Skip to main content

Genome canalization: the coevolution of Transposable and Interspersed Repetitive Elements with single copy DNA

  • Chapter
Transposable Elements and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 1))

Abstract

Transposable and interspersed repetitive elements (TIREs) are ubiquitous features of both prokaryotic and eukaryotic genomes. However, controversy has arisen as to whether these sequences represent useless‘ selfish’ DNA elements, with no cellular function, as opposed to useful genetic units.

In this review, we selected two insect species, the Dipteran Drosophila and the Lepidopteran Bombyx mori (the silkmoth), in an attempt to resolve this debate. These two species were selected on the basis of the special interest that our laboratory has had over the years in Bombyx with its well known molecular and developmental biology, and the wealth of genetic data that exist for Drosophila. In addition, these two species represent contrasting repetitive element types and patterns of distribution. On one hand, Bombyx exhibits the short interspersion pattern in which Alu-like TIREs predominate while Drosophila possesses the long interspersion pattern in which retroviral-like TIREs are prevalent. In Bombyx, the main TIRE family is Bm-1 while the Drosophila group contains predominantly copia-like elements, non-LTR retroposons, bacterial-type retroposons and fold-back transposable elements sequences. Our analysis of the information revealed highly non-random patterns of both TIRE biology and evolution, more indicative of these sequences acting as genomic symbionts under cellular regulation rather than useless or selfish junk DNA. In addition, we extended our analysis of potential TIRE functionality to what is known from other eukaryotic systems. From this study, it became apparent that these DNA elements may have originated as innocuous or selfish sequences and then adopted functions. The mechanism for this conversion from non-functionality to specific roles is a process of coevolution between the repetitive element and other cellular DNA often times in close physical proximity. The resulting interdependence between repetitive elements and other cellular sequences restrict the number of evolutionarily successful mutational changes for a given fuction or cistron. This mutual limitation is what we call genome canalization. Well documented examples are discussed to support this hypothesis and a mechanistic model is presented for how such genomic canalization can occur. Also proposed are empirical studies which would support or invalidate aspects of this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adami, G. & L. E. Babiss, 1991. DNA template effect on RNA splicing: Two copies of the same gene in the same gene in the same nucleus are processed differently. EMBO J. 10: 3457–3465.

    CAS  PubMed  Google Scholar 

  • Adams, D. S., T. H. Eickbush, R. J. Herrera & P. M. Lizardi, 1986. A highly reiterated family of transcribed oligo(A)-terminated, interspersed DNA elements in the genome of Bombyx mon. J. Mol. Biol. 187: 465–478.

    Article  CAS  PubMed  Google Scholar 

  • Ayer, S. & CH. Benjayati, 1990. Conserved enhancer and silencer elements responsible for differential Adh transcription in Drosophila cell lines. Mol. Cell. Biol. 10: 3512–3523.

    CAS  PubMed  Google Scholar 

  • Bains, W., 1986. The multiple origins of human Alu sequences. J. Mol. Evol. 23: 189–199.

    Article  CAS  PubMed  Google Scholar 

  • Baldini, A. & D. C. Ward, 1991. In situ hybridization banding of human chromosomes with Alu-PCR products: A simultaneous karyotype for gene mapping studies. Genomics 9: 770–774.

    Article  CAS  PubMed  Google Scholar 

  • Baniahmad, A., M. Muller, Ch. Steiner & R. Renkawitz, 1987. Activity of two different silencer elements of the chicken lysozyme gene can be compensated by enhancer elements. EMBO J. 6: 2297–2303.

    CAS  PubMed  Google Scholar 

  • Banville, D. & Y. Boie, 1989. Retroviral long terminal repeat is the promoter of the gene encoding the tumor-associated calcium-binding protein Oncomodulin in the rat. J. Mol. Biol. 207: 481–490.

    Article  CAS  PubMed  Google Scholar 

  • Basden, E. B., 1984. The species as a block to mutations. Drosophila Inform. Serv. 60: 57.

    Google Scholar 

  • Beerman, S., 1984. Circular and linear structures in chromatin dimunition of Cyclops. Chromosoma 89: 321–328.

    Article  Google Scholar 

  • Beitel, L. K., J. W. Chamberlain, S. Benchimol, T. Lam, G. P. Price & C. P. Stanners, 1986. Studies in HSAG, a middle repetitive family of genetic elements which elicit a leukemia-related cellular surface antigen. Nucl. Acids Res. 14: 3391–3408.

    Article  CAS  PubMed  Google Scholar 

  • Beitel, L. K., J. G. McArthur & C. P. Stanners, 1991. Sequence requirements for the stimulation of gene amplification by a mammalian genomic element. Gene 102: 149–156.

    Article  CAS  PubMed  Google Scholar 

  • Belyaev, D. K., 1979. Destabilizing selection as a factor in domestication. J. Hered. 70: 301–308.

    CAS  PubMed  Google Scholar 

  • Bernardi, G. & G. Bernardi, 1986. Compositional constraints and the human genome. J. Mol. Evol. 24: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Bernardi, G., 1989. The isochore organization of the human genome. Annu. Rev. Genet. 23: 637–661.

    Article  CAS  PubMed  Google Scholar 

  • Biémont, CH., A. Aouar & C. Arnault, 1987. Genome reshuffling of the copia element in an inbred line of Drosophila melanogaster. Nature 329: 742–744.

    Article  PubMed  Google Scholar 

  • Biessman, H., J. M. Mason, C. Ferry, M. d'Hulst, K. Valgeirsdottir, K. L. Traverse & M. L. Pardue, 1990. Addition of Telomere-Associated HeT DNA sequences ‘Heals’ broken chromosome ends in Drosophila. Cell 61: 663–673.

    Article  Google Scholar 

  • Bingham, P. M. & C. H. Chapman, 1986. Evidence that whiteblood is a novel type of temperature-sensitive mutation resulting from teperature-dependent effects of a transposon insertion on formation of white transcripts. EMBO J. 5: 3343–3351.

    CAS  PubMed  Google Scholar 

  • Bingham, P. M. & Z. Zachar, 1989. Retrotransposons and the FB transposon from Drosophila melanogaster, pp. 485–502 in Mobil DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, D.C.

    Google Scholar 

  • Birchler, J. A., J. C. Hiebert & L. Rabinow, 1989. Interaction of the mottler of white with transposable elements alleles at the white locus in Drosophila melanogaster. Genes & Development 3: 73–84.

    Article  CAS  Google Scholar 

  • Bird, A. P., 1987. CpG islands as gene markers in the vertebrate nucleus. TIG 3: 342–347.

    Article  CAS  Google Scholar 

  • Boeke, J. D., 1989. In Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Mircrobiolgy, Washington, D.C.

    Google Scholar 

  • Bonaccorsi, S., C. Pisano, F. Puoti & M. Gatti, 1988. Y chromosome loops in Drosophila melanogaster. Genetics 120: 1015–1034.

    CAS  PubMed  Google Scholar 

  • Boyle, A. L., S. G. Ballard & D. C. Ward, 1990. Differential distribution of long and short interspersed element sequences in the mouse genome: Chromosome karyotyping by fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA. Genetics 87: 7757–7761.

    Article  CAS  Google Scholar 

  • Britten, R. J., 1986. Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393–1398.

    Article  CAS  PubMed  Google Scholar 

  • Brosius, J., 1991. Retrotransposons — seeds of evolution. Science 251: 753.

    Article  CAS  PubMed  Google Scholar 

  • Brundin, L. Z., 1986. Evolution by orderly stepwise subordination and largely nonrandom mutations. Syst. Zool. 35(4): 602–607.

    Article  Google Scholar 

  • Bryant, L. A., C. Brierley, A. J. Flavell & J. H. Sinclair, 1991. The retrotransposon copia regulates Drosophila gene expression both positively and negatively. Nucl. Acids Res. 19: 5533–5536.

    Article  CAS  PubMed  Google Scholar 

  • Burke, W. D., C. C. Calalang & T. H. Eickbush, 1987. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme. Mol. Cell. Biol. 7: 2221–2230.

    CAS  PubMed  Google Scholar 

  • Chang-Yeh, A., D. E. Mold & R. C. C. Huang, 1991. Identification of a novel murine IAP-promoted placenta expressed gene. Nucl. Acids Res. 19: 3667–3672.

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth, B. & C. H. Langley, 1989. The population genetics of Drosophila transposable element. Ann. Rev. Genet. 23: 251–287.

    Article  CAS  PubMed  Google Scholar 

  • Chen, T. L. & L. Manuelidis, 1989. SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size. Chromosoma 98: 309–316.

    Article  CAS  PubMed  Google Scholar 

  • Cho, K. O., B. Minsk & J. A. Wagner, 1990. NICER elements: A family of nerve growth factor-inducible cAMP-extinguishable retrovirus-like elements. Proc. Natl. Acad. Sci. USA. 87: 3778–3782.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, L. & M. P. Baum, 1990. Functional analysis of a centromere from Fission Yeast: A role for centromere-specific repeated DNA sequences. Mol. Cell. Biol. 10: 1863–1872.

    CAS  PubMed  Google Scholar 

  • Cockerill, P. N., 1990. Nuclear matrix attachment occurs in several regions of the IgH locus. Nucl. Acids Res. 18: 2643–2648.

    Article  CAS  PubMed  Google Scholar 

  • Corees, V. G. & P. K. Geyer, 1991. Interactions of retrotransposons with the host genome: the case of the gypsy element of Drosophila. TIG 7: 86–90.

    Google Scholar 

  • Crain, W. R., E. H. Davidson & R. J. Britten, 1976a. Contrasting patterns of DNA sequence arrangement in Apis mellifera (Honeybee) and Musca domestica (Housefly). Chromosoma 59: 1–2.

    Article  CAS  PubMed  Google Scholar 

  • Crain, W. R., F. C. Eden, W. R. Pearson, E. H. Davidson & R. J. Britten, 1976b. Absence of short period interspersion of repetitive sequences in the DNA of Drosophila melanogaster. Chromosoma 56: 309–326.

    Article  CAS  PubMed  Google Scholar 

  • Crothers, D. M., T. E. Haran & J. G. Nadeau, 1990. Intrinsically bent DNA. J. Biol. Chem. 265: 7093–7096.

    CAS  PubMed  Google Scholar 

  • Csink, A. K. & J. F. McDonald, 1990. Copia expression is variable among natural populations of Drosophila. Genetics 126: 375–385.

    CAS  PubMed  Google Scholar 

  • Davidson, E. H., B. R. Hough, C. S. Amerson & R. J. Britten, 1973. General interspersion of repetitive with non-repetitive sequence elements in the DNA Xenopus. J. Mol. Biol. 77: 1–23.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, E. H., G. A. Galau, R. C. Angerer & R. J. Britten, 1975. Comparative aspects of DNA organization in Metazoa. Chromosoma 51: 253–259.

    Article  CAS  PubMed  Google Scholar 

  • Deininger, P. L., 1989. SINEs: Short Interspersed Repeated DNA Elements in Higher Eukaryotes, pp. 619–636 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington, D.

    Google Scholar 

  • Devlin, R. H., D. G. Holm, K. R. Morin & B. M. Honda, 1990a. Identifying a single-copy DNA sequence associated with the expression of a heterochromatic gene, the light locus of Drosophila melanogaster. Genome 33: 405–415.

    Article  CAS  PubMed  Google Scholar 

  • Devlin, R. H., B. Bingham & B. T. Wakimoto, 1990b. The organization and expression of the light gene, a heterochromatic gene of Drosophila melanogaster. Genetics 125: 129–140.

    CAS  PubMed  Google Scholar 

  • Di Nocera, P. P. & Y. Sakaki, 1990. LINEs: a superfamily of retrotransposable ubiquitous DNA elements. TIG 6: 29–30.

    Article  CAS  PubMed  Google Scholar 

  • Doolittle, W. F. & C. Sapienza, 1980. Selfish genes, the pheno type paradigm and genome evolution. Nature 284: 604–607.

    Article  Google Scholar 

  • Doolittle, W. F., 1989. Hierarchical approaches to genome evolution. Can. J. Phil. Suppl. 14: 101–133.

    Google Scholar 

  • Dover, G., 1986. Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. TIG 2: 159–165.

    Article  CAS  Google Scholar 

  • Dowsett, A. P., 1983. Closely related species of Drosophila can contain different libraries of middle repetitive DNA sequences. Chromosoma 88: 104–108.

    Article  CAS  PubMed  Google Scholar 

  • Dowsett, A. P. & M. W. Young, 1982. Differing levels of dispersed repetitive DNA among closely related species in Drosophila. Proc. Natl. Acad. Sci. USA 79: 4570–4574.

    Article  CAS  PubMed  Google Scholar 

  • Edelman, W., B. Kroeger, M. Goller & I. Horak, 1989. A recombination hotspot in the LTR of a mouse retrotransposon identified in an in vitro system. Cell 57: 937–946.

    Article  Google Scholar 

  • Efstratiadis, A., W. R. Crain, R. J. Britten, E. H. Davidson & F. C. Kafatos, 1976. DNA sequences organization in the lepidopteran Antheraea pernyi. Proc. Natl. Acad. Sci. USA. 73: 2289–2293.

    Article  CAS  PubMed  Google Scholar 

  • Engels, W. R., 1989. P Elements in Drosophila metanogaster, pp. 437–484 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Finnegan, D. J. & D. H. Faucett, 1986. Transposable Elements in Drosophila melanogaster. Oxford Surv. Eukaryotic Genes 3: 1–62.

    CAS  Google Scholar 

  • Finnegan, D. J., 1989. The I factor and I-R hybrid dysgenesis in Drosophila melanogaster, pp. 503–517 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Firtel, R. A., 1989. Mobile Genetic Elements in the Cellular Slime Mold Dictyostelium discoiddeum, pp. 557–566 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Flavell, A. J., L. S. Alphey, S. J. Ross & A. J. Leigh-Brown, 1990. Complete revesions of a gypsy retrotransposon-induced cut locus mutation in Drosophila melanogaster involving jockey transposon insertions and flanking gypsy sequence deletions Mol. Gen. Genet. 220: 181–185.

    CAS  Google Scholar 

  • Fornace, A. J., I. Alamo, M. C. Hollander & E. Lamoreaux, 1989. Induction of heat shock protein transcripts and B2 transcripts by various stresses in Chinese Hamster cells. Exper. Cell Res. 182: 61–74.

    Article  CAS  Google Scholar 

  • Fotaki, M. E. & K. Latrou, 1988. Identification of a transcriptionally active pseudogene in the chorion locus of the silkmoth Bombyx mori: regional sequence conservation and biological function. J. Mol. Biol. 203: 849–860.

    Article  CAS  PubMed  Google Scholar 

  • Fridell, R. A., A. M. Pret & L. L. Searles, 1990. A retrotransposon 412 insertion within an exon of the Drosophila melanogaster vermillion gene is spliced from the precursor RNA. Genes Dev. 4: 559–566.

    Article  CAS  PubMed  Google Scholar 

  • Gabriel, A., T. J. Yen, D. C. Schwartz, C. L. Smith, J. D. Boeke, B. Sollner-Webb & D. W. Cleveland, 1990. A rapidly rearranging retrotransposon within the miniexon gene locus of Crithidia Fasciculata. Mol. Cel. Biol. 10: 615–624.

    CAS  Google Scholar 

  • Gage, L. P., 1974. The Bombyx mori genome: analysis by DNA reassociation kinetics. Chromosoma 45: 27–42.

    Article  CAS  PubMed  Google Scholar 

  • Gan, L., W. Zhang & W. H. Klein, 1990. Repetitive DNA sequences linked to the Sea Urchin Spec genes contain transcriptional enhancer-like elements. Dev. Biol. 139: 186–196.

    Article  CAS  PubMed  Google Scholar 

  • Gao, G.-P. & R. J. Herrera, 1992. Transcriptional activity of Bm-1 repetitive elements in the genome of Bombyx mori. In preparation.

    Google Scholar 

  • Garbe, J. C, W. G. Bendena, M. Alfano & M. L. Pardeu, 1986. A Drosophila heat shock locus with a rapidly diverging sequence but a conserved structure. J. Biol. Chem. 261: 16889–16894.

    CAS  PubMed  Google Scholar 

  • Gasser, S. M., B. B. Amati, M. E. Cardenas & J. F. X. Hoffmann, 1989. Studies on scaffold attachment sites and their relation to genome function. Int. Rev. Cyto. 119: 57–96.

    Article  CAS  Google Scholar 

  • Georgiev, P. G., S. E. Korochkina, S. G. Georgieva & T. I. Gerasimova, 1990. A novel transposition system in Drosophila melanogaster depending on the Stalker mobile genetic element. EMBO J. 9: 2037–2044.

    CAS  PubMed  Google Scholar 

  • Georgiev, P. G., S. G. Korochkina & T. I. Gerasimova, 1990. Mitomycin C induces genomic rearrangements involving transposable elements in Drosophila melanogaster. Mol. Gen. Genet. 220: 229–233.

    Article  CAS  PubMed  Google Scholar 

  • Gerasimova, T. I., L. V. Matjunina, L. J. Mizrokhi & G. P. Georgiev, 1985. Successive transposition explosion in Drosophila melanogaster and reverse transpositions of mobile dispersed genetic elements. EMBO J. 4: 3773–3779.

    CAS  PubMed  Google Scholar 

  • Gilson, E., D. Perrin & M. Hofnung, 1990. DNA Polymerase I and a protein complex bind specifically to E.coli palindromic unit highly repetitive DNA: implications for bacterial chromosome organization. Nucl. Acids Res. 18: 3941–3952.

    Article  CAS  PubMed  Google Scholar 

  • Gilson, D. S., W. Sawrin, D. Perrin, S. Bachelier & M. Hofnung, 1991. Palindromic Units are part of a new bacterial interspersed mosaic element (BIME). Nucl. Acids Res. 19: 1375–1383.

    Article  CAS  PubMed  Google Scholar 

  • Gillespie, D., L. Donehower & D. Strayer, 1982. Evolution of primate DNA organization, in Genome Evolution, edited by G. A. Dover and R. B. Flavell, Academic Press.

    Google Scholar 

  • Glaichenhaus, N. & F. Cuzin, 1987. A role for ID repetitive sequences in growth and transformation-dependent regulation of gene expression in rat fibroblast. Cell 50: 1081–1089.

    Article  CAS  PubMed  Google Scholar 

  • Glatzer, K. H., 1984. Preservation of nuclear RNP antigens in male germ cell development of Drosophila hydei. Mol. Gen. Genet. 196: 236–243.

    Article  Google Scholar 

  • Goldberg, R. B., W. R. Crin, J. V. Roderman, G. P. Moore, T. R. Barnett, R. C. Miggins, R. A. Gelfand, G. A. Galaw, R. J. Britten & E. M. Davidson, 1975. Sequence organization in the genome of five marine invertebrates. Chromosoma 51: 225–251.

    Article  CAS  PubMed  Google Scholar 

  • Goldman, M. A., G. P. Holmquist, M. C. Gray, L. A. Caston & A. Nag, 1984. Replication timing of mammalian genes and middle repetitive sequences. Science 224: 689–692.

    Article  Google Scholar 

  • Hackstein, J. H. P., W. Hennig & I. Siegmund, 1987. Y chromosome-specific mutations induced by a giant transposon in Drosophila hydei. Mol. Gen. Genet. 207: 455–465.

    Article  CAS  Google Scholar 

  • Hall, B. G., 1988. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics 120: 887–897.

    CAS  Google Scholar 

  • Hanscombe, O., D. Whyatt, P. Fraser, N. Yannovtsos, D. Greavers, N. Dillon & F. Grosveld, 1991. Importance of globin gene order for correct developmental expression. Gene Dev. 5: 1387–1394.

    Article  CAS  PubMed  Google Scholar 

  • Harendza, C. J. & L. F. Johnson, 1990. Polyadenylation signal of the mouse thymidylate synthase gene was created by insertion of an L1 repetitive element downstream of the open reading frame. Proc. Natl. Acad. Sci. USA 87: 2531–2535.

    Article  CAS  Google Scholar 

  • Hawley, R. S. & C. H. Marcus, 1989. Recombinational controls of rDNA redundancy in Drosophila. Ann. Rev. Genet. 23: 87–120.

    Article  CAS  PubMed  Google Scholar 

  • Healy, M. J., R. J. Rusell & G. L. G. Miklos, 1988. Molecular studies on interspersed repetitive and unique sequences in the region of the complementation group uncoordinated on the X chromosome Drosophila melanogaster. Mol. Gen. Genet. 213: 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Hearn, M. G., A. Hendrick, T. A. Grigliatti & B. T. Wakimoto, 1991. The effect of modifiers of position-effect variegation on the variegation of heterochromatic genes of Drosophila melanogaster. Genetics 125: 129–140.

    Google Scholar 

  • Henikoff, S., 1990. Position-effect variegation after 60 years. TIG 6: 422–426.

    Article  CAS  PubMed  Google Scholar 

  • Hennig, W., R. C. Brand, J. Hackstein, R. Hochstenbach, H. Kremer, D. Lankenau, S. Lankenau, K. Miedema & A. Potgens, 1989. Y chromosomal fertility genes of Drosophila: a new type of eukaryotic genes. Genome 31: 561–571.

    Article  CAS  PubMed  Google Scholar 

  • Herrera, R. J. & J. Wang, 1991. Evidence for a relationship between the Bombyx mori middle repetitive Bm1 sequence family and U1 snRNA. Genetica 84: 31–37.

    Article  CAS  PubMed  Google Scholar 

  • Hey, J., 1989. The transposable portion of the genome of Drosophila algonguin is very different from that in D. melanogaster. Mol. Biol. Evol. 8: 282–296.

    Google Scholar 

  • Hibner, B. L., W. D. Burke & T. H. Eickbush, 1991. Sequence identity in an early chorion multigene family is the result of localized gene conversion. Genetics 128: 595–606.

    CAS  PubMed  Google Scholar 

  • Hinton, C. W., 1984. Morphogenetically specific mutability in Drosophila ananassae. Genetics 106: 631–653.

    CAS  PubMed  Google Scholar 

  • Holmquist, G. P. & L. A. Caston, 1986. Replication time of interspersed repetitive DNA sequences in hamsters. Biochimica et Biophysica Acta 868: 164–177.

    Article  CAS  PubMed  Google Scholar 

  • Holmquist, G. F., 1989. Evolution of chromosome bands: molecular ecology of non-coding DNA. J. Mol. Evol. 28: 469–486.

    Article  CAS  PubMed  Google Scholar 

  • Holowacz, T. & U. DeBoni, 1991. Arrangement of kinetochore proteins and satellite DNA in neuronal interphase nuclei: changes induced by gamma-aminobutyric acid (GABA). Exper. Cell Res. 197: 36–42.

    Article  CAS  Google Scholar 

  • Howes, G., M. O'Connor & W. Chia, 1988. On the specificity and effects on transcription of P-elements insertions at the yellow locus of Drosophila melanogaster. Nucl. Acids Res. 16: 3039–3052.

    Article  CAS  PubMed  Google Scholar 

  • Hull, R. & H. Will, 1989. Molecular biology of viral and nonviral retroelements. TIG 5: 357-335.

    Google Scholar 

  • Hutchison, C. A., S. C. Hardies, D. D. Loeb, W. R. Shehee & M. H. Edgell, 1989. LINEs and Related Retroposons: Long Interspersed Repeated Sequences in the Eukaryotic Genome, pp. 593–617 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Hyrien, O., M. Debatisse, G. Buttin & B. R. de Saint Vincent, 1987. A hotspot for novel amplification joints in a mosaic of Alu-like repeats and palindromic A + T-rich DNA EMBO J. 6: 2401–2408.

    CAS  Google Scholar 

  • Ito, H., K. Yoshida & S. H. Hori, 1989. Positive regulation of the Drosophila melanogaster G6PD gene by an insertion sequence. Biochem. Genet. 27: 379–393.

    Article  CAS  PubMed  Google Scholar 

  • Jakubczak, J. L., W. D. Burke & T. H. Eickbush, 1991. Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc. Natl. Acad. Sci. USA. 88: 3297–3299.

    Article  Google Scholar 

  • Junakovic, N., C. DiFranco, M. Best-Belpomme & G. Echalier, 1988. On the transposition of copia-like elements in cultured Drosophila cells. Chromosoma 97: 212–218.

    Article  CAS  PubMed  Google Scholar 

  • Junakovic, N. & V. Angelucci, 1986. Polymorphisms in the genomic distribution of copia-like elements in related laboratory stocks of Drosophila melanogaster. J. Mol. Evol. 24: 83–88.

    Article  CAS  Google Scholar 

  • Junakovic, N., C. DiFranco, P. Barsanti & G. Palumbo, 1986. Transposition of Copia-like nomadic elements can be induced by heat shock. J. Mol. Evol. 24: 89–93.

    Article  CAS  Google Scholar 

  • Kaplan, D. J., J. Jurka, J. F. Solus & C. H. Duncan, 1991. Medium reiteration frequency repetitive sequences in the human genome. Nucl. Acids Res. 19: 4731–4738.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, R., M. Gibbs, A. Collick & A. J. Jeffreys, 1991. Spontaneous mutation at the hypervariable mouse minisatellite locus Ms6-hm: flanking DNA sequence and analysis of germime and early somatic mutation events. Proc. R. Soc. Lond. 245: 235–245.

    Article  CAS  Google Scholar 

  • Kholodilov, N. G., V. N. Bolshakov, V. M. Blinov, V. V. Solovyov & I. F. Zhimulev, 1988. Intercalary heterochromatin in Drosophila. Chromosoma 97: 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., CH. Yu, A. Bailey, R. Hardison & C.K.J. Shen, 1989. Unique sequence organization and erythroid cell-specific nuclear factor-binding of mammalian 01 globin promoters. Nucl. Acids Res. 17: 5687–5701.

    Article  CAS  PubMed  Google Scholar 

  • Kim, A. I., E. S. Belyaeva & M. M. Aslanian, 1990. Autonomous transposition of gypsy mobile elements and genetic instability in Drosophila melanogaster. Mol. Gen. Genet. 224: 303–308.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, S., S. Goto & K. Anzai, 1991. Brain-specific small RNA transcript of the identifier sequences is present as a 10 S ribonucleoprotein particle. J. Biol. Chem. 266: 4726–4730.

    CAS  PubMed  Google Scholar 

  • Korenberg, J. R. & M. C. Rykowski, 1988. Human genome organization: Alu, LINEs, and the molecular structure of metaphase chromosome bands. Cell 53: 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Kornreich, R., D. F. Bishop & R. J. Desnick, 1990. a-Galactosi-dase A gene rearrangements causing Fabry disease. J. Biol. Chem. 265: 9319–9326.

    CAS  PubMed  Google Scholar 

  • Krane, D. E. & R. C. Hardison, 1990. Short interspersed repeats in rabbit DNA can provide functional polyadenylation signals. Mol. Biol. Evol. 7: 1–8.

    CAS  PubMed  Google Scholar 

  • Kubli, E., 1986. Molecular mechanism of suppression in Drosophila. TIG 204-209.

    Google Scholar 

  • La Mantia, G., D. Maglione, G. Pengue, A. Di Cristofano, A. Simeone, L. Lanfrancone & L. Lania, 1991. Identification and characterization of novel human endogenous retroviral sequences preferentially expressed in undifferentiated embryonal carcinoma cells. Nucl. Acids Res. 19: 1513–1520.

    Article  CAS  PubMed  Google Scholar 

  • Laimonis, L., M. Holmgren-Konig & G. Khoury, 1986. Transcriptional’ silencer’ element in rat repetitive sequences associated with the rat insulin 1 gene locus. Proc. Natl. Acad. Sci. USA 83: 3151–3155.

    Article  Google Scholar 

  • Landry, S. & M. Zannis-Hadjopoulos, 1991. Classes of autonomously replicating sequences are found among early-replicating monkey DNA. Bioch. et Biophys. Acta 1088: 234–244.

    Article  CAS  Google Scholar 

  • Lankenau, D., P. Hyijser, E. Jansen, K. Miedema & W. Hennig, 1990. DNA sequence comparison of micropia transposable elements from Drosophila hydei and Drosophila melan-ogaster. Chromosoma 99: 111–117.

    Article  CAS  PubMed  Google Scholar 

  • Li, H. & P. M. Bingham, 1991. Arginine/Serine-Rich domain of the su(wa) and tra RNA processing regulators target proteins to a subnuclear compartment implicated in splicing. Cell 67: 335-34.

    Google Scholar 

  • Lowndes, N. F., P. Bushel, J. W. Mendelsohn, M. Yen & M. Allan, 1990. A short, highly repetitive element in intron-1 of the human c-Ha-ras gene acts as a block to transcriptional readthrough by a viral promoter. Mol. Cel. Biol. 10: 4990–4995.

    CAS  Google Scholar 

  • Lozovskaya, E. R., V. Sh. Scheinker & Evgen'ev, 1990. A hybrid dysgenesis syndrome in Drosophila virilis. Genetics 126: 619–623.

    CAS  PubMed  Google Scholar 

  • Lueders, K. & E. Kuff, 1989. Transposition of Intracisternal A-Particle Genes. Prog. Nucl. Acid Res. and Mol. Biol. 36: 173–186.

    Article  CAS  Google Scholar 

  • Ma, T. S., J. Ifegwu, L. Watts, M. J. Siciliano, R. Roberts & B. Perryman, 1991. Serial Alu sequence transposition interrupting a human B creatine kinase pseudogene. Genomics 10: 390–399.

    Article  CAS  PubMed  Google Scholar 

  • Manuelidis, L., 1990. A view of interphase chromosomes. Science 250: 1533–1540.

    Article  CAS  PubMed  Google Scholar 

  • Manuelidis, L., 1991. Heterochromatic features of an 11-megabase transgene in brain cells. Proc. Natl. Acad. Sci. USA 88: 1049–1053.

    Article  CAS  PubMed  Google Scholar 

  • Maraia, R. J., 1991. The subset of mouse B1 (Alu-equivalent) sequences expressed as small processed cytoplasmatic transcripts. Nucl. Acids Res. 19: 5695–5702.

    Article  CAS  PubMed  Google Scholar 

  • Marchant, G. E. & D. G. Holm, 1988. Genetic analysis of the heterochromatin of chromosome 3 in Drosophila melanogaster. II. Vital loci identified through EMS mutagenesis. Genetics 120: 519–532.

    CAS  Google Scholar 

  • Markopoulov, K., W. J. Welshons & S. Artavonis-Tsakonas, 1989. Phenotypic and molecular analysis of the facets, a group of intronic mutations at the Notch locus of Drosophila melanogaster which affect postembryonic development. Genetics 122: 417–428.

    Google Scholar 

  • Marschalek, R., T. Brechner, E. Amon-Bohn and T. Dingermann, 1989. Transfer RNA genes: landmarks for integration of mobile genetic elements in Dictyostelium discoideum. Science 244: 1493–1496.

    Article  CAS  PubMed  Google Scholar 

  • Marschalek, R., G. Borschet & T. Dingermann, 1990. Genomic organization of the transposable element Tdd-3 from Dictyostelium discoideum. Nucl. Acids Res. 18: 5751–5757.

    Article  CAS  PubMed  Google Scholar 

  • Martin, CH. H. & E. M. Meyerowitz, 1988. Mosaic evolution in the Drosophila genome. Bioessays 9: nos 2 & 3.

    Google Scholar 

  • Matassi, G., R. Melis, G. Macaya & G. Bernardi, 1991. Compositional bimodality of the nuclear genome of tobacco. Nucl. Acids Res. 19: 5561–5567.

    Article  CAS  PubMed  Google Scholar 

  • Mayr, E., 1969. Animal Species and Evolution. The Belknap Press of Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Mazo, A. M., L. J. Mizrokhi, A. A. Karavanov, A. A. Sedkov & Y. V. LLyin, 1989. Suppression in Drosophila: su(Hw) and su(f) gene products interacts with a region of gypsy (mdg4) regulating its transcriptional activity. EMBO J. 8: 903–911.

    CAS  PubMed  Google Scholar 

  • McArthur, J. G. & C. P. Stanners, 1991. A genetic element that increases the frequency of gene amplification. J. Biol. Chem. 266: 6000–6005.

    CAS  PubMed  Google Scholar 

  • McArthur, J. G., L. K. Beitel, J. W. Chamberlain & C. P. Stanners, 1991. Elements which stimulate gene amplification in mammalian cells: role of recombinogenic sequences/ structures and transcriptional activation. Nucl. Acids Res. 19: 2477–2484.

    Article  CAS  PubMed  Google Scholar 

  • McClintock, B., 1978. Mechanisms that rapidly reorganize the genome. Stadler Symp. 10: 25–47.

    Google Scholar 

  • McDonald, J. F., D. J. Strand. M. E. Lambert & I. B. Weinstein, 1987. The responsive genome: evidence and evolutionary implications, pp. 239–263 in Development as an Evolutionary Process, R. A. Raff & E. C. Raff. A. R. Liss (eds.), N.Y.

    Google Scholar 

  • McDonald, J. F., 1990. Macroevolution and retroviral elements. Bioscience 40: 183–191.

    Article  Google Scholar 

  • Mevel-Ninio, M., M. C. Mariol & M. Gans, 1989. Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovo dominant female-sterile mutations: molecular analysis of revenant alleles. EMBO J. 8: 1549–1558.

    CAS  PubMed  Google Scholar 

  • Michaille, J. J., S. Mathavan, J. Gaillard & A. Garel, 1990. The complete sequence of Mag, a new retrotransposon in Bombyx mori. Nucl. Acids Res. 18: 674.

    Article  CAS  PubMed  Google Scholar 

  • Miklos, G. L. & J. N. Costell, 1990. Chromosome structure at the interface between major chromatin types: alpha-and beta-heterochromatin. BioEssays 12: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Mizrokhi, L. J. & A. M. Mazo, 1990. Cloning and analysis of the element gypsy from D. virilis. Nuc. Acids Res. 19: 913–916.

    Article  Google Scholar 

  • Mizrokhi, L. J., L. A. Obolenkova, A. F. Priimagi, Y V. Ilyin, T. I. Gerasimova & G. P. Georgiu, 1985. The nature of unstable insertion mutations and reversion in the locus cut of Drosophila melanogaster: molecular mechanism of transpostion memory. EMBO J. 4: 3781–3787.

    CAS  PubMed  Google Scholar 

  • Mori, I., D. G. Moerman & R. H. Waterston, 1988. Analysis of a mutator activity necessary for germline transposition and excision of Tc1 transposable elements in Caenorhabditis elegans. Genetics 120: 397–407.

    CAS  PubMed  Google Scholar 

  • Moyzis, R. K., J. M. Buckingham, L. S. Cram, M. Dani, L. L. Deaven, M. D. Jones, J. Meyne, R. L. Ratliff & J. R. Wu, 1988. A highly conserved repetitive DNA sequence, (TTAGGG)n. present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA 85: 6622–6626.

    Article  CAS  PubMed  Google Scholar 

  • Moyzis, R. K., D. C. Torney, J. Meyne, J. M. Buckingham, J-R. Wu, CH. Burks, K. M. Sirotkin & W. B. Goad, 1989. The distribution of interpersed repetitive DNA sequences in the human genome. Genomics 4: 273–289.

    Article  CAS  PubMed  Google Scholar 

  • Nasir, J., E. M. C. Fisher, N. Brockdorff, C. M. Disteche, M. F. Lyon & S. D. M. Brown, 1990. Unusual molecular characteristics of a repeat sequence island within a Giemsa-positive band on the mouse X chromosome. Proc. Natl. Acad. Sci. USA 87: 399–403.

    Article  CAS  PubMed  Google Scholar 

  • Nasir, J., M. K. Maconochie & S. D. M. Brown, 1991. Coamplification of L1 Line elements with localised low copy repeats in Giemsa dark bands: implications for genome organisation. Nucl. Acids Res. 19: 3255–3260.

    Article  CAS  PubMed  Google Scholar 

  • O'Hare, K., M. R. K. Alley, T. E. Cullingford, A. Driver & M. J. Sanderson, 1991. DNA sequence of the Doc retroposon in the white-one mutant of Drosophila melanogaster and of secondary insertions in the phenotypically altered derivaties white-honey and white-eosin. Mol. Gen. Genet 225: 17–24.

    Article  PubMed  Google Scholar 

  • Okada, N., 1991. SINEs: Short interspersed repeated elements of the eukaryotic genome. TREE 11: 358–361.

    Google Scholar 

  • Oliviero, S. & P. Monaci, 1988. RNA Polymerase III promoter elements enhance transcription of RNA Polymerase II genes. Nucl. Acids Res. 16: 1285–1293.

    Article  CAS  PubMed  Google Scholar 

  • Olmo, E., 1991. Genome variations in the transition from amphibians to reptiles. J. Mol. Evol. 33: 68–75.

    Article  CAS  Google Scholar 

  • Orgel, L. E. and F. H. C. Crick, 1980. Selfish DNA: The ultimate parasite. Nature 284: 604–607.

    Article  CAS  PubMed  Google Scholar 

  • Paolella, G., M. A. Lucero, M. H. Murphy & F. E. Baralle, 1983. The Alu family repeat promoter has a tRNA-like bipartite structure. EMBO J. 2: 691–696.

    CAS  PubMed  Google Scholar 

  • Paquin, C. E. & Y. M. Williamson, 1984. Temperature effects on the rate of Ty transposition. Science 226: 53–55.

    Article  CAS  PubMed  Google Scholar 

  • Pardue, M. L., 1991. Dynamic instability of chromosomes and genomes. Cell 66: 427–431.

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst, S. M. & V. G. Corces, 1987. Developmental expression of Drosophila melanogaster retrovirus-like transposable elements. EMBO J. 6: 419–424.

    CAS  PubMed  Google Scholar 

  • Parkhurst, S. M., D. A. Harrison, M. P. Remington, C. Spana, R. L. Kelly, R. S. Coyne & V. G. Corces, 1988. The Drosophila Su (Hw) gene, which controls the phenotypic effects of the gypsy transposable element, encodes a putative DNA-binding protein. Genes Dev. 2: 1205–1215.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, W. R., T. Mukai & J. F. Morrow, 1981. Repeated DNA sequences near the 5'-end of the silk fibroin gene. J. Biol. Chem. 256: 4033–4041.

    CAS  PubMed  Google Scholar 

  • Peng, X & S. M. Mount, 1990. Characterization of Enhancer-of-white-apricot in Drosophila melanogaster. Genetics 126: 1061–1069.

    CAS  PubMed  Google Scholar 

  • Perrin, P. & G. Bernardi, 1987. Directional fixation of mutations in vertebrate evolution. J. Mol. Evol. 26: 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer, F. & U. Blaseio, 1990. Transposition burst of the ISH27 insertion element family in Halobacterium halobium. Nucl. Acids Res. 18: 6921–6925.

    Article  CAS  PubMed  Google Scholar 

  • Pommier, Y, P. N. Cockerill, K. W. Kohn & W. T. Garrard, 1990. Identification within the Simian Virus 40 genome of a chromosomal loop attachment site that contains topoisomerase II cleavage sites. J. Virol. 64: 419–423.

    CAS  PubMed  Google Scholar 

  • Rabinow, L. & J. Birchler, 1990. Interactions among modifiers of retrotransposon-induced alleles of the white locus of Drosophila melanogaster. Genet. Res. Camb. 55: 141–151.

    Article  CAS  Google Scholar 

  • Read, C. M., V. A. Patel & T. Moss, 1989. Coordinate replication of dispersed repetitive sequences in Pysarum polycephalum. Exp. Cell. Res. 181: 505–517.

    Article  CAS  PubMed  Google Scholar 

  • Rogers, J. H., 1985. The origin and evolution of retroposons. Int. Rev. Cytol. 93: 187–279.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, K., C. M. Fordis, CH. D. Corsico, T. H. Howard & B. H. Howard, 1991. Modulation of HeLa cell growth by transfected 7SL RNA and Alu gene sequences. J. Biol. Chem. 266: 3031–3038.

    CAS  PubMed  Google Scholar 

  • Sandmeyer, S. B., L. J. Hansen & D. L. Chalker, 1990. Integration specificity of retrotransposons and retroviruses. Annu. Rev. Genet. 24: 491–518.

    Article  CAS  PubMed  Google Scholar 

  • Schiff, R., A. Itin & Eli Keshet, 1991. Transcriptional activation of mouse retrotransposons in vivo: specific expression in steroidogenic cells in response to trophic hormones. Genes Dev. 5: 521–532.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, C. W., 1991. Human Alu subfamilies and their methylation revealed by blot hybridization. Nucl. Acids Res. 19: 5613–5617.

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger, R. G. & Ch. A. Cullis, 1991. Specific DNA alterations associated with the environmental induction of heritable changes in flax. Genetics 128: 619–630.

    CAS  PubMed  Google Scholar 

  • Shenkar, R., M. Shen & α Arnhein, 1991. DNase I-Hypersensitive sites and transcription factor-binding motifs within the mouse EB meiotic recombination hot spot. Mol. Cell Biol. 11: 1813–1819.

    CAS  PubMed  Google Scholar 

  • Shevelyov, Yu. Ya., M. D. Balakireva & V. D. Guozdev, 1989. Heterochromatic regions in different Drosophila melanogaster stocks contain simular arrangements of moderate repeats with inserted copia-like elements (MDGI). Chromo-soma 98: 117–122.

    Article  Google Scholar 

  • Shiroishi, T., N. Hanzawa, T. Sagai, M. Ishiura, T. Gojobori, M. Steinmetz & K. Moriwaki, 1990. Recombinational hotspot specific to female meiosis in the mouse major histocompatibility complex. Immunogenet. 31: 79–88.

    Article  CAS  Google Scholar 

  • Singer, M. F., 1982. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell. 28: 433–434.

    Article  CAS  PubMed  Google Scholar 

  • Slagel, V., E. Flemington, V. Traina-Dorge, H. Bradshaw & P. Deininger, 1987. Clustering and Subfamily relationships of the Alu family in the Human Genome. Mol. Biol. Evol. 4: 19–29.

    CAS  PubMed  Google Scholar 

  • Spana, C. D., D. A. Harrison & V. G. Corees, 1988. The Drosophila melanogaster suppressor of Hairy Wing protein binds to specific sequences of the gypsy retrotransposon. Genes Dev. 2: 1414–1423.

    Article  CAS  PubMed  Google Scholar 

  • Spencer, W. P., 1935. The non-random nature of visible mutations in Drosophila. Am. Nat. 69: 223–238.

    Article  Google Scholar 

  • Springer, M. S., E. H. Davidson & R. J. Britten, 1991. Retroviral-like element in a marine invertebrate. Proc. Natl. Acad. Sci. USA. 88: 8401–8404.

    Article  CAS  PubMed  Google Scholar 

  • Stacey, S. N., R. A. Lansman, H. W. Brockand & T. A. Grigliatti, 1986. Distribution and conservation of mobile elements in the genus Drosophila. Mol. Biol. Evol. 3: 522–534.

    CAS  PubMed  Google Scholar 

  • Steitz, J. A., D. L. Black, V. Gerke, K. Parker, A. Kramer, D. Frendewey & W. Keller, 1988. Functions of abundant U-snRNPs, pp. 115–154 in Structure and Function of Major and Minor snRNPs, edited by M. L. Birnstiel. Springer, Heidelberg.

    Google Scholar 

  • Strand, D. J. & J. F. McDonald, 1985. Copia is transcriptionally responsive to environmental stress. Nucl. Acids Res. 13: 4401–4410.

    Article  CAS  PubMed  Google Scholar 

  • Strand, D. J. & J. F. McDonald, 1989. Insertion of a copia element 5' to the Drosophila melanogaster alcohol dehydrogenase gene (adh) is associated with altered developmental and tissue-specific patterns of expression. Genetics 121: 787–794.

    CAS  PubMed  Google Scholar 

  • Strayer, D., N. Heintz, R. Roeder & D. Gillespie, 1983. Three organizations of human DNA. Proc. Natl. Acad. Sci. USA 80: 4770–4774.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, N., T. Fujiyoshi, Y Maehara, K. Takahashi, M. Yamamoto & H. Endo, 1986. A new family of LTR-like sequences expressed in rat tumors. Nucl. Acids Res. 14: 9271–9289.

    Article  CAS  PubMed  Google Scholar 

  • Soriano, P., M. Meunier-Rotival & G. Bernardi, 1983. The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes. Proc. Natl. Acad. Sci. USA 80: 1816–1820.

    Article  CAS  PubMed  Google Scholar 

  • Sylla, B. S., D. Allard, G. Roy, D. Bourgaux-Ramoisy & P. Bourgaux, 1984. A mouse DNA sequence that mediates integration and excision of polyoma virusDNA. Gene 29: 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Tanda, S. & V. G. Corees, 1991. Retrotransposons-induced overexpression of a homeobox gene causes defects in eye morphogenesis in Drosophila. EMBO J. 10: 407–417.

    CAS  PubMed  Google Scholar 

  • Tanda, S., A. E. Shrimpton, C. Ling-Ling, H. Itayama, H. Matsubsayashi, K. Saigo, Y. N. Tobari & C. H. Langley, 1988. Retrovirus-like features and site specific insertions of a transposable element, tomin Drosophila ananassae. Mol. Gen. Genet. 214: 204–411.

    Article  Google Scholar 

  • Tartof, K. D. & S. Henikoff, 1991. Trans-sensing effects from Drosophila to humans. Cell 65: 201–203.

    Article  CAS  PubMed  Google Scholar 

  • Taruscio, D. and L. Manuelidis, 1991. Integration site prefer ences of endogenous retroviruses. Chromosoma. 101: 141–156.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, K. D. & L. Piko, 1987. Patterns of mRNA prevalence and expression of B1 and B2 transcripts in early mouse embryos. Development 101: 877–892.

    CAS  PubMed  Google Scholar 

  • Templeton, A. R., H. Hollcher & S. Lawer, 1989. Natural selection and ribosomal DNA in Drosophila. Genome, 31: 296–303.

    Article  CAS  PubMed  Google Scholar 

  • Tiedge, H., R. T. Fremeau, P. H. Weinstock & O. Arancio, 1991. Dendritic location of neural BC1 RNA. Proc. Natl. Acad. Sci. USA. 88: 2093–2097.

    Article  CAS  PubMed  Google Scholar 

  • Tobler, H., 1986. The differentiation of germinal and somatic cell lines in nematodes, pp. 1–70. In: Germline-Soma Differentiation. Edited by W. Hennig. Springer-Verlag, N.Y.

    Google Scholar 

  • Tomilin, N. V., S. M. M. Iguchi-Ariga & H. Ariga, 1990. Transcription and replication silencer elements are present within conserved region of human Alu repeats interacting with nuclear protein. FEBs Letters 263: 69–72.

    Article  CAS  PubMed  Google Scholar 

  • Ueda, H., S. Mizuno & K. Shimura, 1986. Transposable genetic element found in the 5'-flanking region of the fibroin Hchain gene is a genomic clone from the silkworm Bombyx mori. J. Mol. Biol. 190: 319–327.

    Article  CAS  PubMed  Google Scholar 

  • Uehara, H., T. Ebersole, D. Bennett & K. Artzt, 1990. Submegabase clusters of unstable tandem repeats unique to the Tla region of mouse t haplotypes. Genetics 126: 1093–1102.

    CAS  PubMed  Google Scholar 

  • Usdin, K. & A. V. Furano, 1989. Insertion of L1 elements into sites that can form Non-B DNA. J. Biol. Chem. 264: 20736–20743.

    CAS  PubMed  Google Scholar 

  • Valgeirsdotter, K., K. Traverse & M. L. Pardue, 1990. HeT DNA: A family of mosaic repeated sequences specific for heterochromatin. Proc. Natl. Acad. Sci. USA. 87: 7998–8002.

    Article  Google Scholar 

  • Vanlerberghe, F., B. Dod, P. Boursot, M. Bellis & F. Bonhomme, 1986. Absence of Y-chromosome introgression across the hybrid zone between Mus musculus domesticus and Mus musculus musculus. Genet. Res. Camb. 48: 191–197.

    Article  CAS  Google Scholar 

  • Vaury, Ch., A. Bucheton & A. Pelisson, 1989. The B heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98: 215–224.

    Article  CAS  PubMed  Google Scholar 

  • Voelker, R. A., J. Graves, W. Gibson & M. Eisenberg, 1990. Mobile element insertions causing mutations in the Drosophla suppressor of sable locus occur in DNase I hypersensitive subregions of 5' transcribed nontranslated sequences. Genetics 126: 1071–1082.

    CAS  PubMed  Google Scholar 

  • Vogt, P. & W. Hennig, 1986a. Molecular structure of the lampbrush loops nooses of the Y chromosome of Drosophila hydei. Chromosoma 94: 459–467.

    Article  CAS  Google Scholar 

  • Vogt, P. & W. Hennig, 1986b. Molecular structure of the lampbrush loops nooses of the Y chromosome of Drosophila hydei. Chromosoma 94: 449–458.

    Article  CAS  Google Scholar 

  • Vogt, P., W. Hennig, D. ten Hacken & P. Verbost, 1986. Evolution of Y chromosomal lampbrush loop DNA sequences of Drosophila. Chromosoma 94: 367–376.

    Article  CAS  PubMed  Google Scholar 

  • Vogt, P., 1990. Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved ‘chromatin folding code’. Hum. Genet. 84: 301–336.

    CAS  PubMed  Google Scholar 

  • Wakimoto, B. T. & M. G. Hearn, 1990. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster. Genetics 125: 141–154.

    CAS  PubMed  Google Scholar 

  • Wilson, E. T., D. P. Condliffe & K. U. Sprague, 1988. Transcriptional properties of BmX, a moderately repetitive silkworm gene that is an RNA Polymerase III template. Mol. Cell. Biol. 8: 624–631.

    CAS  PubMed  Google Scholar 

  • White, M. J. D., 1973. Animal Cytology and Evolution. Edited by Cambridge at the University Press.

    Google Scholar 

  • Wu, J., J. Grindlay, P. Bushe, L. Mendelsohn & M. Allan, 1990. Negative regulation of the human E-globin gene by transcriptional interference: role of an Alu repetitive element. Mol. Cell. Biol. 10: 1209–1216.

    CAS  PubMed  Google Scholar 

  • Xiong, Y. & T. H. Eickbush, 1988. Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm. Cell 55: 235–246.

    Article  CAS  PubMed  Google Scholar 

  • Yao, M-C, 1989. Site-specific chromosome breakage and DNA deletion in ciliates, pp. 715–734 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Wash. D.C.

    Google Scholar 

  • Yao, M. Ch., Ch. H. Yoa & B. Monks, 1990. The controlling sequence for site-specific chromosome breakage in tetrahymena. Cell 63: 763–772.

    Article  CAS  PubMed  Google Scholar 

  • Young, M. W., 1979. Middle repetitive DNA: a fluid component of the Drosophila genome. Proc. Natl. Acad. Sci. USA 88: 8401–8404.

    Google Scholar 

  • Zachar, Z., D. Davison, D. Garza & P. M. Bingham, 1985. A detailed developmental and structural study of the transcriptional effects of insertion of the copia transposon into the white locus of Drosophila melanogaster. Genetics 111: 495–515.

    CAS  PubMed  Google Scholar 

  • Zakian, V. A., K. Runge & S. Wang, 1990. How does the end begin? TIG. 6: 12–16.

    Article  CAS  PubMed  Google Scholar 

  • Ziarczyk, P. & M. Best-Belpomme, 1991. A short 5' region of the long terminal repeat is required for regulation by hormone and heat shock of Drosophila retrotransposon 1731. Nucl. Acids. Res. 19: 5689–5693.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerer, E. J. & H. C. Passmore, 1991. Structural and genetic properties of the EB recombinational hotspot in the mouse. Immunogenet. 33: 132–140.

    Article  CAS  Google Scholar 

  • Zuckerkandl, E., 1986. Polite DNA: functional density and functional compatibility in genomes. J. Mol. Evol. 24: 12–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. F. McDonald

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

von Sternberg, R.M., Novick, G.E., Gao, GP., Herrera, R.J. (1993). Genome canalization: the coevolution of Transposable and Interspersed Repetitive Elements with single copy DNA. In: McDonald, J.F. (eds) Transposable Elements and Evolution. Contemporary Issues in Genetics and Evolution, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2028-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2028-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4897-2

  • Online ISBN: 978-94-011-2028-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics