Skip to main content

Bacterial degradation of N-heterocyclic compounds

  • Chapter
Biochemistry of microbial degradation

Abstract

The nitrogen-containing heterocyclic compounds are a large and very heterogeneous group of biologically most important substances. They play essential roles in the fundamental processes of life and are therefore ubiquitous. The purines and pyrimidines, the amino acids histidine, hydroxyproline, proline and tryptophan, several vitamins and other cofactors, the alkaloids and various other natural metabolites are N-heterocyclic. A great part of the N-heterocyclic compounds occurring in the environment are of anthropogenic origin. In the wastes from the coal and crude oil refining industries and in coal and tar products, compounds like pyridine, quinoline and their derivatives are found. There are also numerous N-heterocyclic compounds which are synthetic products developed in the chemical, agrochemical and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aislabie J and Atlas RM (1990) Microbial upgrading of Stuart shale oil: removal of heterocyclic nitrogen compounds. Fuel 69: 1155–1157.

    Article  CAS  Google Scholar 

  • Aislabie J, Rothenburger S and Atlas RM (1989) Isolation of microorganisms capable of degrading isoquinoline under aerobic conditions. Appl. Environ. Microbiol. 55: 3247–3249.

    PubMed  CAS  Google Scholar 

  • Aislabie J, Bej AK, Hurst H, Rothenburger S and Atlas RM (1990) Microbial degradation of quinoline and methylquinolines. Appl. Environ. Microbiol. 56: 345–351.

    PubMed  CAS  Google Scholar 

  • Al-Najjar TR, Grout RJ and Grant DJW (1976) Degradation of 4-hydroxyquinoline (kynurine) by a soil pseudomonad. Microbios. Lett. 1: 157–163.

    CAS  Google Scholar 

  • Arima K and Kobayashi Y (1962) Bacterial oxidation of dipicolinic acid. I. Isolation of microorganisms, their culture conditions and end products. J. Bacteriol. 84: 759–764.

    PubMed  CAS  Google Scholar 

  • Balba MT and Evans WC (1980) Methanogenic fermentation of the naturally occurring aromatic amino acids by a microbial consortium. Biochem. Soc. Trans. 8: 625–627.

    PubMed  CAS  Google Scholar 

  • Bauder R, Tshisuaka B, Lingens F (1990) Microbial metabolism of quinoline and related compounds. VII. Quinoline oxidoreductase from Pseudomonas putida: a molybdenum-containing enzyme. Biol. Chem. Hoppe-Seyler 371: 1137–1144.

    Article  PubMed  CAS  Google Scholar 

  • Bauer G and Lingens F (1992) Microbial metabolism of quinoline and related compounds. XV. Quinoline-4-carboxylic acid oxidoreductase from Agrobacterium spec. IB: A molybdenum-containing enzyme. Biol. Chem. Hoppe-Seyler 373: 699–705.

    Article  PubMed  CAS  Google Scholar 

  • Behrman EJ (1962) Tryptophan metabolism in Pseudomonas. Nature 196: 150–152.

    Article  PubMed  CAS  Google Scholar 

  • Behrman EJ and Stanier RY (1957) The bacterial oxidation of nicotinic acid. J. Biol. Chem. 228: 923–945.

    PubMed  CAS  Google Scholar 

  • Bennett JL, Updegraff DM, Pereira WE and Rostad CE (1985) Isolation and identificaton of four species of quinoline-degrading pseudomonads from a creosote-contaminated site at Pensacola, Florida. Microbios. Lett. 29: 147–154.

    CAS  Google Scholar 

  • Berry DF, Madsen EL and Bollag J-M (1987) Conversion of indole to oxindole under methanogenic conditions. Appl. Environ. Microbiol. 53: 180–182.

    PubMed  CAS  Google Scholar 

  • Blaschke M, Kretzer A, Schäfer C, Nagel M and Andreesen JR (1991) Molybdenum-dependent degradation of quinoline by Pseudomonas putida Chin IK and other aerobic bacteria. Arch. Microbiol. 155: 164–169.

    Article  PubMed  CAS  Google Scholar 

  • Block DW and Lingens F (1992a) Microbial metabolism of quinoline and related compounds. XIII. Purification and properties of 1H-4-oxoquinoline monooxygenase from Pseudomonas putida strain 33/1. Biol. Chem. Hoppe-Seyler 373: 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Block DW and Lingens F (1992b) Microbial metabolism of quinoline and related compounds. XIV. Purification and properties of lH-3-hydroxy-4-oxyquinoline oxygenase, a new extradiol cleavage enzyme from Pseudomonas putida strain 33/1. Biol. Chem. Hoppe-Seyler 373: 343–349.

    Article  PubMed  CAS  Google Scholar 

  • Bott G and Lingens F (1991) Microbial metabolism of quinoline and related compounds. IX. Degradation of 6-hydroxyquinoline and quinoline by Pseudononas diminuta 31/1 and Bacillus circulans 31/2 Al. Biol. Chem. Hoppe-Seyler 372: 381–383.

    Article  PubMed  CAS  Google Scholar 

  • Bott G, Schmidt M, Rommel TO and Lingens F (1990) Microbial Metabolism of quinoline and related compounds. V. Degradation of lH-4-oxoquinoline by Pseudomonas putida 33/1. Biol. Chem. Hoppe-Seyler 371: 999–1003.

    Article  PubMed  CAS  Google Scholar 

  • Boyd DR, Austin R, McMordie S, Porter HP, Dalton H, Jenkins RO and Howarth OW (1987) Metabolism of bicyclic aza-arenes by Pseudomonas putida to yield vicinal cis-dihydrodiols and phenols. J. Chem. Soc. Chem. Commun. 22: 1722–1724.

    Article  Google Scholar 

  • Brauckhoff S, Schacht S and Klein J (1991) Charakterisierung mikrobieller Verwerter TV-heterozyklischer Verbindungen, gwf Das Gas-und Wasserfach, Wasser Abwasser 132:191–192.

    Google Scholar 

  • Brockman FJ, Denocan BA, Hicks RJ and Fredrickson JK (1989) Isolation and characterization of quinoline-degrading bacteria from subsurface sediments. Appl. Environ. Microbiol. 55: 1029–1032.

    PubMed  CAS  Google Scholar 

  • Burg RW and Snell EE (1969) The bacterial oxidation of vitamin B6. VI. Pyridoxal dehydrogenase and 4-pyridoxolactonase. J. Biol. Chem. 244: 2585–2589.

    PubMed  CAS  Google Scholar 

  • Burg RW, Rodwell CW and Snell EE (1960) Bacterial oxidation of vitamin B6. III. Metabolites of pyridoxamine. J. Biol. Chem. 235: 1164–1169.

    PubMed  CAS  Google Scholar 

  • Cain RB, Houghton C and Wright KA (1974) Microbial metabolism of the pyridine ring. Biochem. J. 140: 293–300.

    PubMed  CAS  Google Scholar 

  • Callely AG (1978) The microbial degradation of heterocyclic compounds. Progr. Ind. Microbiol. 14: 205–281.

    CAS  Google Scholar 

  • Dagley S and Johnson PA (1963) Microbial oxidation of kynurenic, xanthurenic and picolinic acids. Biochim. Biophys. Acta 78: 577–587.

    Article  PubMed  CAS  Google Scholar 

  • De Beyer A and Lingens F (1993) Microbial metabolism of quinoline and related compounds. XVI. Ouinaldine oxidoreductase from Arthrobacter spec. Rii 61a: A molybdenum-containing enzyme catalysing the hydroxylation at C-4 of the heterocycle. Biol. Chem. Hoppe-Seyler 374: 101–110.

    Article  PubMed  Google Scholar 

  • Decker K, Eberwein H, Gries FA and Brühmüller M (1960) Über den Abbau des Nicotins durch Bakterienenzyme. Hoppe Seyler’s Z Physiol. Chem. 319: 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Decker K, Gries FA and Brühmüller M (1961) Über den Abbau des Nicotins durch Bakterienenzyme. III. Stoffwechselstudien an zellfreien Extrakten. Hoppe Seyler’s Z Physiol. Chem. 323: 249–263.

    Article  PubMed  CAS  Google Scholar 

  • Dembek G and Lingens F (1988) Isolation and characterization of a meta-cleavage product in the degradation of quinaldic acid by Azotobacter sp. FEMS Microbiol Lett 56: 261–264.

    Article  CAS  Google Scholar 

  • DeMoss RD and Moser K (1969) Tryptophanase in diverse bacterial species. J. Bacteriol. 98: 167–171.

    Google Scholar 

  • Dzumedzei NV, Shevchenko AG, Turovskii AA and Starovoitov II (1982) Effects of iron ions on the microbial transformation of quinoline. Microbiology (russ. engl, transl) 52: 157–160.

    Google Scholar 

  • Eberwein H, Gries FA and Decker K (1961) Über den Abbau des Nicotins durch Bakterienenzyme. IL Isolierung und Charakterisierung eines nikotinabbauenden Bodenbakteriums. Hoppe-Seyler’s Z Physiol. Chem. 323: 236–248.

    Article  PubMed  CAS  Google Scholar 

  • Ensign JC and Rittenberg SC (1964) The pathway of nicotinic acid oxidation by a Bacillus species. J. Biol. Chem. 239: 2285–2291.

    PubMed  CAS  Google Scholar 

  • Ensign JC and Rittenberg SC (1965) The formation of a blue pigment in the bacterial oxidation of isonicotinic acid. Arch. Microbiol. 51: 384–392.

    CAS  Google Scholar 

  • Fetzner S and Lingens F (1993) Microbial metabolism of quinoline and related compounds. XVIII. Purification and some properties of the molybdenum-and iron-containing quinaldic acid 4-oxidoreductase from Serratia marcescens 2CC-1. Biol. Chem. Hoppe-Seyler 374: 363–376.

    Article  PubMed  CAS  Google Scholar 

  • Fujioka M and Wada H (1967) The bacterial oxidation cof indole. Biochim. Biophys. Acta 158: 70–78.

    Article  Google Scholar 

  • Gauthier JJ and Rittenberg SC (1971a) The metabolism of nicotinic acid. I. Purification and properties of 2,3-dihydroxypyridine oxygenase from Pseudomonas putida N-9. J. Biol. Chem. 246:3737–3742.

    PubMed  CAS  Google Scholar 

  • Gauthier JJ and Rittenberg SC (1971b) The metabolism of nicotinic acid. II. 2,5-Dihydroxypyridine oxidation, product formation, and oxygen incorporation. J. Biol. Chem. 246: 3743–3748.

    PubMed  CAS  Google Scholar 

  • Gherna RL and Rittenberg SC (1962) Alternate pathways in nicotine degradation. Bact. Proceed. 62:107.

    Google Scholar 

  • Gherna RL, Richardson SH, and Rittenberg SC (1965) The bacterial oxidation of nicotine.VI. The metabolism of 2,6-dihydroxypseudooxynicotine. J. Biol. Chem. 24: 3669–3674.

    Google Scholar 

  • Gibson DT and Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: DT Gibson (ed) Microbial Degradation of Organic Compounds (pp 181–252). Marcel Dekker Inc, New York, Basel.

    Google Scholar 

  • Golovleva LA, Golovlev EL, Skryabin GK, Sadyrina GA and Ananeva TI (1974) Picolinic acid. Chem. Abstr. 81: 103241.

    Google Scholar 

  • Golovlev EL (1976) Characteristics of the regulation of the microbiological transformation of organic compounds. Chem. Abstr. 85: 156250x.

    Google Scholar 

  • Golovlev EL, Golovleva LA, Eroshina NV and Skryabin GK (1978) Microbiological transformation of xenobiotics by Nocardia. In: M Mordarski, W Kurylowicz and J Jeljaszewicz (eds) Nocardia and Streptomyces (pp 269–283). Gustav Fischer Verlag, Stuttgart, New York.

    Google Scholar 

  • Grant DJW and Al-Najjar TR (1976) Degradation of quinoline by a soil bacterium. Microbios. 15: 177–189.

    PubMed  CAS  Google Scholar 

  • Gries FA, Decker K and Brühmüller M (1961a) Über den Abbau des Nicotins durch Bakterienenzyme. V. Der Abbau des L-6-Hydroxynicotins zu [γ-Methylamino-prophyl]-[6-hydroxy-pyridyl-(3)]-keton. Hoppe-Seyler’s Z Physiol. Chem. 325: 229–241.

    Article  PubMed  CAS  Google Scholar 

  • Gries FA, Decker K, Eberwein H and Brühmüller M (1961b) Über den Abbau des Nicotins durch Bakterienenzyme. VI. Die enzymatische Unwandlung des [γ-Methylaminopropyl]-[6-hydroxypyridyl-(3)]-ketons. Biochem. Z 335: 285–302.

    PubMed  CAS  Google Scholar 

  • Gupta RC and Shukla OP (1975) Microbial metabolism of 2-hydroxypyridine. Indian J. Biochem. Biophys. 12: 296–298.

    PubMed  CAS  Google Scholar 

  • Gupta RC and Shukla OP (1978) 2-Hydroxyisonicotinic acid — an intermediate in metabolism of isonicotinic acid hydrazide and isonicotinic acid by Sarcina sp. Indian. J. Biochem. Biophys. 15: 492–493.

    PubMed  CAS  Google Scholar 

  • Gupta RC and Shukla OP (1979) Isonicotinic and 2-hydroxy-isonicotinic acid hydroxylases of Sarcina sp. Indian. J. Biochem. Biophys. 16: 72–75.

    PubMed  CAS  Google Scholar 

  • Haase-Aschoff K and Lingens F (1979) Mikrobieller Abbau von Papaverin. Hoppe-Seyler’s Z Physiol. Chem. 360: 621–632.

    Article  PubMed  CAS  Google Scholar 

  • Hayaishi O, Taniuchi H, Tashiro M and Kuno S (1961) Studies on the metabolism of kynurenic acid. I. The formation of L-glutamic acid, D-and L-alanine, and acetic acid from kynurenic acid by Pseudomonas extracts. J. Biol. Chem. 236: 2492–2497.

    PubMed  CAS  Google Scholar 

  • Hettrich D and Lingens F (1991) Microbial metabolism of quinoline and related compounds. VIII. Xanthine dehydrogenase from a quinoline utilizing Pseudomonas putida strain. Biol. Chem. Hoppe-Seyler 2: 203–211.

    Article  Google Scholar 

  • Hettrich D, Peschke B, Tshisuaka B and Lingens F (1991) Microbial metabolism of quinoline and related compounds. X. The molybdopterin cofactors of quinoline oxidoreductases from Pseudomonas putida 86 and Rhodococcus spec. B1 and of Xanthine dehydrogenase from Pseudomonas putida 86. Biol. Chem. Hoppe-Seyler 372: 513–517.

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg R and Ensign JC (1971) Oxidation of nicotinic acid by a Bacillus species: source of oxygen atoms for the hydroxylation of nicotinic acid and 6-hydroxynicotinic acid. J. Bacteriol. 108: 757–759.

    PubMed  CAS  Google Scholar 

  • Hochstein LI and Dalton BP (1965) The hydroxylation of nicotine: the origin of the hydroxyl oxygen. Biochem. Biophys. Res. Commun. 21: 644–648.

    Article  PubMed  CAS  Google Scholar 

  • Hochstein LI and Rittenberg SC (1958a) The bacterial oxidation of nicotine. I. Nicotine oxidation by cell-free preparations. J. Biol. Chem. 234: 151–156.

    Google Scholar 

  • Hochstein LI and Rittenberg SC (1958b) The bacterial oxidation of nicotine. II. The isolation of the first oxidative product and its identification as (1)-6-hydroxynicotine. J. Biol. Chem. 234: 156–160.

    Google Scholar 

  • Hochstein LI and Rittenberg SC (1959) The bacterial oxidation of nicotine. III. The isolation and identification of 6-hydroxypseudooxynicotine. J. Biol. Chem. 235: 795–799.

    Google Scholar 

  • Holcenberg JS and Stadtman ER (1969) Nicotinic acid metabolism. III. Purification and properties of a nicotinic acid hydroxylase. J. Biol. Chem. 244: 1194–1203.

    PubMed  CAS  Google Scholar 

  • Holcenberg JS and Tsai L (1969) Nicotinic acid metabolism. IV. Ferredoxin-dependent reduction of 6-hydroxynicotinic acid to 6-oxo-1,4,5,6-tetrahydronicotinic acid. J. Biol. Chem. 244: 1204–1211.

    PubMed  CAS  Google Scholar 

  • Holmes PE and Rittenberg SC (1972a) The bacterial oxidation of nicotine. VII. Partial purification and properties of 2,6-dihydroxypyridine oxidase. J. Biol. Chem. 247: 7622–7627.

    PubMed  CAS  Google Scholar 

  • Holmes PE and Rittenberg SC (1972b) The bacterial oxidation of nicotine. VIII. Synthesis of 2,3,6-trihydroxy-pyridine and accumulation and partial characterization of the product of 2,6-dihydroxypyridine oxidation. J. Biol. Chem. 247: 7628–7633.

    PubMed  CAS  Google Scholar 

  • Horibata K, Taniuchi H, Tashiro M, Kuno S and Hayaishi O (1961) The metabolism of kynurenic acid. II. Tracer experiments m the mechanism of kynurenic acid degradation and glutamic acid synthesis by Pseudomonas extracts. J. Biol. Chem. 236: 2991–2995.

    PubMed  CAS  Google Scholar 

  • Houghton C and Cain RB (1972) Microbial metabolism of the pyridine ring. Biochem. J. 130: 879–893.

    PubMed  CAS  Google Scholar 

  • Hughes DE (1954) 6-Hydroxynicotinic acid as an intermediate in the oxidation of nicotinic acid by Pseudomonas fluorescens. Biochem. J. 60: 303–310.

    Google Scholar 

  • Hund HK, De Beyer A and Lingens F (1990) Microbial metabolism of quinoline and related compounds. VI. Degradation of quinaldine by Arthrobacter sp. Biol. Chem. Hoppe-Seyler 371:1005–1008.

    Article  PubMed  CAS  Google Scholar 

  • Hunt AL, Hughes DE and Löwenstein JM (1958) The hydroxylation of nicotinic acid by Pseudomonas fluorescens. Biochem. J. 69: 170–173.

    PubMed  CAS  Google Scholar 

  • Ikawa M, Rodwell VW and Snell E (1958) Bacterial oxidation of vitamin B6 II. Structure of “260 Compound”. J. Biol. Chem. 233: 1555–1559.

    PubMed  CAS  Google Scholar 

  • Imhoff-Stuckle D and Pfennig N (1983) Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch. Microbiol. 136: 194–198.

    Article  CAS  Google Scholar 

  • Khanna M and Shukla OP (1977) Microbial metabolism of 3-hydroxypyridine. Indian J. Biochem. Biophys. 14: 301–302.

    PubMed  CAS  Google Scholar 

  • Knackmuss HJ (1973) Zur Chemie und Biochemie der Azachinone. Angew Chem. 85: 163–169.

    Article  CAS  Google Scholar 

  • Knackmuss HJ and Beckmann W (1973) The structure of nicotine blue from Arthrobacter oxidans. Arch Mikrobiol 90: 167–169.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y and Arima K (1962) Bacterial oxidation of dipicolinic acid. II. Identification of α-ketoglutaric acid and 3-hydroxypicolinic acid and some properties of cell-free extracts. J. Bacteriol. 84: 765–771.

    PubMed  CAS  Google Scholar 

  • Kolenbrander PE and Weinberger M (1977) 2-Hydroxypyridine metabolism and pigment formation on three Arthrobacter species. J. Bacteriol. 132: 51–59.

    PubMed  CAS  Google Scholar 

  • Kolenbrander PE, Lotong N and Ensign JC (1976) Growth and pigment production by Arthrobacterpyridinolis n. sp. Arch. Microbiol. 110: 239–245.

    Article  CAS  Google Scholar 

  • Korosteleva LA, Kost AN, Vorob’eva LI, Modyanova LV, Terent’ev PB and Kulikov NS (1981) Microbiological degradation of pyridine and 3-methylpyridine. Appl. Biochem. Microbiol. 17: 276–283.

    Google Scholar 

  • Kretzer A and Andreesen JR (1991) A new pathway for isonicotinate degradation by Mycobacterium sp. INA1. J. Gen. Microbiol. 137: 1037–1080.

    Google Scholar 

  • Kucher RV, Turovsky AA, Dzumedzei NV and Shevchenko AG (1980) Microbial transformation of quinoline by Pseudomonas putida bacteria. Mikrobiol Zh (Kiev) 42: 284–287.

    CAS  Google Scholar 

  • Kung H-F and Stadtman TC (1971) Nicotinic acid metabolism. VI. Purification and properties of α-methyleneglutarate mutase (B12-dependent) and methylitaconate isomerase. J. Biol. Chem. 246: 3378–3388.

    PubMed  Google Scholar 

  • Kung H-F and Tsai L (1971) Nicotinic acid metabolism. VII. Mechanisms of action of clostridial α-methyleneglutarate mutase (B12-dependent) and methylitaconate isomerase. J. Biol. Chem. 246: 6436–6443.

    PubMed  CAS  Google Scholar 

  • Kung H-F, Cederbaum S, Tsai L and Stadtman TC (1970) Nicotinic acid metabolism. V. A cobamide coenzyme-dependent conversion of α-methyleneglutaric acid to dimethylmaleic acid. Proc. Nat. Acad. Sci. U.S.A. 65: 978–984.

    Article  CAS  Google Scholar 

  • Kuno S, Tashiro M, Taniuchi H, Horibata K and Hayaishi O (1961) Enzymatic degradation of kynurenic acid. Fed. Proc. 20: 3.

    Google Scholar 

  • Lübbe C, van Pée K-H, Salcher O and Lingens F (1983) The metabolism of tryptophan and 7-chlorotryptophan in Pseudomonas pyrrocinia and Pseudomonas aureofaciens. Hoppe Seyler’s Z Physiol. Chem. 364: 447–453.

    Article  PubMed  Google Scholar 

  • Nagel M and Andreesen JR (1989) Molybdenum-dependent degradation of nicotinic acid by Bacillus sp. DSM 2923. FEMS Microbiol. Lett. 59: 147–152.

    Article  CAS  Google Scholar 

  • Nagel M and Andreesen JR (1990) Purification and characterization of the molybdoenzymes nicotinate dehydrogenase and 6-hydroxynicotinate dehydrogenase from Bacillus niacini. Arch. Microbiol. 154: 605–613.

    Article  CAS  Google Scholar 

  • Nagel M and Andreesen JR (1991) Bacillus niacini sp. nov., a nicotinate-metabolizing mesophile isolated from soil. Int. J. Syst. Bacteriol. 41: 134–139.

    Article  Google Scholar 

  • Narumiya S, Katsuji T, Tokuyama T, Noda Y, Ushiro H and Hayaishi O (1979) A new pathway of tryptophan initiated by tryptophan side chain oxidase. J. Biol. Chem. 254: 7007–7015.

    PubMed  CAS  Google Scholar 

  • Nelson MJK and Snell EE (1986) Enzymes of vitamin B6 degradation. J. Biol. Chem. 261: 15115–15117.

    PubMed  CAS  Google Scholar 

  • Nyns EJ, Zach D and Snell EE (1969) The bacterial oxidation of vitamin B6. VIII. Enzymatic breakdown of α-(N-acetylaminomethylene)succinic acid. J. Biol. Chem. 244: 2601–2605.

    PubMed  CAS  Google Scholar 

  • Orpin CG, Knight M and Evans WC (1972) The bacterial oxidation of picolinamide, a photolytic product of Diquat. Biochem. J. 127: 819–831.

    PubMed  CAS  Google Scholar 

  • Pastan I, Tsai L and Stadtman ER (1964) Nicotinic acid metabolism. I. Distribution of isotope in fermentation products of labeled nicotinic acid. J. Biol. Chem. 239: 902–906.

    PubMed  CAS  Google Scholar 

  • Pereira WE, Rostad CE, Leiker TJ, Updegraff DM and Bennett JL (1988) Microbial hydroxylation of quinoline in contaminated groundwater: evidence for incorporation of the oxygen atom of water. Appl. Environ. Microbiol. 54: 827–829.

    PubMed  CAS  Google Scholar 

  • Peschke B and Lingens F (1991) Microbial metabolism of quinoline and related compounds. XII. Isolation and characterization of the quinoline oxidoreductase from Rhodococcus sp. B1 compared with the quinoline oxidoreductase from Pseudomonas putida 86. Biol. Chem. Hoppe-Seyler 372: 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  • Richardson SH and Rittenberg SC (1961a) The bacterial oxidation of nicotine. IV. The isolation and identification of 2,6-dihydroxy-N-methylmyosmine. J. Biol. Chem. 236: 959–963.

    PubMed  CAS  Google Scholar 

  • Richardson SH and Rittenberg SC (1961b) The bacterial oxidation of nicotine. V. Identification of 2,6-dihydroxypseudooxynicotine as the third oxidative product. J. Biol. Chem. 236: 964–967.

    PubMed  CAS  Google Scholar 

  • Roberts J and Rosenfeld HJ (1977) Isolation, crystallization, and properties of indolyl-3-alkane α-hydroxylase. A novel tryptophan-metabolizing enzyme. J. Biol. Chem. 252: 2640–2647.

    PubMed  CAS  Google Scholar 

  • Rodwell VW, Volcani BE, Ikawa M and Snell EE (1958) Bacterial oxidation of vitamin B6. I. Isopyridoxal and 5-pyridoxic acid. J. Biol. Chem. 233: 1548–1554.

    PubMed  CAS  Google Scholar 

  • Röger P and Lingens F (1989) Degradation of quinoline-4-carboxylic acid by Microbacterium sp. FEMS Microbiol. Lett. 57: 279–282.

    Article  Google Scholar 

  • Röger P, Erben A and Lingens F (1990) Microbial metabolism of quinoline and related compounds. IV. Degradation of isoquinoline by Alcaligenes faecalis Pa and Pseudomonas diminuta 7. Biol. Chem. Hoppe-Seyler 371: 511–513.

    Article  PubMed  Google Scholar 

  • Ronen Z and Bollag J-M (1991) Pyridine metabolism by a denitrifying bacterium. Can. J. Microbiol. 37: 725–729.

    Article  CAS  Google Scholar 

  • Rüger A, Schwarz G and Lingens F (1993) Microbial metabolism of quinoline and related compounds. XIX. Degradation of 4-methylquinoline and quinoline by Pseudomonas putida Kl. Biol. Chem. Hoppe-Seyler 374: 479–488.

    Article  PubMed  Google Scholar 

  • Schach S, Schwarz G, Fetzner S and Lingens F (1993) Microbial metabolism of quinoline and related compounds. XVII. Degradation of 3-methylquinoline by Comamonas testosteroni 63. Biol. Chem. Hoppe-Seyler 374: 175–181.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Röger P and Lingens F (1991) Microbial metabolism of quinoline and related compounds. XI. Degradation of quinoline-4-carboxylic acid by Microbacterium sp. H2, Agrobacterium sp. 1B and Pimelobacter simplex 4B and 5B. Biol. Chem. Hoppe-Seyler 372: 1015–1020.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz G, Senghas E, Erben A, Schäfer B, Lingens F and Höke H (1988) Microbial metabolism of quinoline and related compounds. I. Isolation and characterization of quinoline-degrading bacteria. System Appl. Microbiol. 10: 185–190.

    Article  CAS  Google Scholar 

  • Schwarz G, Bauder R, Speer M, Rommel TO and Lingens F (1989) Microbial metabolism of quinoline and related compounds. II. Degradation of quinoline by Pseudomonas fluorescens 3, Pseudomonas putida 86 and Rhodococcus sp. B1. Biol. Chem. Hoppe-Seyler 370: 1183–1189.

    Article  PubMed  CAS  Google Scholar 

  • Seyfried B and Schink B (1990) Fermentative degradation of dipicolinic acid (pyridine-2,6-dicarboxylic acid) by a defined coculture of strictly anaerobic bacteria. Biodegradation 1:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Shukla OP (1974) Microbial decomposition of α-picoline. Ind. J. Biochem. Biophys. 11: 192–200.

    CAS  Google Scholar 

  • Shukla OP (1986) Microbial transformation of quinoline by a Pseudomonas sp. Appl. Environ. Microbiol. 51: 1332–1342.

    PubMed  CAS  Google Scholar 

  • Shukla OP (1989) Microbiological degradation of quinoline by Pseudomonas stutzen: the coumarin pathway of quinoline catabolism. Microbios 59: 47–63.

    PubMed  CAS  Google Scholar 

  • Shukla OP and Kaul SM (1973) Microbial Transformation of α-picolinate by Bacillus sp. Ind. J. Biochem. Biophys. 10: 176–178.

    CAS  Google Scholar 

  • Shukla OP and Kaul SM (1974) A constitutive pyridine degrading system in Corynebacterium sp. Ind. J. Biochem. Biophys. 11: 201–207.

    CAS  Google Scholar 

  • Shukla OP and Kaul SM (1975) Succinate semialdehyde, an intermediate in the degradation of pyridine by Brevibacterium sp. Ind. J. Biochem. Biophys. 12: 326–330.

    CAS  Google Scholar 

  • Shukla OP and Kaul SM (1986) Microbiological transformation of pyridine N-oxide and pyridine by Nocardia sp. Can. J. Microbiol. 32: 330–341.

    Article  CAS  Google Scholar 

  • Shukla OP, Kaul SM and Khanna M (1977) Microbial transformation of pyridine derivatives: α-picolinate metabolism by a Gram-negative coccus. Ind. J. Biochem. Biophys. 14: 292–295.

    CAS  Google Scholar 

  • Siegmund I, Koenig K and Andreesen JR (1990) Molybdenum involvement in aerobic degradation of picolinic acid by Arthrobacter picolinophilus. FEMS Microbiol. Lett. 67: 281–284.

    Article  CAS  Google Scholar 

  • Sims GK and O’Loughlin EJ (1989) Degradation of pyridines in the environment. CRC Crit. Rev. Environ. Control. 19: 309–340.

    Article  CAS  Google Scholar 

  • Sims GK, Sommers LE and Konopka A (1986) Degradation of pyridine by Micrococcus luteus isolated from soil. Appl. Environ. Microbiol. 51: 963–968.

    PubMed  CAS  Google Scholar 

  • Singh RP and Shukla OP (1986) Isolation, characterization, and metabolic activities of Bacillus brevis degrading isonicotinic acid. J. Ferment. Technol. 64: 109–117.

    Article  CAS  Google Scholar 

  • Skryabin GK and Golovleva LA (1971) Nicotinic acid. Chem. Abstr. 75: 98452v.

    Google Scholar 

  • Sparrow LG, Ho PPK, Sundaram TK, Zach D, Nyns EJ and Snell EE (1969) The bacterial oxidation of vitamin B6. VII. Purification, properties, and mechanism of action of an oxygenase which cleaves the 3-hydroxypyridine ring. J. Biol. Chem. 244: 2590–2600.

    PubMed  CAS  Google Scholar 

  • Stafford DA and Callely AG (1970) Properties of a pyridine-degrading organism. J. Gen. Microbiol. 63: XIVP.

    Google Scholar 

  • Stadtman ER, Stadtman TC, Pastan I and Smith LD (1972) Clostridium barkeri sp.n. J. Bacteriol. 110: 758–760.

    PubMed  CAS  Google Scholar 

  • Stanier RY, Hayaishi and Tsuchida M (1951) The bacterial oxidation of tryptophan I. A general survey of the pathways. J. Bacteriol. 62: 355–366.

    PubMed  CAS  Google Scholar 

  • Sundaram TK and Snell EE (1969) The bacterial oxidation of vitamin B6. V. The enzymatic formation of pyridoxal from pyridoxine. J. Biol. Chem. 244: 2577–2584.

    PubMed  CAS  Google Scholar 

  • Tabuchi T (1955) Microbial degradation of nicotine and nicotinic acid. Part 2: Degradation of nicotine. J. Agric. Chem. Soc. Japan 29: 219–225.

    CAS  Google Scholar 

  • Taniuchi H and Hayaishi O (1963) Studies on the metabolism of kynurenic acid III. Enzymatic formation of 7,8-dihydroxykynurenic acid from kynurenic acid. J. Biol. Chem. 238: 283–293.

    PubMed  CAS  Google Scholar 

  • Tashiro M, Tsukada K, Kobayashi S and Hayaishi O (1961) A new pathway of D-tryptophan metabolism: enzymic formation of kynurenic acid via D-kynurenine. Biochem. Biophys. Res. Com. 6: 155–160.

    Article  PubMed  CAS  Google Scholar 

  • Tate RL and Ensign JC (1974a) A new species of Arthrobacter which degrades picolinic acid. Can. J. Microbiol. 20: 691–694.

    Article  PubMed  CAS  Google Scholar 

  • Tate RL and Ensign JC (1974b) Picolinic acid hydroxylase of Arthrobacter picolinophilus. Can. J. Microbiol. 20: 695–702.

    Article  PubMed  CAS  Google Scholar 

  • Tibbies PE, Müller R and Lingens F (1989a) Degradation of 5-chloro-2-hydroxynicotinic acid by Mycobacterium sp. BA. Biol. Chem. Hoppe-Seyler 370: 601–606.

    Article  Google Scholar 

  • Tibbies PE, Müller R and Lingens F (1989b) Microbial metabolism of quinoline and related compounds. III. Degradation of 3-chloroquinoline-8-carboxylic acid by Pseudomonas spec. EK III. Biol. Chem. Hoppe-Seyler 370: 1191–1196.

    Article  Google Scholar 

  • Tsai L, Pastan I and Stadtman ER (1966) Nicotinic acid metabolism. II. The isolation and characterization of intermediates in the fermentation of nicotinic acid. J. Biol. Chem. 241: 1807–1813.

    PubMed  CAS  Google Scholar 

  • Vogels GD and van der Drift C (1976) Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev. 40: 403–468.

    PubMed  CAS  Google Scholar 

  • Wada E (1957) Microbial degradation of the tobacco alkaloids, and some related compounds. Arch. Biochem. Biophys. 72: 145–162.

    Article  PubMed  CAS  Google Scholar 

  • Wada H and Snell EE (1962) Enzymatic transamination of pyridoxamine II. Crystalline pyridoxamine-pyruvate transaminase. J. Biol. Chem. 237: 133–137.

    PubMed  CAS  Google Scholar 

  • Watson GK and Cain RB (1975) Microbial metabolism of the pyridine ring. Biochem. J. 146: 157–172.

    PubMed  CAS  Google Scholar 

  • Watson GK, Houghton C and Cain RB (1974a) Microbial metabolism of the pyridine ring. Biochem. J. 140: 265–276.

    PubMed  CAS  Google Scholar 

  • Watson GK, Houghton C and Cain RB (1974b) Microbial metabolism of the pyridine ring. Biochem. J. 140: 277–292.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schwarz, G., Lingens, F. (1994). Bacterial degradation of N-heterocyclic compounds. In: Ratledge, C. (eds) Biochemistry of microbial degradation. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1687-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1687-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4738-8

  • Online ISBN: 978-94-011-1687-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics