P.R. (1997) Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants. Environ. Sei. Technol. 30, 605–611.

    Article  Google Scholar 

  11. Schnaitman, C.A. (1971) Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100. J. Bacteriol. 108, 545–552.

    CAS  Google Scholar 

  12. Rosen, M.J. (1978) Surfactants and Interfacial Phenomena, Wiley, New York.

    Google Scholar 

  13. Mannhardt, K., Schramm, L.L. and Novosad, J.J. (1992) Adsorption of anionic and amphoteric foam-forming surfactants on different rock types. Colloids’ Surfa 68, 37–53.

    Article  CAS  Google Scholar 

  14. Manne, S. and Gaub, H.E. (1995) Molecular organization of surfactants at solid-liquid interfaces. Science, 270, 1480.

    Article  CAS  Google Scholar 

  15. Edwards, D.A., Adeel, Z. and Luthy, R.G. (1994) Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environ. Sei. Technol. 28, 1550–1560.

    Article  CAS  Google Scholar 

  16. Liu, Z., Edwards, D.A. and Luthy, R.G. (1992) Sorption of non-ionic surfactants onto soil. Wut. Res. 26, 1337–1345.

    Article  CAS  Google Scholar 

  17. Edwards, D.A., Luthy, R.G. and Liu, Z. (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sei. Technol. 25, 127–133.

    Article  CAS  Google Scholar 

  18. Kile, D.E. and Chiou, C.T. (1989) Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environ. Sci. Technol. 23, 832–838.

    Article  CAS  Google Scholar 

  19. Pignatello, M. and Xing, B. (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30, 1–11.

    Article  CAS  Google Scholar 

  20. Wu, S.-C. and Gschwend, P.M. (1986) Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ. Sc!. Technol. 20, 717–725.

    Article  CAS  Google Scholar 

  21. Nye, J.V., Guerin. W.F. and Boyd, S.A. (1994) Environ. Sei. Technol. 28, 144.

    Article  Google Scholar 

  22. Zhang,W.-X. (1995) Effect of sorption on bioavailability of hydrophobic organic contaminants: experimental and model studies, Ph.D. Dissertation, Johns IJopkins University, Baltimore, Maryland.

    Google Scholar 

  23. Aronstein, B.N.. Calvillo, Y.M. and Alexander, M. (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ. Sei. Technol. 25, 1728–1731.

    CAS  Google Scholar 

  24. Aronstein, B.N. and Alexander, M. (1992) Surfactants at low concentrations stimulate biodegradation of sorbed hydrocarbons in samples of aquifer sands and soil slurries. Environ. Toxicol. Chem. 11, 1227–1233.

    Article  CAS  Google Scholar 

  25. Aronstein, B.N. and Alexander, M. (1993) Effect of a non-ionic surfactant added to the soil surface on the biodegradation of aromatic hydrocarbons within the soil. Appt Microbiol. Biolechnol. 39, 386–390.

    CAS  Google Scholar 

  26. Aiba, S., Moritz, V., Someya, J. and Huang, K.L. (1969) Cultivation of yeast cells by using n-alkanes as the sole carbon source. Ferment. Technol. 47, 203.

    CAS  Google Scholar 

  27. Efroymson, R.A. and Alexander, M. (1991) Biodegradation by an Arthrohcrcter species of hydrocarbons partitioned into an organic solvent. Appl. Environ. Microbiol. 57. 1441.

    CAS  Google Scholar 

  28. Liu, D. (1980) Enhancement of PCBs biodegradation by sodium lignosulfonate. Wat. Res. 14, 1467.

    Article  CAS  Google Scholar 

  29. Nakahara, T., Hisatsuka, K.-I. and Minoda, Y. (1981) Effect of hydrocarbon emulsification on growth and respiration of microorganisms in hydrocarbon media. J. Ferment. Technol. 59, 415.

    CAS  Google Scholar 

  30. Mimura, A., Watanabe, S. and Takeda, I. (1971) Biochemical engineering analysis of hydrocarbon fermentation (111)..1 Ferment. Technol. 49, 255.

    CAS  Google Scholar 

  31. Reddy, P.G., Singh, D.K., Roy, P.K. and Baruah, J.N. (1982) Predominant role of hydrocarbon solubilization in the microbial uptake of hydrocarbons. Biotech. Bioeng. 24, 1241.

    Article  CAS  Google Scholar 

  32. Ramsay, B., McCarthy, J., Guerra-Santos, L.H., Kappeli, O. and Fiechter, A. (1988) Biosurfactant production and diauxic growth of Rhodococcus aurantiacus when using n-alkanes as the carbon source. Can. J Microbiol. 34, 1209.

    Article  CAS  Google Scholar 

  33. Neu, T. (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev. 60, 151–166.

    CAS  Google Scholar 

  34. Doyle, R.J. and Rosenberg, M. (1990) Microbial Cell Surface Hydrophobicity, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  35. Rosenberg, M. and Kjelleberg, S. (1986) Hydrophobic interactions in bacterial adhesion. Adv. Microh. Ecol. 9, 353–393.

    CAS  Google Scholar 

  36. Beachey, E.H. (1981) Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surfaces..1 /nfc:et. Dis. 143, 325–345.

    CAS  Google Scholar 

  37. Bright, J.J. and Fletcher, M. (1983) Amino acid assimilation and electron transport system activity in attached and free-living marine bacteria. Appl. Environ. Microbial. 45, 818–825.

    CAS  Google Scholar 

  38. Griffith, P.C. and Fletcher, M. (1991) Hydrolysis of protein and model dipeptide substrates by attached and nonattached marine Pseudomonas sp. strain NCIMB 202 I. Appl. Environ. Microbiol. 57, 2186–2191.

    CAS  Google Scholar 

  39. Zhang, Y. and Miller, R.M. (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl. Environ. Microhiol. 60, 2101–2106.

    CAS  Google Scholar 

  40. Yoshida, F., Yamane, T. and Nakamoto, K.-i. (1973) Fed-batch hydrocarbon fermentation with colloidal emulsion feed. Biotech. Bioeng. 15, 257–270.

    Article  CAS  Google Scholar 

  41. Guha, S. and Jaffe, P.R. (1996) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environ. Sci. Technol. 30, 1382–1391.

    Article  CAS  Google Scholar 

  42. Bury, S.J. and Miller, C.A. (1993) Effect of micellar solubilization on biodegradation rates of hydrocarbons. Environ. Sci. Technnl. 27, 104–110.

    Article  CAS  Google Scholar 

  43. Miller, R.M. and Bartha, R. (1989) Evidence from liposome encapsulation for transport-limited microbial metabolism of solid alkalies. Appl. Environ. Microbiol. 55, 269–274.

    CAS  Google Scholar 

  44. Itoh, S. and Suzuki, T. (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agr. Biol. Chen. 36, 223 3–2235.

    Google Scholar 

  45. Guerin, W.F. and Jones, G.E. (1988) Mineralization of phenanthrene by a Mycobacterium sp. Appl. Environ. Microbiol. 54, 937.

    CAS  Google Scholar 

  46. Cserhati, T., lues, Z. and Nerves, I. (1991) Effect of non-ionic tensides on the growth of some sod bacteria. Appl. Microbiol. Biotechnol. 35, 115–118.

    Article  CAS  Google Scholar 

  47. Van Hoof. P.L. and Rogers, J.E. (1992) Influence of low levels of nonionic surfactants on the anaerobic dechlorination of hexachlorobenzene, in Biosystems Technology Development Program. ßioremediation of Hazardous Wastes, U.S. Environmental Protection Agency, Washington. D.C. pp. 105.

    Google Scholar 

  48. Breuil, C. and Kushner, D.J. (1980) Effects of lipids, fatty acids, and other detergents on bacterial utilization of hexadecane. Can. J. Microhiol. 26, 223–231.

    Article  CAS  Google Scholar 

  49. Robichaux, T.J. and Myrick, H.N. (1972) Chemical enhancement of the biodegradation of crude-oil pollutants. J. Pet. Technol. 24, 16.

    CAS  Google Scholar 

  50. Tanaka, A. and Fukui, S. (1971) Studies on the utilization of hydrocarbons by microorganisms (XIII). Ferment. Technol. 49, 809.

    CAS  Google Scholar 

  51. Laha, S. and Lathy, R.G. (1991) Inhibition of phenanth;ene mineralization by nonionic surfactants in soil-water systems. Environ. Sri. Technol. 25, 1920–1930.

    Article  CAS  Google Scholar 

  52. Laha, S. and Luthy, R.G. (1992) Effects of nonionic surfactants on the solubilization and mineralization of phenanthrene in soil-water systems. Biotech. Bioeng. 40, 1367–1380.

    Article  CAS  Google Scholar 

  53. Tiehm, A. (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60, 258–263.

    CAS  Google Scholar 

  54. Mueller, J.G., Chapman, P.J., Blattman, B.O. and Pritchard, P.H. (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol. 56, 1079.

    CAS  Google Scholar 

  55. Almgren, M., Grieser, F. and Thomas, J.K. (1979) Dynamic and static aspects of solubilization of neutral arenes in ionic micellar solutions. J. Am. Chem. Soc. 101, 279–291.

    Article  CAS  Google Scholar 

  56. Turro, N.J., Zimmt, M.B., Lei, X.G., Gould, I.R., Nitsche, K.S. and Cha, Y. (1987) Additive effects of the CIDNP, cage effect, and exit rate of micellized radical pairs..1.. Phvs. Chein. 91, 4544–4548.

    Article  CAS  Google Scholar 

  57. Attwood, D. and Florence, A.T. (1983) Surfuc/ant Systems: Their Chemistry, Pharmacy, and Biology, Chapman and Hall, London.

    Google Scholar 

  58. Shimp, R.J. and Young, R.L. (1988) Availability of organic chemicals for biodegradation in settled bottom sediments. Ecotox. Environ. Safety, 15, 31–45.

    Article  CAS  Google Scholar 

  59. Gordon, A.S. and Millero, F.J. (1985) Adsorption mediated decrease in the biodegradation rate of organic compounds. Microh. Ecol. 11, 289–298.

    Article  CAS  Google Scholar 

  60. Remberger, M., Allard, A.S. and Neilson, A.H. (1986) Biotransformation of chloroquaicols, chlorocatechols, and chloroveratroles in sediments. Appl. Environ. Microhiol. 51. 552–558.

    CAS  Google Scholar 

  61. Robinson, K.G., Ghosh, M.M. and Shi, Z. (1996) Mineralization enhancement of non-aqueous phase and soil-bound PCB using biosurfactant. Wat. Sci. Tech. 34, 303

    Article  CAS  Google Scholar 

  62. West, C.C. and Harwell, J.H. (1992) Surfactants and subsurface remediation. Environ. Sci. Technol. 26, 2324–2330.

    Article  CAS  Google Scholar 

  63. Jain, D.K., Lee. H. and Trevors, J.T. (1992) Effect of addition of Pseudomonas crer•uginosa UG2 inocula or biosurfactants on biodegradation of selected hydrocarbons in soil..I. Ind. Microhiol. 10, 87–93.

    Google Scholar 

  64. Wershaw, R.L. (1993) Model for humus in soils and sediments. Environ. Sri. Technol. 27, 814–8I 6.

    Google Scholar 

  65. Crocker, F.H., Guerin, W.F. and Boyd, S.A. (1995) Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay. Environ. Sci. Technol. 29, 2953–2958.

    Article  CAS  Google Scholar 

  66. Cooper. D.G. (1986) Biosurfactants. Microhiol. Sri. 3, 145–149.

    Google Scholar 

  67. Zajic, J.E. and Seffens, W. (1984) Biosurfactants. Crit. Rev. Biotechnol. 1, 87107

    Google Scholar 

  68. Kosaric, N. (1993) Biosurfactunts: Production, Properties, Applications, M. Dekker, New York.

    Google Scholar 

  69. Georgiou, G., Lin, S.-C. and Sharma, M.M. (1992) Surface-active compounds from microorganisms. Bio/Technology, 10, 60–65.

    Article  CAS  Google Scholar 

  70. Zhang, Y. and Miller, R.M. (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microhiol. 58, 3276–3282.

    CAS  Google Scholar 

  71. Van Dyke, M.I., Couture, P., Brauer, M., Lee, H. and Trevors, J.T. (1993) Pseudomonas ueruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Cun..1.. Microhiol. 39, 1071–1078.

    Google Scholar 

  72. Arino, S., Marchai, R. and Vandecasteele, J.-P. (1997) Identification and production of a rhamnolipid biosurfactant by a Pseudomonas species. Appl. Microhiol. Biotechnol. 45, 162–168.

    Article  Google Scholar 

  73. Ochsner, U.A., Koch, A.K., Fiechter, A. and Reiser, J. (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas ueruginosa..I.. Bucteriol. 176, 2044–2054.

    CAS  Google Scholar 

  74. Burger, M.M., Glaser. L. and Burton, R.M. (1963) Formation of rhamnolipids of Pseudornonus ueru,ginosu..I. Biol. Chem. 238, 2595.

    CAS  Google Scholar 

  75. Koch, A.K., Kappeli, O., Fiechter, A. and Reiser, J. (1991) I lydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosu mutants. Buctcriol. 173, 4212–4219.

    CAS  Google Scholar 

  76. Guerra-Santos, L.H., Kappeli, O. and Fiechter, A. (1986) Dependence of Pseudomonas ucruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol. 24, 443–448.

    Article  CAS  Google Scholar 

  77. Brock, T.D., Madigan, M.T., Martinko, J.M. and Parker, J. (1994) Biology of Microorganisms, Prentice-Hall, Inc. Englewood Cliffs, NJ.

    Google Scholar 

  78. Hinchee, R.E., Brockman, F.J. and Vogel, C.M. (1995) Microbial Processes for Biorenrediation. Battelle Press, Columbus, OH.

    Google Scholar 

  79. Thibault, S.L., Anderson, M. and Frankenberger Jr., W.T. (1996) influence of surfactants on pyrene desorption and degradation in soils. Appl. Environ. Microhiol 62, 283–287.

    Google Scholar 

  80. Liu, Z., Jacobsen, A.M. and Luthy, R.G. (1995) Biodegradation of naphthalene in aqueous nonionic surfactant systems. Appl. Environ. Microbiol. 61, 145–15I.

    CAS  Google Scholar 

  81. Falatko, D.M. and Novak, J.T. (1992) Effects of biologically produced surfactants on the mobility and biodegradation of petroleum hydrocarbons. Wut. Environ. Res. 64, 163–169.

    Article  CAS  Google Scholar 

  82. Herman, D.C., Lenhard, R.J. and Miller, R.M. (1997) Formation and removal of hydrocarbon residual in porous media: effects of attached bacteria and biosurfactants. Environ. Sci. Technol. 31, 1290.

    Article  CAS  Google Scholar 

  83. Fu, M.H. and Alexander, M. (1995) Use of surfactants and slurrying to enhance the biodegradation in soil of compounds initially dissolved in nonaqueous-phase liquids. Appl. Microbiol. Biotechnol. 43, 551–558.

    Article  CAS  Google Scholar 

  84. Fountain, J.C. (1997) The role of field trials in development and feasibility assessment of surfactant-enhanced aquifer remediation. Wut. Environ. Res. 69, I88.

    Google Scholar 

  85. Fountain, J.C., Klimek, A., Beikirch, M.G. and Middleton, T.M. (1991) The use of surfactants for in situ extraction of organic pollutants from a contaminated aquifer. Ha_ard. Muter. 28, 295–311.

    Article  CAS  Google Scholar 

  86. Pennell, K.D., Abriola, L.M. and Weber Jr., W.J. (1993) Surfactant-enhanced solubilization of residual dodecane in soil columns. I. Experimental investigation. Environ. Sci. Technol. 27, 2332–2340.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jordan, R.N., Cunningham, A.B. (1999). Surfactant-Enhanced Bioremediation. In: Baveye, P., Block, JC., Goncharuk, V.V. (eds) Bioavailability of Organic Xenobiotics in the Environment. NATO ASI Series, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9235-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9235-2_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5311-4

  • Online ISBN: 978-94-015-9235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics