Skip to main content

Surface Cracks

  • Conference paper
Elastic-Plastic Fracture Mechanics
  • 258 Accesses

Abstract

For the evaluation of the behaviour of cracked components, plane specimens with a straight crack, characterized by its length a, are considered. Real cracks usually are two-dimensional surface cracks with a curved crack front. The aim of fracture mechanics is the prediction of critical loads for components with these cracks from material data obtained with the plane specimens such as compact or bend specimens The main problem is the varying stress and strain field along the crack front. For linear-elastic behaviour the determination of the stress intensity factor in the case of stress gradients and the fatigue crack pro pagation are discussed. Then the methods of plastic zone correction, crack opening displacement, J-Integral and limit load criteria are described. Finally some experimental results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASME, Boiler and Pressure Vessel Code, Section XI

    Google Scholar 

  2. Mc Gowan, J.J. and Raymund, M., ‘Stress-intensity factor solutions for internal longitudinal semi-elliptical surface flaws in a cylinder under arbitrary loading’, ASTM STP 677, 1979, 365 – 380

    Google Scholar 

  3. Newman, J.C. and Raju, I.S., ‘An empirical stress-intensity factor equation for the surface crack’, Engng. Fract. Mech. 15, 1981, 185 – 192

    Article  Google Scholar 

  4. S. and Newman, J.C., ‘Stress-intensity factors for internal and external surface cracks in cylindrical vessels’, Trans. ASME, J. Press. Vess. Techn. 104, 1982, 293 – 298

    Article  Google Scholar 

  5. Heliot, J., Labbens, R.C. and Pellissier-Tanon, A., ‘Semi-elliptical cracks in a cylinder subjected to stress gradients’, ASTM STP 677, 1979, 341 – 364

    Google Scholar 

  6. Rice, J.R. and Levy, N., ‘The part-through surface crack in an elastic plate’, Trans. ASME, J. Appl. Mech. 29, 1972, 185 – 194

    Article  Google Scholar 

  7. Parks, D.M., Lockett, R.R. and Brockenbrough, J.R., ‘Stress-intensity factors for surface-cracked plates and cylindrical shells using line-spring finite element’, 1981 Advances in Aerospace Structures and Materials ASME, 1981, pp. 279 – 285

    Google Scholar 

  8. Nishioka, T. and Atluri, S.N., ‘Analysis of surface flaw in pressure vessels by a new 3-dimensional alternating method’, Trans. ASME, J. Press. Vess. Techn. 104, 1982, 299 – 307

    Article  Google Scholar 

  9. Newman, J.C. and Raju, I.S., ‘Stress-intensity factors for internal surface cracks in cylindrical pressure vessels’, Trans. ASME, J. Press Vess. Techn. 102, 1980, 342–346

    Article  Google Scholar 

  10. Huget, W., Esser, K., Griiter, L., ‘Stress-intensity factors for slender surface cracks’, Transaction of the 7th International Conference on Structural Mechanics in Reactor Technology, 1983, paper G/F 3/4

    Google Scholar 

  11. Cruse, T.A Besuner, P.M., ‘Residual life prediction for surface cracks in complex structural details’, Journal of Aircraft12, 1975 369 – 375

    Article  Google Scholar 

  12. Yagawa, G., Ichimiya, M. and Ando, Y., ‘Theoretical and experimental analysis of semi-elliptical surface cracks, subject to thermal shock’, ASTM STP 677, 1979, 381 – 398

    Google Scholar 

  13. Bueckner, H.F., ‘A novel principle for the computation of stress intensity factors’, Z. Angew. Math. Mech. 50, 1970, 529 – 546

    MathSciNet  MATH  Google Scholar 

  14. Rice, J.R., ‘Some remarks on elastic crack-tip stress fields’, Int. J. Sol, and Struct. 8, 1972, 751 – 758

    Article  MATH  Google Scholar 

  15. Labbens, R.C., Heliot, J., Pellissier-Tanon, A., ‘Weight function for three-dimensional symmetrical crack problems’, ASTM STP 601, 1976, 448 – 470

    Google Scholar 

  16. Mattheck, C., Munz, D. and Stamm, H., ‘Stress intensity factor for semi-elliptical surface cracks loaded by stress gradients’, Engng. Fract. Mech. 18, 1983, 633 – 641

    Article  Google Scholar 

  17. Mattheck, C., Morawietz, P., Munz, D., ‘Stress-intensity factor at the surface and at the deepest point of a semi-elliptical surface crack in plates under stress gradients’, Int. J. Fract., 23, 1983, 201 – 212

    Article  Google Scholar 

  18. Petroski, J.J., Achenbach, J.D., ‘Computation of the weight function from a stress intensity factor’, Engng. Fract. Mech. 10, 1978, 257 – 266

    Article  Google Scholar 

  19. Stamm, H., Mattheck, C. and Munz, D., ‘Berechnung von Spannungsin- tensitatsfaktoren im Halbraum und in der Platte unter Thermoschock- belastung’, Berichtsband der 15. Sitzung des Arbeitskreises Bruch- vorgange 1983, Deutscher Verband für Materialpriifung, pp. 321–331

    Google Scholar 

  20. Stamm, H., Mattheck, C. and Munz, D., ‘Stress-intensity factors for surface cracks under thermal fatigue conditions’, Application of fracture mechanics to materials and structures, Proceedings of an International Conference in Freiburg, Martinus Nijhoff Publishers 1984, pp. 855 – 865

    Google Scholar 

  21. Sneddon, I.N., ‘The distribution of stress in the neighbourhood of a crack in an elastic solid’, Proceedings of the Physical Society of London187, 1946, 229 – 260

    MathSciNet  Google Scholar 

  22. de Lorenzi, H.G., ‘Elastic-plastic analysis of the maximum postula-ted flaw in the beltline region of a reactor vessel’, Trans. ASME, J. Press. Vess. Techn. 104, 1982, 278 – 286

    Article  Google Scholar 

  23. Benthem, J.P., ‘The quarter-infinite crack in a half space; alternative and additional solutions’, Intern. J. Solids and Struct. 16, 1980, 119 – 130

    Article  MATH  Google Scholar 

  24. Burton, W.S., Sinclair, G.B., Solecki, J.S. and Swedlow, J.L., ‘On the implications for LEFM of the three-dimensional aspects in some crack/surface intersection problems’, Int. J. Fract. 25, 1984, 3 – 32

    Article  Google Scholar 

  25. Smith, C.W., Epstein, J.S., and Olaosebikan, O., ‘Boundary layer effects in cracked bodies: an engineering assessment’, 17th National Symposium on Fracture Mechanics, Albany, N.Y., USA, 1984

    Google Scholar 

  26. Görner, F., Mattheck, C. and Munz, D., ’Change in geometry of surface cracks during alternating tension and bending, Z. Werkstofftech. 14, 1983, 11 – 18

    Article  Google Scholar 

  27. Müller, H.M., Müller, S., Munz, D., Neumann, J., ‘Extension of surface cracks during cyclic loading’, 17th National Symposium on Fracture Mechanics, Albany, N.Y., USA, 1984

    Google Scholar 

  28. Pellissier-Tanon, A., ‘Fracture mechanics in structure design’, Application of Fracture Mechanics in Materials and Structures, Proceedings of an International Conference in Freiburg, 1983, Martinus Nijhoff Publishers, 1984, pp. 213 – 234

    Google Scholar 

  29. Trantina, G.G., de Lorenzi, H.G. and Wilkensing, W.W., ’Three-dimensional elastic-plastic finite element analysis of small surface cracks, Engng. Fract. Mech. 18, 1983, 925 – 938

    Article  Google Scholar 

  30. Irwin, G.R., ‘Crack-extension force for a part-through crack in a plate’, Trans. ASME, J. Appl. Mech. 29, 1962, 651 – 654

    Google Scholar 

  31. Munz, D., ‘Minimum specimen size for the application of linear-elas- tic fracture mechanics’, ASTM STP 668, 1979, 406–425

    Google Scholar 

  32. Munz, D., ‘Linear-elastische und elastisch-plastische Bruchmechanik von Konstruktionswerkstoffen’, DFVLR-Forschungsbericht79–31, 1979

    Google Scholar 

  33. Sumpter, J.D.G. and Turner, C.E., ‘Design using elastic-plastic fracture mechanics’, Int. J. Fract. 12, 1976, 861 – 871

    Google Scholar 

  34. Civelek, M.B. and Erdogan, F., ‘Elastic-plastic problems for a plate with a part-through crack under extension and bending’, Int. J. Fract. 20, 1982, 33 – 46

    Article  Google Scholar 

  35. Ezzat, H., Erdogan, F., ‘Elastic-plastic fracture of cylindrical shells containing a part-through circumferential crack’, Trans. ASME, J. Press. Vess. Techn. 104, 1982

    Google Scholar 

  36. Sumpter, J.D.G., ‘The prediction of KIc using J and COD from small specimen tests’, Metal Science 10, 19/8, 354–356

    Article  Google Scholar 

  37. Milne, I. and Chell, G.G., ‘Effect of size on the J fracture criterion’, ASTM STP 668, 1979, 358 – 377

    Google Scholar 

  38. Munz, D. and Keller, H.P., ‘Effect of specimen size on fracture toughness in the ductile brittle transition region of steel’, Fracture and Fatigue, Proceeding of the 3. European Conference on Fracture, London 1980, pp. 105 – 117

    Google Scholar 

  39. Parks, D.M. ‘A stiffness derivative finite element technique for determination of crack tip stress intensity factors’, Int. J. Fracture10, 1974, 487 – 502

    Article  Google Scholar 

  40. de Lorenzi, H.G., ‘On the energy release rate and the J-Integral for 3D crack configurations’, Int. J. Fract. 19, 1982, 183 – 193

    Article  Google Scholar 

  41. Begley, J.A., Landes. J.D. and Wilshaw, W.K., ’An estimation model for the application of the J-integral’, ASTM STP 560, 1974, 155 – 169

    Google Scholar 

  42. Harrison, R.P., Loosemore, K., Milne, I. and Dowling. A.R., ‘Assessment of the integrity of structures containing defects’, Central Electricity Generating Board, U.K. Report R/H/R6-Rev. 2, 1980

    Google Scholar 

  43. Kanninen, M.F., ‘Towards an elastic-plastic fracture mechanics predictive capability for reactor piping’, Nuclear Engineering and Design, 48, 1978, 117 – 134

    Article  Google Scholar 

  44. Chell, G.G., ‘Elastic-plastic fracture mechanics’, in Development in Fracture Mechanics - 1, Applied Science Publishers, 1979, pp. 67 – 105

    Google Scholar 

  45. Mattheck, C., Morawietz, P. Munz, D. and Wolf, B., ‘Ligament yielding ofa plate with semi-elliptical cracks under uniform tension’, Int.J.Press.Vess & Piping 16, 1984, 131–143

    Article  Google Scholar 

  46. Hasegawa, K., Shimizu, T., Sakata, S. and Shida, S., ‘Stable crack growth and leak predictions of stainless steel pipes with circumferential cracks’, Transactions of the 6th Conference on Structural Mechanics in Reactor Technology/, Paper L 5/3

    Google Scholar 

  47. Hasegawa, K., Sakata, S., Shimizu, T. and Shida, S., ‘Prediction of fracture tolerances for stainless steel pipes with circumferential cracks’, 4th ASME Pressure Vessel and Pipe Conference, Portland 1983

    Google Scholar 

  48. Mattheck, C., Gorner, F., ‘Leak prediction by use of a generalized Dugdale model for semi-elliptical surface flaws in plates under tension loading’, Proceedings of the 5th European Conference on Fracture, 1984, Vol. II, pp. 631 – 642

    Google Scholar 

  49. Göring, J., ‘Versagensverhalten von Flachzugproben mit einem halb- elliptischen Oberflächenriß aus einem Werkzeugstahl’, Diplomarbeit, Institut für Zuverlässigkeit und Schadenskunde im Maschinenbau, Uni- versitat Karlsruhe (TH ), September 1983

    Google Scholar 

  50. Brocks, W., Noack, H.D., Veith, H., ‘Three dimensional elastic- plastic analysis of a semi-elliptical inner surface flaw by finite element method’, Transactions of the 7th International Conference on Structural Mechanics in Reactor Technology, 1983, paper G/F 3/1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 ECSC,EEC,EAEC, Brussels and Luxembourg

About this paper

Cite this paper

Munz, D. (1985). Surface Cracks. In: Larsson, L.H. (eds) Elastic-Plastic Fracture Mechanics. Ispra Courses on Materials, Engineering and Mechanical Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5380-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5380-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8874-9

  • Online ISBN: 978-94-009-5380-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics