Skip to main content
Log in

Bioavailability of sorbed- and separate-phase chemicals

  • Published:
Biodegradation Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aiba S, Moritz V, Someya J & Haung KL (1969) Cultivation of yeast cells by using n-alkanes as the sole carbon source I. batch culture. J. Ferm Technol. 47:203–210

    Google Scholar 

  • Alexander, M (1991) Research Needs in Bioremediation. Environ. Sci. Technol. 25:1972–1973

    Google Scholar 

  • Aronstein BN, Calvillo YM & Alexander M (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ. Sci. Technol. 25:1728–1731

    Google Scholar 

  • Barnhardt MJ & Julian JJ (1989) Pilot bioremediation tells all about petroleum contaminated soil. Pollution Engrg. 21(10) 110–112

    Google Scholar 

  • Bennett, JC & Tributsch H (1978) Bacterial leaching patterns on pyrite crystal surfaces. J. Bacteriol. 134:310–317

    Google Scholar 

  • Brickell JL & Keinath TM (1991) The effect of surfactants on the sorption partition coefficients of naphthalene on aquifer soils. Wat. Sci. Technol. 23:455–463

    Google Scholar 

  • Bright JJ & Fletcher M (1983a) Amino acid assimilation and electron transport system activity in attached and free-living marine bacteria. Appl. Environ. Microbiol. 45:818–825

    Google Scholar 

  • Bright JJ & Fletcher M (1983b) Amino acid assimilation and respiration by attached and free-living populations of a marinePseudomonas sp. Micob. Ecol. 9:215–226

    Google Scholar 

  • Brusseau ML, Jessup RE & Rao PSC (1991) Nonequilibrium sorption of organic chemicals: elucidation of rate-limiting processes. Environ. Sci. Technol. 25:134–142

    Google Scholar 

  • Casida LE (1971) Microorganisms in unamended soil as observed by various forms of microscopy ans staining. Appl. Environ. Microbiol. 21:1040–1045

    Google Scholar 

  • Chakravarty M, Amin PM, Singh HD, Baruah JN & Iyengar MS (1972) A kinetic model for microbial growth on solid hydrocarbons. Biotechnol. Bioeng. 14:61–73

    Google Scholar 

  • Crittenden JC, Hutzler NJ, Geyer DG, Oravitz JL & Friedman G (1986) Transport of organic compounds with saturated groundwater flow: model development and parameter sensitivity, Wat. Res. Research 22:271–284

    Google Scholar 

  • Dashman T & Stotzky G (1986) Microbial utilization of amino acids and a peptide bound on homoionic montmorillonite and kaolinite. Soil Biol. Biochem. 18:5–14

    Google Scholar 

  • DiToro DM & Horzempa LM (1982) Reversible and resistant components of PCB adsorption-desorption isotherms. Environ. Sci Technol. 16:594–602

    Google Scholar 

  • Edwards DA, Luthy RG & Liu Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol. 25:127–133

    Google Scholar 

  • Efroymson RA & M Alexander (1991) Biodegradation by anArthrobacter Species of Hydrocarbons Partitioned into an organic solvent. Appl. Environ. Microbiol. 57:1441–1447

    Google Scholar 

  • Erhardt HM & Rehm HJ (1985) Phenol degradation by microorganisms adsorbed on activated carbon. Appl. Microbiol. Biotechnol. 21:32–36

    Google Scholar 

  • Falatko DM & Novak JT (1992) Effects of biologically produced surfactants on the mobility and biodegradation of petroleum hydrocarbons. Water Env. Res. 64:163–169

    Google Scholar 

  • Filip A (1973) Clay minerals as a factor influencing the biochemical activity of soil microorganisms. Foli Microbiol. 18:56–74

    Google Scholar 

  • Fletcher M (1985) Effect of solid surfaces on the activity of attached bacteria. In: Savage DC & Fletcher M (Eds) Bacterial Adhesion (pp. 339–362). Plenum Press, New York

    Google Scholar 

  • Fletcher M (1986) Measurement of glucose utilization by Pseudomonas fluorescens that are free-living and that are attached to surfaces. Appl. Environ. Microbiol. 52:672–676

    Google Scholar 

  • Gordon AS & Millero FJ (1985) Adsorption mediated decrease in the biodegradation rate of organic compounds. Microbiol. Ecol. 11:289–298

    Google Scholar 

  • Gaastra W & de Graaf FK (1982) Host-specific fimbrial adhesion of noninvasive enterotoxigenicEcherichia coli strains. Microbiol. Rev. 46:129–161

    Google Scholar 

  • Gray, T.R.G. and Parkinson, D. (1968) The Ecology of Soil Bacteria, Liverpool University Press, Liverpool, England

    Google Scholar 

  • Griffith PC & Fletcher M (1991) Hydrolysis of protein and model dipeptide substrates by attached and nonattached marinePseudomonas sp. strain NCIMB 2021. Appl. Environ. Microbiol. 57:2186–2191

    Google Scholar 

  • Gschwend PM & Wu SC (1985) On the consistency of sediment-water partition coefficients of hydrophobic organic pollutants. Environ. Sci. Technol. 19:90–96

    Google Scholar 

  • Guerin WF & Boyd SA (1992) Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Appl. Environ. Microbiol. 58:1142–1152

    Google Scholar 

  • Gutnick DL & Rosenberg E (1977) Oil tankers and pollution, a microbiological approach. Ann. Rev. Microbiol. 31:379–396

    Google Scholar 

  • Isaacson PJ & Frink CR (1984) Nonreversible sorption of phenolic compounds by sediment fractions: the role of sediment organic matter. Environ. Sci. Technol. 18:43–48

    Google Scholar 

  • Kefford B, Kjelleberg S, & Marshall KC (1982) Bacterial scavenging: utilization of fatty acids localized at a solidØliquid interface. Arch. Microbiol. 133:257–260

    Google Scholar 

  • Kilbertus G (1980) Etude des microhabitats contenus dans les aggregats du soil. Leur relation avec la biomasse bacterienne et la taille des procaryotes presents. Rev. Ecol. Biol. Soil 17:543–557

    Google Scholar 

  • Koch AK, Kappeli O, Fiechter A & Reiser J (1991) Hydrocarbon assimilation and biosurfactant production inPseudomonas aeruginosa mutants. J. Bacteriology 173:4212–4219

    Google Scholar 

  • Laha S & Luthy RG (1991) Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environ. Sci. Technol. 25:1920–1930

    Google Scholar 

  • Liu Z, Laha S & Luthy RG (1991) Surfactant solubilization of polycyclic aromatic hydrocarbon compounds in soil-water suspensions. Wat. Sci. Technol. 23:475–485

    Google Scholar 

  • Marshall KC (1976) Interfaces in Microbial Ecology. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Marshall, K.C. and Cruickshank, R.H. (1973) Cell surface hydrophobicity and the orientation of certain bacteria at interfaces. Arch. Mikrobiol. 91:29–40

    Google Scholar 

  • Mihelcic JR & Luthy RG (1991) Sorption and microbial degradation of naphthalene in soil-water suspensions under denitrification conditions. Environ. Sci. Technol. 25:169–177

    Google Scholar 

  • Miller ME & Alexander M (1991) Kinetics of bacterial degradation of benzylamine in a montmorillonite suspension. Environ. Sci. Technol. 25:240–245

    Google Scholar 

  • Mimura A, Watanabe S, & Takeda I (1971) Biochemical engineering analysis of hydrocarbon fermentation III. analysis of emulsification phenomena. J. Ferm. Technol. 49:255–262

    Google Scholar 

  • Moersen A & Rehm HJ (1987) Degradation of phenol by a mixed cre ofPseudomonas putida and cryptococcus elinovii adsorbed on activated carbon. Appl. Microbiol. Biotechnol. 26:283–288

    Google Scholar 

  • Nakahara T, Erickson LE, & Gutierrez JR (1977) Characteristics of hydrocarbon uptake in cultures with two liquid phases. Biotechnol. Bioeng. 19:9–25

    Google Scholar 

  • Novakova J (1972) Effect of increasing concentrations of clays on the decomposition of glucose II effect of kaolinite. Zentralbl. Bakteriol. Parasitenk., Infektianskr. 127:367–378

    Google Scholar 

  • Oberbremer A, Muller-Hurtig R & Wagner F (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl. Microbiol. Biotechnol. 32:485–489

    Google Scholar 

  • Ogram AV, Jessup RE, Ou LT & Rao PSC (1985) Effects of sorption on biochemical degradation rates of (2,4dichlorophenoxy)acetic acid in soils. Appl. Environ. Microbiol. 49:582–587

    Google Scholar 

  • Olness A & Clapp CE (1972) Microbial degradation of a montmorillonite-dextran complex. Soil Sci. Soc. Amer. Proc. 36:179–180

    Google Scholar 

  • Park KS, Sims RC & Dupont RR (1990) Transformations of PAHs in soil systems. J. Environ. Eng. 116:632–640

    Google Scholar 

  • Pignatello JJ, Sawhney BL, & Frink CR (1987) EDB: persistence in soil. Science 236:898

    Google Scholar 

  • Reddy PG, Singh HD, Roy PK, & Baruah JN (1982) Predominant role of hydrocarbon solubilization in the microbial uptake of hydrocarbons. Biotechnol. Bioeng. 24:1241–1269

    Google Scholar 

  • Remberger M, Allard AS & Neilson AH (1986) Biotransformations of chloroquaicols, chlorocatechols, and chloroveratroles in sediments. Appl. Environ. Microbiol. 51:552–558

    Google Scholar 

  • Rijnaarts HHM, Bachmann A, Jumelet JC & Zehnder AJB (1990) Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of alpha-hexachlorocyclohexane in a contaminated calcareous soil. Environ. Sci. Technol. 24:1349–1354

    Google Scholar 

  • Rittmann BE & Johnson NM (1989) Rapid biological clean-up of soils contaminated with lubricating oil. Wat. Sci. Technol. 21:204–219

    Google Scholar 

  • Robinson KG, Farmer WS & Novak JT (1990) Availability of sorbed toluene in soils for biodegradation by acclimated bacteria. Wat. Res. 24:345–350

    Google Scholar 

  • Rosenberg, M & Rosenberg E (1981) Role of adherence in growth ofAcinetobacter calcoaceticus RAG-1 on hexadecane. J. Bacteriol. 148:51–57

    Google Scholar 

  • Scow KM & Hudson J (1992) Effect of diffusion and sorption on the kinetics of biodegradation: theoretical considerations. Soil. Sci. Soc. Amer. 56:119–127

    Google Scholar 

  • Scow KM & Alexander M (1992) Effect of diffusion on the kinetics of biodegradation: experimental results with synthetic aggregates. Soil. Sci. Soc. Amer. 56:128–134

    Google Scholar 

  • Shapiro L (1976) Differentiation in theCaulobacter cell cycle. Annu. Rev. Microbiol. 30:377–402

    Google Scholar 

  • Shimp RJ & Young RL (1988) Availability of organic chemicals for biodegradation in settled bottom sediments. Ecotox. Environ. Safety 15:31–45

    Google Scholar 

  • Singer ME & Finnerty WR (1984) Microbial metabolism of straight-chain and branched alkanes. In: Petroleum Microbiology (Ed RM Atlas), MacMillan Publishing Company, New York

    Google Scholar 

  • Smith JR, Nakles DV, Cushey MA & Morgan DJ (1989) Application of biodegradation screening protocol of contaminated soils from manufactured gas plant sites. presented at The Inst. Gas Technol. Symp. on Gas, Oil, Coal Biotechnol., New Orleans, LA, December 11–13

    Google Scholar 

  • Smith SC, Ainsworth CC, Traina SJ & Hicks RJ (1992) Effect of sorption on the biodegradation of qunoline. Soil Sci. Soc. Am. J. 56:737–746

    Google Scholar 

  • Speitel JR & Digiano FA (1987) The bioregeneration of GAC used to treat micropollutants. J. Amer. Waterworks. Ass. 79:64–73

    Google Scholar 

  • Steinberg SM, Pignatello JJ, & Sawhney BL (1987) Persistence of 1,2-dibromoethane in soils: entrapment in intraparticle micropores. Environ. Sci. Technol. 21:1201–1208

    Google Scholar 

  • Steen WF, Paris DF & Baughman GL (1980) Effects of sediment sorption on microbial degradation of toxic substances. In: Contaminants and Sediments. Volume I. Fate and Transport Case Studies, Modeling, Toxicity (Ed RA Baker), Ann Arbor Science, Ann Arbor

    Google Scholar 

  • Stotzky G (1966) Influence of clay minerals on microorganisms III. effect of particle size, cation exchange capacity, and surface area on bacteria. Can. J. Microbiol. 12:1235–1246

    Google Scholar 

  • Stotzky G & Rem LT (1966) Influence of clay minerals on microorganisms. I. montmorillonite and kaolinite on bacteria. Can J. Microbiol. 12:547–563

    Google Scholar 

  • Stotzky G & Rem LT (1967) Influence of clay minerals on microorganisms. IV. montmorillonite and kaolinite on fungi. Can J. Microbiol. 13:1535–1550

    Google Scholar 

  • Stucki G & Alexander M (1987) Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl. Environ. Microbiol. 53:292–297

    Google Scholar 

  • Subba-Rao RV & Alexander M (1982) Effect of sorption on mineralization of low concentrations of aromatic compounds in lake water samples. Appl. Environ. Microbiol. 44:659–668

    Google Scholar 

  • Thomas JM, Yordy JR, Amador, JA & Alexander M (1986) Rates of Dissolution and Biodegradation of water-insoluble organic compounds. Appl. Environ. Microbiol. 52:290–296

    Google Scholar 

  • Van Loosdrecht MCM, Lyklema J, Norder W & Zehnder AJB (1990) Influence of interfaces on microbial activity. Microbiol. Rev. 54:75–87

    Google Scholar 

  • Wang X, Yu X & Bartha R (1990) Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil. Environ. Sci. Technol. 24:1086–1089

    Google Scholar 

  • Weber JB & Coble HD (1968) Microbial decomposition of diquat adsorbed on montmorillonite and kaolinite clays. J. Agr. Food Chem. 16:475–478

    Google Scholar 

  • Weber JB, Weed SB & Ward TM (1969) Displacement of diquat from clay and its phototoxicity. J. Agr. Food Chem. 17:1075–1076

    Google Scholar 

  • Wodzinski RS & Bertolini D (1972) Physical state in which naphthalene and biphenyl are utilized by bacteria. Appl. Microbiol. 23:1077–1081

    Google Scholar 

  • Wodzinski RS & Coyle JE (1974) Physical state of phenanthrene for utilization by bacteria. Appl. Microbiol. 27:1081–1084

    Google Scholar 

  • Wu S-C & Gschwend PM (1988) Numerical modeling of sorption kinetics of organic compounds to soil and sediment particles. Wat. Resources Res. 24:1373–1383

    Google Scholar 

  • Zobell CE (1943) The effect of solid surfaces upon bacterial activity. J. Bacteriol. 46:39–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihelcic, J.R., Lueking, D.R., Mitzell, R.J. et al. Bioavailability of sorbed- and separate-phase chemicals. Biodegradation 4, 141–153 (1993). https://doi.org/10.1007/BF00695116

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695116

Key words

Navigation