Skip to main content

Mechanisms of T-DNA transfer and integration into plant chromosomes: role of vir B, vir D4 and vir E2 and a short interspersed repetitive element (SINE) from tobacco

  • Chapter
Molecular Mechanisms of Bacterial Virulence

Abstract

The present paper describes two topics on the early events during the formation of crown gall. (1) To measure an efficiency of T-DNA transfer from Agrobacterium cells to plant nuclei, we have developed a simple procedure which relies on Agrobacterium-mediated transient expression of the intron-GUS gene in plant cells. The results of experiments by this procedure indicate that products encoded by the virB locus and by the virD4 gene are necessary for transfer of T-DNA. VirE2 protein is also required for efficient transfer of T-DNA, although it is not absolutely essential. (2) We found a new family of short interspersed repetitive element (SINE) around the T-DNA integration target sites in the tobacco genome. SINEs are one of retroposons that is thought to originate from a tRNA or its gene. The SINE designated here as the TS family is the first example of a SINE family of plant bearing the significant homology to specific tRNAs including a vertebrate tRNALys which is thought to be a cognate molecule of most animal SINEs. The TS family occurs in approximately 5.0 104 copies per tobacco genome at least. Correlation between the presence of the TS family in tobacco chromosomes and integration of T-DNA will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

SINE:

Short Interspersed Repetitive Element

AS:

Acetosyringone

GUS:

β-Glucuronidase

References

  • Akama K & Tanifuji S (1990) Sequence analysis of three tRNAPhe nuclear genes and a mutated gene, and one genes for tRNAAla from Arabidopsis thaliana. Plant Mol. Biol. 15: 337–346.

    Article  PubMed  CAS  Google Scholar 

  • Albright LM, Yanofsky MF, Leroux B, Ma D & Nester EW (1987) Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. J. Bacteriol. 169: 1046–1055.

    PubMed  CAS  Google Scholar 

  • An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol. 79: 568–570.

    Article  PubMed  CAS  Google Scholar 

  • Chyi Y-S, Jorgensen RA, Goldstein D, Tanksley SD & Loaiza-Figueroa F (1986) Locations and stability of Agrobacterium-mediated T-DNA insertions in Lycopersicon genome. Mol. Gen. Genet. 204: 64–69.

    Article  CAS  Google Scholar 

  • Chalker DL & Sandmeyer SB (1992) Ty3 integrates within the region of RNA polymerase III transcription initiation. Genes & Dev. 6: 117–128.

    Article  CAS  Google Scholar 

  • Christie PJ, Ward JE, Winans SC & Nester EW (1988) The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J. Bacteriol. 170: 2659–2667.

    PubMed  CAS  Google Scholar 

  • Christie PJ, Ward Jr.JE, Gordon MP & Nester EW (1989) A gene required for transfer of T-DNA to plants encodes an ATPase with autophosphorylating activity. Proc. Natl. Acad. Sci. USA 86: 9677–9681.

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, De Vos G & Zambryski P (1988) Single-stranded DNA binding protein encoded by the virE locus of Agrobacterium tumefaciens. Science 240: 501–504.

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, Zupan J, Warnick D & Zambryski P (1992) Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256: 1802–1805.

    Article  PubMed  CAS  Google Scholar 

  • Cullis CA, Rivin CJ & Walbot V (1984) A rapid procedure for the determination of the copy number of repetitive sequences in eukaryotic genomes. Plant Mol. Biol. Reptr. Vol 2 (4): 24–31.

    Article  Google Scholar 

  • Das A (1988) Agrobacterium tumefaciens virE operon encodes a single-stranded DNA-binding protein. Proc. Natl. Acad. Sci. USA 85: 2909–2913.

    Article  PubMed  CAS  Google Scholar 

  • Dürrenberger F, Crameri A, Hohn B & Koukolíková-Nicola Z (1989) Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proc. Natl. Acad. Sci. USA 86: 9154–9158.

    Article  PubMed  Google Scholar 

  • Feinberg AP & Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13.

    Article  PubMed  CAS  Google Scholar 

  • Frischauf A-M, Lehrach H, Poustka A & Murray N (1983) Lambda replacement vectors carrying polylinker sequences. J. Mol. Biol. 170: 827–842.

    Article  PubMed  CAS  Google Scholar 

  • Galli G, Hofstetter H & Birnstiel ML (1981) Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature (London) 294: 626–631.

    Article  CAS  Google Scholar 

  • Gheysen G, Van Montagu M & Zambryski P (1987) Integration of Agrobacterium tumefaciens transfer DNA (T-DNA) involves rearrangements of target plant DNA sequences. Proc. Natl. Acad. Sci. USA 84: 6169–6173.

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Villarroel R & Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes & Dev. 5: 287–297.

    Article  CAS  Google Scholar 

  • Ghosh K & Ghosh HP (1984) Structure and function of tryptophan tRNA from wheat germ. Nucleic Acids Res. 12: 4997–5003.

    Article  PubMed  CAS  Google Scholar 

  • Gietl C, Koukolíková-Nicola Z & Hohn B (1987) Mobilization of T-DNA from Agrobacterium to plant cells involves a protein that binds single-stranded DNA. Proc. Natl. Acad. Sci. USA 84: 9006–9010.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S, Squires C, Pichersky E, Carrington M, Hobbs M, Mattick JS, Dalrymple B, Kuramitsu H, Shiroza T, Foster T, Clark WP, Ross B, Squires CL & Maurizi MR (1990) Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc. Natl. Acad. Sci. USA 87: 3513–3517.

    Article  PubMed  CAS  Google Scholar 

  • Herman L, Jacobs A, Van Montagu M & Depicker A (1990) Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol. Gen. Genet. 224: 248–256.

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Estrella A, Chen Z-M, Van Montagu M & Wang K (1988) VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA-protein complex at the 5’ terminus of T-strand molecules. EMBO J. 7: 4055–4062.

    PubMed  CAS  Google Scholar 

  • Herrera-Estrella A, Van Montagu M & Wang K (1990) A bacterial peptide acting as a plant nuclear targeting signal: The amino-terminal portion of Agrobacterium VirD2 protein directs a β-galactosidase fusion protein into tobacco nuclei. Proc. Natl. Acad. Sci. USA 87: 9534–9537.

    Article  PubMed  CAS  Google Scholar 

  • Hohn B, Koukolíkov00E1;-Nicola Z, Bakkeren G & Grimsley N (1989) Agrobacterium-mediated gene transfer to monocots and dicots. Genome 31: 987–993.

    Article  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT & Chilton M-D (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacterid. 168: 1291–1301.

    CAS  Google Scholar 

  • Howard EA, Zupan JR, Citovsky V & Zambryski PC (1992) The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68: 109–118.

    Article  PubMed  CAS  Google Scholar 

  • Jagadeeswaran P, Forget BG & Weissman SM (1981) Short interspersed repetitive DNA elements in eukaryotes: transposable DNA elements generated by reverse transcription of RNA pol III transcripts? Cell 26: 141–142.

    Article  PubMed  CAS  Google Scholar 

  • Janssen B-J & Gardner RC (1989) Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol. Biol. 14: 61–72.

    Article  Google Scholar 

  • Jefferson RA, Burgess SM & Hirsh D (1986) β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA 83: 8447–8451.

    Article  PubMed  CAS  Google Scholar 

  • Jin S, Komari T, Gordon MP & Nester EW (1987) Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J. Bacteriol. 169: 4417–4425.

    PubMed  CAS  Google Scholar 

  • Kado CI (1991) Molecular mechanisms of crown gall tumorigenesis. Crit. Revs. Plant Sci. 10: 1–32.

    Article  CAS  Google Scholar 

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Körber H, Redei GP & Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86: 8467–8471.

    Article  PubMed  CAS  Google Scholar 

  • Linsmaier EM & Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant 18: 100–127.

    Article  CAS  Google Scholar 

  • Machida C & Machida Y (1987) Base substitutions in transposable element IS1 cause DNA duplication of variable length at the target site for plamid co-integration. EMBO J. 6: 1799–1803.

    PubMed  CAS  Google Scholar 

  • Matsumoto S, Ito Y, Hosoi T, Takahashi Y & Machida Y (1990) Integration of Agrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA. Mol. Gen. Genet. 224: 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B & Koncz C (1991) T-DNA integration: a model of illegitimate recombination in plants. EMBO J. 10: 697–704.

    PubMed  CAS  Google Scholar 

  • Melchers LS, Maroney MJ, den Dulk-Ras A, Thompson DV, van Vuuren HAJ, Schilperoort RA & Hooykaas PJJ (1990) Octopine and nopaline strains of Agrobacterium tumefaciens differ in virulence; molecular characterization of the virF locus. Plant Mol. Biol. 14: 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz EM & Pruitt RE (1985) Arabidopsis thaliana and plant molecular genetics. Science 229: 1214–1218.

    Article  PubMed  CAS  Google Scholar 

  • Meyeroeitz K, Umeda M, Ohtsubo H & Ohtsubo E (1992) Characterization of a plant SINE, p-SINEI, in rice genomes. Japan J. Genet. 67: 155–166.

    Article  Google Scholar 

  • Nishiguchi R, Takanami M & Oka A (1987) Characterization and sequence determination of the replicator region in the hairy-root-inducing plasmid pRiA4b. Mol. Gen. Genet. 206:1–8.

    Article  CAS  Google Scholar 

  • Ohshima M, Harada N, Matsuoka M & Ohashi Y (1990) The nucleotide sequence of pathogenesis-related (PR) lc protein gene of tobacco. Nucleic Acids Res. 18: 182.

    Article  PubMed  CAS  Google Scholar 

  • Ohta S, Mita S, Hattori T & Nakamura K (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol. 31: 805–813.

    CAS  Google Scholar 

  • Okada N (1990) Transfer RNA-like structure of the human Alu family: implications of its generation mechanism and possible functions. J. Mol. Evol. 31: 500–510.

    Article  PubMed  CAS  Google Scholar 

  • Okada N (1991a) SINEs: short interspersed repeated elements of the eukaryotic genome. Trends Ecol. Evol. 6: 358–361.

    Article  PubMed  CAS  Google Scholar 

  • Okada N (1991b) SINEs. Curr. Opin. in Genet. & Dev. 1: 498–504.

    Article  CAS  Google Scholar 

  • Okada N, Aono M, Endoh H, Kido Y, Koishi R, Matsumoto K-I, Matsuo M, Murata S, Nagahashi S & Yamaki T (1991) Evolution of repetitive sequences. p. 175–186. In: Osawa S & Honjo T (eds) Evolution of Life. Springer-Verlag Tokyo.

    Google Scholar 

  • Okamoto S, Toyoda-Yamamoto A, Ito K, Takebe I & Machida Y (1991) Localization and orientation of the VirD4 protein of Agrobacterium tumefaciens in the cell membrane. Mol. Gen. Genet. 228: 24–32.

    Article  PubMed  CAS  Google Scholar 

  • Onouchi H, Yokoi K, Machida C, Matsuzaki H, Oshima Y, Matsuoka K, Nakamura K & Machida Y (1991) Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucleic Acids Res. 19: 6373–6378.

    Article  PubMed  CAS  Google Scholar 

  • Petit A, Tempe J, Kerr A, Holsters M, Van Montagu M & Schell J (1978) Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids. Nature (London) 271: 570–571.

    Article  CAS  Google Scholar 

  • Raba M, Limburg K, Burghagen M, Katze JR, Simsek M, Heckman JE, Rajbhandary UL & Gross HJ (1979) Nucleotide sequence of three isoaccepting lysine tRNAs from rabbit liver and SV40-transformed mouse fibroblasts. Eur. J. Biochem. 97: 305–318.

    Article  PubMed  CAS  Google Scholar 

  • Rogers JH (1985) The origin and evolution of retroposon. Int. Rev. Cytol. 93: 187–279.

    Article  PubMed  CAS  Google Scholar 

  • Rogowsky PM, Close TJ, Chimera JA, Shaw JJ & Kado CI (1987) Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J. Bacteriol. 169: 5101–5112.

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular cloning: A laboratory manual, second edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. pp 1.42-1.43.

    Google Scholar 

  • Sanger F, Nicklen S & Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Sciaky D, Montoya AL & Chilton MD (1978) Fingerprints of Agrobacterium Ti plasmids. Plasmid 1: 238–253.

    Article  PubMed  CAS  Google Scholar 

  • Singer MF (1982) SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28: 433–434.

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1985) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.

    Article  Google Scholar 

  • Stachel SE & Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J. 5: 1445–1454.

    PubMed  CAS  Google Scholar 

  • Stachel SE & Zambryski PC (1986) virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell 46: 325–333.

    Article  PubMed  CAS  Google Scholar 

  • Stachel SE, Nester EW & Zambryski PC (1986a). A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc. Natl. Acad. Sci. USA 83: 379–383.

    Article  PubMed  CAS  Google Scholar 

  • Stachel SE, Timmerman B & Zambryski P (1986b) Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature (London) 322: 706–712.

    Article  CAS  Google Scholar 

  • Stachel SE, Timmerman B & Zambryski P (1987) Activation of Agrobacterium tumefaciens vir gene expression generates multiple single-stranded T-strand molecules from the pTiA6 T-region: requirement for 5′ virD gene products. EMBO J. 6: 857–863.

    PubMed  CAS  Google Scholar 

  • Tenzen T & Ohtsubo E (1991) Preferential transposition of an IS630-associated composite transposon to TA in the 5’-CTAG-3’ sequence. J. Bacteriol. 173: 6207–6212.

    PubMed  CAS  Google Scholar 

  • Van Arsdell SW, Denison RA, Bernstein LB, Weiner AM, Manser T & Gesteland RF (1981) Direct repeats flank three small nuclear RNA pseudogenes in the human genome. Cell 26: 11–17.

    Article  PubMed  Google Scholar 

  • Van der Zaal EJ, Droog FNJ, Boot CJM, Hensgens LAM, Hoge JHC, Schilperoort RA & Libbenga KR (1991) Promoters of auxin-induced genes from tobacco can lead to auxin-inducible and root tip-specific expression. Plant Mol. Biol. 16: 983–998.

    Article  PubMed  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L & Rocha-Sosa M (1990) Construction of an intron-containing marker gene: Splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220: 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Veluthambi K, Jayaswal RK & Gelvin SB (1987) Virulence genes A, G and D mediate the double-stranded border cleavage of T-DNA from the Agrobacterium Ti plasmid. Proc. Natl. Acad. Sci. USA 84: 1881–1885.

    Article  PubMed  CAS  Google Scholar 

  • Wallroth M, Gerats AGM, Rogers SG, Fraley RT & Horsch RB (1986) Chromosomal localization of foreign genes in Petunia hybrida. Mol. Gen. Genet. 202: 6–15.

    Article  CAS  Google Scholar 

  • Ward ER & Barnes WM (1988) VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5′ end of T-strand DNA. Science 242: 927–930.

    CAS  Google Scholar 

  • Ward Jr. JE, Dale EM, Nester EW & Binns AN (1990) Identification of a VirBlO protein aggregate in the inner membrane of Agrobacterium tumefaciens. J. Bacteriol. 172: 5200–5210.

    PubMed  CAS  Google Scholar 

  • Weiner AM, Deininger PL & Efstratiadis A (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Ann. Rev. Biochem. 55: 631–661.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Iwahashi M, Yanofsky MF, Nester EW, Takebe I & Machida Y (1987) The promoter proximal region in the virD locus of Agrobacterium tumefaciens is necessary for the plant-inducible circularization of T-DNA. Mol. Gen. Genet. 206: 174–177.

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J & Messing J (1985) Improved Ml3 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33: 103–119.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky MF, Porter SG, Young C, Albright LM, Gordon MP & Nester EW (1986) The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47: 471–477.

    Article  PubMed  CAS  Google Scholar 

  • Young C & Nester EW (1988) Association of the VirD2 protein with the 5′ end of T strands in Agrobacterium tumefaciens. J. Bacteriol. 170: 3367–3374.

    PubMed  CAS  Google Scholar 

  • Zambryski P (1988) Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu. Rev. Genet. 22:1–30.

    Article  PubMed  CAS  Google Scholar 

  • Zambryski PC (1992) Chronicles from the Agrobacterium-plant cell DNA transfer story. Ann. Rev. Plant Mol. Biol. 43: 465–490.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yoshioka, Y. et al. (1994). Mechanisms of T-DNA transfer and integration into plant chromosomes: role of vir B, vir D4 and vir E2 and a short interspersed repetitive element (SINE) from tobacco. In: Kado, C.I., Crosa, J.H. (eds) Molecular Mechanisms of Bacterial Virulence. Developments in Plant Pathology, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0746-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0746-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4322-9

  • Online ISBN: 978-94-011-0746-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics