Skip to main content
Log in

On the energy release rate and the J-integral for 3-D crack configurations

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper an analytical expression for the energy release rate has been derived and put in a form suitable for a numerical analysis of an arbitrary 3-D crack configuration. The virtual crack extension method can most conveniently be used for such a derivation. This method was originally developed from finite element considerations and the resulting expressions were, therefore, based on the finite element matrix formulation [1–5]. In this paper the derivation of the energy release rate leads to an expression which is independent of any specific numerical procedure. The formulation is valid for general fracture behavior including nonplanar fracture and shear lips and applies to elastic materials as well as materials following the deformation theory of plasticity. The body force effect is also included. For 3-D fracture problems it is of advantage to use both an average and a local form of the energy release rate and definitions for both forms are suggested. For certain restrictions on the crack geometry it is shown that the energy release rate reduces to the 3-D form of the J-integral.

Résumé

Dans le mémoire, on a établi une expression analytique pour la vitesse de relaxation de l'énergie et on l'a mise sous une forme convenable pour une analyse numérique de configurations de fissures arbitrairement à trois dimensions. La méthode d'extension virtuelle de la fissure est celle qui convient le mieux pour un tel traitement. Cette méthode a été, à l'origine, développée à partir de considérations d'éléments finis et les expressions qui en résultaient ont dès lors été basées sur une formulation de matrice d'éléments finis [1, 5]. Dans le présent mémoire, la dérivation de la vitesse de relaxation de l'énergie conduit à une expression indépendante de toute procédure numérique spécifique. La formulation est applicable au comportement général à la rupture comprenant des ruptures non coplanaires et des lèvres de cisaillement, et s'applique à des matériaux aussi bien élastiques que redevables de la théorie des déformations en plasticité. On tient compte également de l'effet des forces appliquées sur un corps. Dans le cas de problèmes de rupture à trois dimensions, il est avantageux d'utiliser à la fois une forme moyenne et une forme locale de taux de relaxation d'énergie et l'on suggère des définitions pour ces deux formes. Dans le cas de certaines restrictions relatives à la géométrie de la fissure, on montre que le taux de relaxation de l'énergie se ramène à une expression générale à trois dimensions de l'intégrale J.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.K. Hellen, “The Finite Element Calculations of Stress Intensity Factors Using Energy Techniques”, 2nd International Conference on Structural Mechanics in Reactor Technology (SMiRT), Paper G5/3, Berlin (1973).

  2. D.M. Parks, International Journal of Fracture 10, No. 4 (1974) 487–502.

    Google Scholar 

  3. T.K. Hellen, International Journal for Numerical Methods in Engineering 9 (1975) 187.

    Google Scholar 

  4. D.M. Parks, Computer Methods in Applied Mechanics and Engineering 12 (1977) 353.

    Article  Google Scholar 

  5. D.M. Parks, in Proceedings of the First International Conference on Numerical Methods in Fracture Mechanics, Swansea (1978) 464.

  6. H.G. deLorenzi and C.F. Shih, “3-D Elastic-Plastic Investigation of Fracture Parameters in Side Grooved Compact Specimen”, accepted for publication by International Journal of Fracture.

  7. C. Truesdell, in Encyclopedia of Physics, ed. by S. Flügge, Springer-Verlag, Berlin (1960) sec. 303.

    Google Scholar 

  8. J.D. Eshelby, Solid State Physics, Vol. 3, Academic Press, New York (1956).

    Google Scholar 

  9. J.R. Rice, Journal of Applied Mechanics (June 1968) 379.

  10. J.K. Knowles and E. Sternberg, Archive for Rational Mechanics and Analysis 44, No. 3 (1972) 187.

    Article  Google Scholar 

  11. M. Sakata, S. Aoki and K. Ishii, in Proceedings of International Conference on Fracture Mechanics and Technology, ed. G.C. Sih and C.L. Chow, Vol. 1, Sijthoff and Noordhoff Publishers (1977) 515.

  12. J.D. Eshelby, in Inelastic Behavior of Solids, edited by M.F. Kanninen et al., McGraw-Hill, New York (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

deLorenzi, H.G. On the energy release rate and the J-integral for 3-D crack configurations. Int J Fract 19, 183–193 (1982). https://doi.org/10.1007/BF00017129

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017129

Keywords

Navigation