Skip to main content

Fusarium Mycotoxins. An Overview of Chemical Characterization and Techniques for its Determination from Agricultural Products

  • Chapter
  • First Online:
Fusarium Head Blight in Latin America

Abstract

The requirement to apply regulatory limits (or at least recommendations) to detect mycotoxins presence in several samples, such as food, feed, and other biological matrices has prompted the development of a vast number of analytical methods for the detection, quantification and confirmation of these metabolites. The present chapter describes several methods developed for the determination of mycotoxins produces by Fusarium species associated with Fusarium Head Blight worldwide. The chemical diversity of Fusarium mycotoxins and their varying concentration ranges in a wide range of agricultural commodities, foods and biological samples poses a great challenge to analytical chemists. The different chemical and physicochemical properties of the mentioned mycotoxins require specific extraction, cleanup, separation and detection methods. Advantages and disadvantages of each method depend on its capability to separate impurities from the analytes, the time of sample preparation and economic aspects. The Fusarium mycotoxicology had its beginnings in 1809 with the identification of this genus by Johann Link, who characterized this group of fungi by the typical shape of their macroconidia. In 1903 the first indication that Fusarium graminearum and related species were associated with mycotoxicosis in farm animals appeared, producing hemorrhagic and estrogen syndromes, and rejection of food animals, especially pigs. Between 1961 and 1991, a group of researchers discovered the three most important mycotoxins produced by Fusarium genus: fumonisins, trichothecenes and zearalenone, as well as other emergent mycotoxins such us: beauvericin, fusaproliferin, and moniliformin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrés F, Zougagh M, Castaneda G, Ríos A (2008) Determination of zearalenone and its metabolites in urine samples by liquid chromatography with electrochemical detection using a carbon nanotube-modified electrode. J Chromatogr A 1212:54–60

    Article  PubMed  CAS  Google Scholar 

  • Barna-Vetró I, Gyöngyösi A, Solti L (1994) Monoclonal antibody-based enzyme-linked immunosorbent assay of Fusarium T-2 and zearalenone toxins in cereals. Appl Environ Microbiol 60:729–731

    PubMed  Google Scholar 

  • Bennet BA, Nelsen TC, Miller BM (1994) Enzyme-linked immunosorbent assay for detection of zearalenone in corn, wheat, and pig feed: collaborative study. J AOAC Int 77:1500–1509

    Google Scholar 

  • Berger U, Oehme M, Kuhn F (1999) Quantitative determination and structure elucidation of type A- and B-trichothecenes by HPLC/Ion trap multiple mass spectrometry. J Agric Food Chem 47:4240–4245

    Article  PubMed  CAS  Google Scholar 

  • Berthiller F, Schuhmacher R, Buttinger G, Krska R (2005) Rapid simultaneous determination of major type A- and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1062:209–216

    Article  PubMed  CAS  Google Scholar 

  • Bhat RV, Shetty HPK, Amruth RP, Sudershan RV (1997) A foodborne disease outbreak due to the consumption of moldy sorghum and maize containing fumonisin mycotoxins. J Toxicol 35:249–255

    CAS  Google Scholar 

  • Bird SB, Herrick JE, Wander MM, Wright SF (2002) Spatial heterogeneity of aggregate stability and soil carbon in semi-arid rangeland. Environ Pollut 116:445–455

    Article  PubMed  CAS  Google Scholar 

  • Biselli S, Hummert C (2005) Development of a multicomponent method for Fusarium toxins using LC-MS/MS and its application during a survey for the content of T-2 toxin and deoxynivalenol in various feed and food samples. Food Addit Contam 22:752–760

    Article  PubMed  CAS  Google Scholar 

  • Brian PW, Dawkins AW, Grove JF, Hemming HG, Lowe D, Horries GLF (1961) Phytotoxic compounds produced by Fusarium equiseti. J Exp Bot 12:1–21

    Article  CAS  Google Scholar 

  • Briones-Reyes D, Gómez-Martinez L, Cueva-Rolón R (2007) Zearalenone contamination in corn for human consumption in the state of Tlaxcala, Mexico. Food Chem 100:693–698

    Article  CAS  Google Scholar 

  • Carter RM, Blake RC, Mayer HP, Echevarria AA, Nguyen TD, Bostanian LA (2000) A fluorescent biosensor for detection of zearalenone. Anal Lett 33:405–432

    Article  CAS  Google Scholar 

  • Cavaliere C, Foglia P, Pastorini E, Samperi R, Lanana A (2005) Development of a multiresidue method for analysis of major Fusarium mycotoxins in corn meal using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 19:2085–2093

    Article  PubMed  CAS  Google Scholar 

  • Churchwell MI, Cooper WM, Howard PC, Doerge DR (1997) Determination of fumonisins in rodent feed using HPLC with electrospray mass spectrometric detection. J Agric Food Chem 45:2573–2578

    Article  CAS  Google Scholar 

  • De Saeger S, Sibanda L, Ban Peteghem C (2003) Analysis of zearalenone and alpha-zearalenolin animal feed using high-performance liquid chromatography. Anal Chim Acta 487:137–143

    Article  CAS  Google Scholar 

  • Delmulle BS, De Saeger MDG, Sibanda L, Vetero IB, Peteghem CHV (2005) Development of an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B1 in pig feed. J Agric Food Chem 53:3365–3368

    Article  CAS  Google Scholar 

  • Desjardins AE (2006) Fusarium mycotoxins. Chemistry, genetics, and biology. The American Phytopathological Society, St. Paul, 260 p

    Google Scholar 

  • Dowell FE, Ram MS, Seitz MS (1999) Predicting scab, vomitoxin, and ergosterol in single wheat kernels using near-infrared spectroscopy. Cereal Chem 76:573–576

    Article  CAS  Google Scholar 

  • Dupuy J, Le Bars P, Le Bars J, Boudra H (1993) Determination of fumonisin B1 in corn by instrumental thin layer chromatography. J Planar Chromatogr 6:476–480

    CAS  Google Scholar 

  • European Commission (2006) European Commission (Recommendation 2006/576/EC of 17 August 2006). The presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off J Eur Union L 229:7–9

    Google Scholar 

  • Fernandez C, Stack ME, Musser SM (1994) Determination of deoxnivalenol in 1991 U.S. winter and spring wheat by high performance thin layer chromatography. J AOAC Int 77:628

    PubMed  CAS  Google Scholar 

  • Filek G, Lindner W (1996) Determination of the mycotoxin moniliformin in cereals by high-performance liquid chromatography and fluorescence detection. J Chromatogr A 732:291–298

    Article  CAS  Google Scholar 

  • Gabaldón S, López S, Carda JB (2003) Legislación y gestión medioambiental en la producción de baldosas cerámicas. Boletín de la Sociedad Española de Cerámica y Vidrio 42:169–179

    Article  Google Scholar 

  • Gelderblom WC, Jaskiewicz K, Marasas WF, Thiel PG, Horak RM, Vleggaar R, Kriek NP (1988) Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54:1806–1811

    PubMed  CAS  Google Scholar 

  • Gilbert J (1993) Recent advances in analytical methods for mycotoxins. Food Addit Contam 10:37–48

    Article  PubMed  CAS  Google Scholar 

  • Gilbert J (2000) Overview of mycotoxin methods, present status and future needs. Nat Toxins 7:347–352

    Article  Google Scholar 

  • Gilbert J, Anklam E (2002) Validation of analytical methods for determining mycotoxins in foodstuffs. Trends Anal Chem 21:468–486

    Article  CAS  Google Scholar 

  • Goryacheva IY, De Saeger S, Delmulle B, Lobeau M, Eremin SA, Barna-Vetró I, Van Peteghem C (2007) Simultaneous non-instrumental detection of aflatoxin B1 and ochratoxin A using a clean-up tandem immunoassay column. Anal Chim Acta 590:118–138

    Article  PubMed  CAS  Google Scholar 

  • Häubl G, Berthiller F, Krska R, Schuhmacher R (2005) Suitability of a fully 13C isotope labeled internal standard for the determination of mycotoxin deoxynivalenol by LC–MS/MS without clean-up. Anal Bioanal Chem 384:692–696

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Hierro JM, García-Villanova RJ, González-Martín I (2008) Potential of near infrared spectroscopy for the analysis of mycotoxins applied to naturally contaminated red paprika found in the Spanish market. Anal Chim Acta 622:189–194

    Article  PubMed  CAS  Google Scholar 

  • Hervás M, López A, Escarpa A (2009) Electrochemical immunoassay using magnetic beads for the determination of zearalenone in baby food: an anticipated analytical tool for food safety. Anal Chim Acta 653:167–172

    Article  PubMed  CAS  Google Scholar 

  • Hervás M, López MA, Escarpa A (2010) Simplified calibration and analysis on screen-printed disposable platforms for electrochemical magnetic bead-based inmunosensing of zearalenone in baby food samples. Biosens Bioelectron 25:1755–1760

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann RW, Bressel U, Gelhaus J, Hauser H (1971) Tetramethoxyethylene, VII. 2 + 2-cycloadditions to tetramethoxyethylene. Chem Ber 104:873–885

    Article  CAS  Google Scholar 

  • Ingle MB, Martin BW (1986) Precocious puberty in Puerto Rico. J Pediatr 109:390–391

    PubMed  CAS  Google Scholar 

  • Kadota T, Takezawa T, Hirano S, Tajima O, Maragos CM, Nakajima T, Tanaka T, Kamata Y, Sugita-Konishi Y (2010) Rapid detection of nivalenol and deoxynivalenol in wheat using surface Plasmon resonance immunoassay. Anal Chim Acta 673:173–178

    Article  PubMed  CAS  Google Scholar 

  • Klötzel M, Schmidt S, Lauber U, Thielert G, Humpf HU (2005) Comparison of different clean-up procedures for the analysis of deoxynivalenol in cereal-based food and validation of a reliable HPLC method. Chromatographia 62:41–48

    Article  CAS  Google Scholar 

  • Koch P (2004) State of the art of trichothecenes analysis. Toxicol Lett 153:109–112

    Article  PubMed  CAS  Google Scholar 

  • Kolosova AY, De Saeger S, Sibanda L, Verheijen R, Van Peteghem C (2007) Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of zearalenone and deoxynivalenol. Anal Bioanal Chem 389:2103–2107

    Article  PubMed  CAS  Google Scholar 

  • Kolosova AY, Sibanda L, Dumoulin F, Lewis J, Duveiller E, Van Peteghem C, De Saeger S (2008) Lateral-flow colloidal gold-based immunoassay for the rapid detection of deoxynivalenol with two indicator ranges. Anal Chim Acta 616:235–244

    Article  PubMed  CAS  Google Scholar 

  • Kotal F, Radová Z (2002) A simple method for determination of deoxynivalenol in cereals and flours. Czech J Food Sci 2:63–68

    Google Scholar 

  • Krska R (1998) Performance of modern sample preparation techniques in the analysis of Fusarium mycotoxins in cereals. J Chromatogr A 815:49–57

    Article  PubMed  CAS  Google Scholar 

  • Krska R, Josephs R (2001) The state-of-the-art in the analysis of estrogenic mycotoxins in cereals. Fresenius J Anal Chem 369:469–476

    Article  PubMed  CAS  Google Scholar 

  • Krska R, Molinelli A (2009) Rapid test strips for analysis of mycotoxins in food and feed. Anal Bioanal Chem 393:67–71

    Article  PubMed  CAS  Google Scholar 

  • Krska R, Baumgartner S, Josephs R (2001) The state-of-the-art in the analysis of type-A and -B trichothecene mycotoxins in cereals. Fresenius J Anal Chem 371:285–299

    Article  PubMed  CAS  Google Scholar 

  • Krska R, Welzig E, Berthiller F, Molinelli A, Mizaikoff B (2005) Advances in the analysis of mycotoxins and its quality assurance. Food Addit Contam 22:345–353

    Article  PubMed  CAS  Google Scholar 

  • Kuiper GJ, Lemmen JG, Carlsson B, Corton C, Safe SH, Van der Saag PT (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor b. Endocrinology 139:4252–4263

    Article  PubMed  CAS  Google Scholar 

  • Kulisek ES, Hazebroek JP (2000) Comparison of extraction buffers for the detection of fumonisin B1 in corn by immunoassay and high performance liquid chromatography. J Agric Food Chem 48:65–69

    Article  PubMed  CAS  Google Scholar 

  • Lacy A, Dunne L, Fitzpatrick B, Daly S, Keating G, Baxter A, Hearty S, O’Kennedy R (2008) Rapid analysis of coumarins using surface plasmon resonance. J AOAC Int 89:884–892

    Google Scholar 

  • Laganà A, Curini R, D’Ascenzo G, De Leva I, Faberi A, Pastorini E (2003) Liquid chromatography/tandem mass spectrometry for the identification and determination of trichothecenes in maize. Rapid Commun Mass Spectrom 17:1037–1043

    Article  PubMed  CAS  Google Scholar 

  • Langseth W, Rundberget T (1998) Review: instrumental methods for determination of nonmacrocyclic trichothecenes in cereals, foodstuffs and cultures. J Chromatogr A 815:103–121

    Article  CAS  Google Scholar 

  • Lattanzio VM, Solfrizzo M, Powers S, Visconti A (2007) Simultaneous determination of aflatoxins, ochratoxin A and Fusarium toxins in maize by liquid chromatography tandem mass spectrometry after multitoxin immunoaffinity clean-up. Rapid Commun Mass Spectrom 21:3253–3261

    Article  PubMed  CAS  Google Scholar 

  • Lattanzio VMT, Solfrizzo M, Visconti A (2008) Determination of trichothecenes in cereals and cereal-based products by liquid chromatography–tandem mass spectrometry. Food Addit Contam 25:320–330

    Article  CAS  Google Scholar 

  • Lattanzio VMT, Nivarlet N, Lippolis V, Della Gatta S, Huet A, Delahaut P, Granier B, Visconti A (2012) Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chim Acta 718:99–108

    Article  PubMed  CAS  Google Scholar 

  • Le Bars J, Le Bars P, Dupuy J, Boudra H, Cassini R (1994) Biotic and abiotic factors in fumonisin B1 production and stability. J AOAC Int 77:517–521

    Google Scholar 

  • Lippolis V, Pascale M, Visconti A (2006) Optimization of a fluorescence polarization immunoassay for rapid quantification of deoxynivalenol in Durum wheat-based products. J Food Prot 69:2712–2719

    PubMed  CAS  Google Scholar 

  • Lippolis V, Pascale M, Maragos CM, Visconti A (2008) Improvement of detection sensitivity of T-2 and HT-2 toxins using different fluorescent labeling reagents by high-performance liquid chromatography. Talanta 74:1476–1483

    Article  PubMed  CAS  Google Scholar 

  • Macdonald SJ, Anderson S, Brereton P (2005) Determination of zearalenone in barley, maize and wheat flour, polenta, and maize-based baby food by immunoaffinity column cleanup with liquid chromatography: interlaboratory study. J AOAC Int 88:1733–1740

    PubMed  CAS  Google Scholar 

  • Maragos CM (2004) Emerging technologies for mycotoxin detection. Toxin Rev 23:317–344

    Article  CAS  Google Scholar 

  • Maragos CM (2006) Measurement of T-2 and HT-2 toxins in eggs by high-performance liquid chromatography with fluorescence detection. J Food Prot 69:2773–2776

    PubMed  CAS  Google Scholar 

  • Maragos CM (2009) Biosensors for mycotoxin analysis: recent developments and future prospects. World Mycotoxin J 2:221–238

    Article  CAS  Google Scholar 

  • Maragos CM, Appell M (2007) Capillary electrophoresis of the mycotoxin zearalenone using cyclodextrin-enhanced fluorescence. J Chromatogr A 1143:252–257

    Article  PubMed  CAS  Google Scholar 

  • Maragos CM, Kim EK (2004) Detection of zearalenone and related metabolites by fluorescence polarization immunoassay. J Food Prot 67:1039–1043

    PubMed  CAS  Google Scholar 

  • Maragos CM, Plattner RD (2002) Rapid fluorescence polarization immunoassay for the mycotoxin deoxynivalenol in wheat. J Agric Food Chem 50:1827–1832

    Article  PubMed  CAS  Google Scholar 

  • Maragos JE, Crosby MP, McManus JW (1996) Coral reefs and biodiversity: a critical and threatened relationship. Oceanography 9:83–99

    Article  Google Scholar 

  • Maragos CM, Jolley ME, Nasir MS (2002) Fluorescence polarization as a tool for the detection of deoxynivalenol in wheat. Food Addit Contam 19:400–407

    Article  PubMed  CAS  Google Scholar 

  • Maragos C, Busman M, Sugita-Konishi Y (2006) Production and characterization of a monoclonal antibody that cross-reacts with the mycotoxins nivalenol and 4-deoxynivalenol. Food Addit Contam 23:816–825

    Article  PubMed  CAS  Google Scholar 

  • Mateo JJ, Mateo R, Hinojo MJ, Lorens A, Jimenez M (2002) Liquid chromatographic determination of toxigenic secondary metabolites produced by Fusarium strains. J Chromatogr A 955:245–356

    Article  PubMed  CAS  Google Scholar 

  • Molinelli A, Grossalber K, Führer M, Baumgartner S, Sulyok M, Krska R (2008) Development of qualitative and semiquantitative immunoassay-based rapid strip tests for the detection of T-2 toxin in wheat and oat. J Agric Food Chem 56:2589–2594

    Article  PubMed  CAS  Google Scholar 

  • Mullett W, Lai EPC, Yeung JM (1998) Immunoassay of fumonisins by a surface plasmon resonance biosensor. Anal Biochem 258:161–167

    Article  PubMed  CAS  Google Scholar 

  • Ngundi MM, Qadri SA, Wallace EV, Moore MH, Lassman ME, Shriver-Lake LC, Ligler FS, Taitt CR (2006) Detection of deoxynivalenol in foods and indoor air using an array biosensor. Environ Sci Technol 40:2352–2356

    Article  PubMed  CAS  Google Scholar 

  • Nuryono N, Noviandi CT, Böhm J, Razzazi-Fazeli E (2005) A limited survey of zearalenone in Indonesian maize-based food and feed by ELISA and high performance liquid chromatography. Food Control 16:65–71

    Article  CAS  Google Scholar 

  • Ostry V, Skarkova J (2000) Development of an HPTLC method for the determination of deoxynivalenol in cereal products. J Plan Chromatogr Modern TLC 13:443–446

    CAS  Google Scholar 

  • Palacios SA, Ramirez ML, Cabrera Zalazar M, Farnochi MC, Zappacosta D, Chiacchiera SM, Reynoso MM, Chulze SN, Torres AM (2011) Occurrence of Fusarium spp. and fumonisin in durum wheat grains. J Agric Food Chem 59(22):12264–12269

    Article  PubMed  CAS  Google Scholar 

  • Pallanori L, Von Holst C (2003) Determination of zearalenone from wheat and corn by pressurized liquid extraction and liquid chromatography-electrospray mass spectrometry. J Chromatogr A 993:39–45

    Article  CAS  Google Scholar 

  • Pascale M, Haidukowski M, Visconti A (2003) Determination of T-2 toxin in cereal grains by liquid chromatography with fluorescence detection after immunoaffinity column clean-up and derivatization with 1-anthroylnitrile. J Chromatogr A 989:257–264

    Article  PubMed  CAS  Google Scholar 

  • Pettersson H, Aberg L (2003) Near infrared spectroscopy for determination of mycotoxins in cereals. Food Control 14:229–232

    Article  CAS  Google Scholar 

  • Plattner RD (1995) Detection of fumonisins produced in Fusarium moniliforme cultures by HPLC with electrospray MS and evaporative light scattering detectors. Nat Toxins 3:294–298

    Article  PubMed  CAS  Google Scholar 

  • Plattner RD (1999) HPLC/MS Analysis of Fusarium mycotoxins, fumonisins and deoxynivalenol. Nat Toxins 7:365–370

    Article  PubMed  CAS  Google Scholar 

  • Plattner RD, Norred WP, Bacon CW, Voss KW, Peterson R, Shackelford DD, Weisleder D (1990) A method of detection of fumonisins in corn samples associated with field cases of equine leukoencephalomalacia. Mycologia 82:698–702

    Article  CAS  Google Scholar 

  • Radová Z, Hajslová J, Králová J (2001) Analysis of zearalenone in wheat using high-performance liquid chromatography with fluorescence detection and/or enzyme linked immunosorbent assay. Cereal Res Commun 29:435–442

    Google Scholar 

  • Ramírez EA, Molina PG, Zón MA, Fernández H (2005) Development of an electroanalytical method for the quantification of zearalenone in maize samples. Electroanalysis 17:1635–1640

    Article  CAS  Google Scholar 

  • Razzazi-Fazeli E, Böhm J, Luf W (1999) Determination of nivalenol and deoxynivalenol in wheat using liquid chromatography-mass spectrometry with negative ion atmospheric pressure chemical ionization. J Chromatogr A 854:45–55

    Article  PubMed  CAS  Google Scholar 

  • Razzazi-Fazeli E, Rabus B, Cecon B, Böhm J (2002) Simultaneous quantification of A-trichothecene mycotoxins in grains using liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 968:129–142

    Article  PubMed  CAS  Google Scholar 

  • Reza OM, HJajimahmoodi M, Memariam S (2005) Determination of zearalenone in corn flour and a cheese snack product using high-performance liquid chromatography with fluorescence detection. Food Addit Contam 22:443–448

    Article  CAS  Google Scholar 

  • Rheeder JP, Marasas WFO, Vismer HF (2002) Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol 68:2101–2105

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg E, Krska R, Wissiack R, Kmetov V, Josephs R, Razzazi E, Grasserbauer M (1998) High performance liquid chromatography-atmospheric-pressure chemical ionization mass spectrometry as a new tool for the determination of the mycotoxin zearalenone in food and feed. J Chromatogr A 819:277–288

    Article  PubMed  CAS  Google Scholar 

  • Ross PF, Rice LG, Plattner RD, Osweiler GD, Wilson TM, Owens DL, Nelson HA, Richard JL (1991) Concentrations of fumonisin B1 in feeds associated with animal health problems. Mycopathologia 114:129–135

    Article  PubMed  CAS  Google Scholar 

  • Rottinghaus GE, Coatney CE, Minor HC (1992) A rapid, sensitive thin layer chromatography procedure for the detection of fumonisin B1 and B2. J Vet Diagn Invest 4:326–329

    Article  PubMed  CAS  Google Scholar 

  • Saha D, Acharya D, Roy D, Shrestha D, Dhar TK (2007) Simultaneous enzyme immunoassay for the screening of aflatoxin B1 and ochratoxin A in chili samples. Anal Chim Acta 584:343–349

    Article  PubMed  CAS  Google Scholar 

  • Schaafsma AW, Nicol RW, Savard ME, Sinha RC, Reid LM, Rottinghaus G (1998) Analysis of Fusarium toxins in maize and wheat using thin layer chromatography. Mycopathologia 142:107–113

    Article  PubMed  CAS  Google Scholar 

  • Schneider E, Usleber E, Märtlbauer E, Terplan G (1995) Multimycotoxin dipstick enzyme immunoassay applied to wheat. Food Addit Contam 12:387–393

    Article  PubMed  CAS  Google Scholar 

  • Schneider E, Curtui V, Seidler C, Dietrich R, Usleber E, Märtlbauer E (2004) Rapid methods for deoxynivalenol and other trichothecenes. Toxicol Lett 153:113–121

    Article  PubMed  CAS  Google Scholar 

  • Schnerr H, Vogel RF, Niessen L (2002) A biosensor-based immunoassay for rapid screening of deoxynivalenol contamination in wheat. Food Agric Immunol 14:313–321

    Article  CAS  Google Scholar 

  • Schollenberger M, Muller HM, Rufle M, Suchy S, Plack S, Drochner W (2006) Natural occurrence of 16 Fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 161:43–52

    Article  PubMed  Google Scholar 

  • Scott PM, Kanhare RS, Lau PY (1981) Gas chromatography with electron capture and mass spectrometric detection of deoxynivalenol in wheat and other grains. J AOAC Int 64:1364

    CAS  Google Scholar 

  • Sewram V, Nieuwoudt TW, Marasas WFO, Shephard GS, Ritieni A (1999) Determination of the mycotoxin moniliformin in cultures of Fusarium subglutinans and in naturally contaminated maize by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 848:185–191

    Article  PubMed  CAS  Google Scholar 

  • Shephard GS, Thiel PG, Stockenstrom S, Sydenham EW (1996) Worldwide survey of fumonisin contamination of corn and corn-based products. J AOAC Int 79:671–687

    PubMed  CAS  Google Scholar 

  • Shim W-B, Yang Z-Y, Kim J-S, Kim J-Y, Kang S-J, Woo G-J, Chung Y-C, Eremin SA, Chung D-H (2007) Development of immunochromatography strip-test using nanocolloidal gold antibody probe for the rapid detection of aflatoxin B1 in grain and feed samples. J Microbiol Biotechnol 17:1629–1637

    PubMed  CAS  Google Scholar 

  • Shumacher R, Krska R (2001) International interlaboratory study for the determination of the Fusarium mycotoxins zearalenone and deoxinivalenol in agricultural commodities. Food Addit Contam 18:417–430

    Google Scholar 

  • Silva CMG, Vargas EA (2001) A survey of zearalenone in corn using Romer Mycosep 224 column and high performance liquid chromatography. Food Addit Contam 18:39–45

    Article  PubMed  CAS  Google Scholar 

  • Songsermsakul P, Sontag G, Cichna-Markl M (2006) Determination of zearalenone and its metabolites in urine, plasma and faeces of horses by HPLC-APCI-MS. J Chromatogr B Analyt Technol Biomed Life Sci 843:252–261

    Article  PubMed  CAS  Google Scholar 

  • Springer JP, Clardy J, Cole RJ, Kirksey JW, Hill RK, Carlson RM, Isidor JL (1974) Structure and synthesis of moniliformin, a novel cyclobutane microbial toxin. J Am Chem Soc 96:2267–2269

    Article  PubMed  CAS  Google Scholar 

  • Stroka J, Derbyshire M, Mischke C, Ambrosio M, Kroeger K, Arranz I, Sizoo E, Van Egmond H (2006) Liquid chromatographic determination of deoxynivalenol in baby food and animal feed: interlaboratory study. J AOAC Int 89:1012–1020

    PubMed  CAS  Google Scholar 

  • Sudakin DL (2003) Trichothecenes in the environment: relevance to human health. Toxicol Lett 143:97–107

    Article  PubMed  CAS  Google Scholar 

  • Sulyok M, Berthiller F, Krska R, Schuhmacher R (2006) Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun Mass Spectrom 20:2649–2659

    Article  PubMed  CAS  Google Scholar 

  • Sutikno A, Abouzied MM, Azcona-Olivera JI, Hart LP, Pestka J (1996) Detection of fumonisins in Fusarium cultures, corn and corn products by polyclonal antibody-based ELISA: relation to fumonisin B1 detection by liquid chromatography. J Food Protect 59:645–651

    CAS  Google Scholar 

  • Suzuki T, Munakata Y, Morita K, Shinoda T, Ueda H (2007) Sensitive detection of estrogenic mycotoxin zearalenone by open sandwich immunoassay. Anal Sci 23:65–70

    Article  PubMed  Google Scholar 

  • Sydenham EW, Gelderblom WCA, Thiel PG, Marasas WFO (1990) Evidence for the natural occurrence of fumonisin B1, a mycotoxin produced by Fusarium moniliforme, in corn. J Agric Food Chem 38:285–290

    Article  CAS  Google Scholar 

  • Sydenham EW, Thiel PG, Vleggaar R (1996) Physicochemical data for some selected Fusarium toxins. J AOAC Int 79:1365–1379

    PubMed  CAS  Google Scholar 

  • Tanaka T, Hasegawa A, Yamamoto S, Lee US, Sugiura Y, Ueno Y (1988) Worldwide contamination of cereals by the Fusarium mycotoxins, nivalenol, deoxynivalenol, and zearalenone. Survey of 19 countries. J Agric Food Chem 36:979–983

    Article  CAS  Google Scholar 

  • Tanaka T, Teshima R, Ikebuchi H, Sawada J, Ichinoe M (1995) Sensitive enzyme-linked immunosorbent assay for the mycotoxin zearalenone in barley and job’s-tears. J Agric Food Chem 43:946–950

    Article  CAS  Google Scholar 

  • Tanaka T, Yoneda A, Inoue S, Dugiura Y, Ueno Y (2000) Simultaneous determination of trichothecene mycotoxins and zearalenone in cereals by gas chromatography–mass spectrometry. J Chromatogr A 882:23–28

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Takino M, Sugita-Konishi Y, Tanaka T (2006) Development of a liquid chromatography/time-of-flight mass spectrometric method for the simultaneous determination of trichothecenes, zearalenone and aflatoxins in foodstuffs. Rapid Commun Mass Spectrom 20:1422–1428

    Article  PubMed  CAS  Google Scholar 

  • Tatsuno T, Saito M, Enomoto M, Tsunoda H (1968) Nivalenol, a toxic principle of Fusarium nivale. Chem Phann Bull 16:2519–2520

    Article  CAS  Google Scholar 

  • Theumer MG, López AG, Aoki MP, Cánepa MC, Rubinstein HR (2008) Subchronic mycotoxicoses in rats. Histopathological changes and modulation of the sphinganine to sphingosine (Sa:So) ratio imbalance induced by Fusarium verticillioides culture material, due to the coexistence of aflatoxin B1 in the diet. Food Chem Toxicol 3:967–977

    Google Scholar 

  • Thongrussamee T, Kuzmina NS, Shim WB, Jiratpong T, Eremin SA, Intrasook J, Chung DH (2008) Monoclonal-based enzyme-linked immunosorbent assay for the detection of zearalenone in cereals. Food Addit Contam 25:997–1006

    Article  CAS  Google Scholar 

  • Tölgyesi A, Kunsági Z (2012) Quantification of T-2 and HT-2 mycotoxins in cereals by liquid chromatography-multimode ionization-tandem mass spectrometry. Microchem J 106:300–306

    Article  CAS  Google Scholar 

  • Trebstein A, Seefelder W, Lauber U, Humpf HU (2008) Determination of T-2 and HT-2 toxins in cereals including oats after immunoaffinity cleanup by liquid chromatography and fluorescence detection. J Agric Food Chem 56:4968–4975

    Article  PubMed  CAS  Google Scholar 

  • Tudos AJ, Lucas-van den Bos ER, Stigter EC (2003) Rapid surface plasmon resonance-based inhibition assay of deoxynivalenol. J Agric Food Chem 51:5843–5848

    Article  PubMed  CAS  Google Scholar 

  • Urraca JL, Marazuela MD, Moreno-Bondi MC (2004) Analysis of zearalenone and R-zearalenol in cereal and swine feed using solvent accelerated solvent extraction and liquid chromatography with fluorescence detection. Anal Chim Acta 524:175–183

    Article  CAS  Google Scholar 

  • Urraca JL, Benito-Peña E, Perez-Conde C, Moreno-Bondi MC, Pestka JJ (2005) Analysis of zearalenone in cereal and swine feed samples using an automated flow-through immunosensor. J Agric Food Chem 53:3338–3344

    Article  PubMed  CAS  Google Scholar 

  • Urraca JL, Marazuela MD, Merino ER, Orellana G, Moreno-Bondi MC (2006) Molecularly imprinted polymers with a streamlined mimic for zearalenone analysis. J Chromatogr A 1116:127–134

    Article  PubMed  CAS  Google Scholar 

  • Van der Gaag B, Spath S, Dietrich H, Stigter E, Boonzaaijer G, Van Osenbruggen T, Koopal K (2003) Biosensors and multiple mycotoxin analysis. Food Control 14:251–254

    Article  CAS  Google Scholar 

  • Vega M, Castillo D (2006) Determination of deoxynivalenol in wheat by validated GC/ECD method: comparison with HPTLC/FLD. Electron J Food Plants Chem 1:16–20

    Google Scholar 

  • Visconti A, Lattanzio VMT, Pascale M, Haidukowski M (2005) Analysis of T-2 and HT-2 toxins in cereal grains by immunoaffinity clean-up and liquid chromatography with fluorescence detection. J Chromatogr A 1075:151–158

    Article  PubMed  CAS  Google Scholar 

  • Vishwanath V, Sulyok M, Labuda R, Bicker W, Krska R (2009) Simultaneous determination of 186 fungal and bacterial metabolites in indoor matrices by liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 395:1355–1372

    Article  PubMed  CAS  Google Scholar 

  • Wagacha JM, Muthomi JW (2008) Mycotoxin problem in Africa: current status, implications to food safety and health and possible management strategies. Int J Food Microbiol 124:1–12

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Quan Y, Lee N, Kennedy IR (2006) Rapid determination of fumonisin B1 in food samples by enzyme-linked immunosorbent assay and colloidal gold immunoassay. J Agric Food Chem 54:2491–2495

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Du XY, Lin L, Huang Y, Wang Z (2008) Zearalenone detection by a single chain fragment variable (scFv) antibody. World J Microbiol Biotechnol 24:1681–1685

    Article  CAS  Google Scholar 

  • Weiss R, Freudenschuss M, Krska R, Mizaikoff B (2003) Improving the analysis of mycotoxins in beverages. Molecularly imprinted polymers for deoxynivalenol and zearalenone. Food Addit Contam 20:386–395

    Article  PubMed  CAS  Google Scholar 

  • Wilkes JG, Sutherland JB (1998) Sample preparation and high-resolution separation of mycotoxins possessing carboxyl groups. J Chromatogr B 717:135–156

    Article  CAS  Google Scholar 

  • Zacco E, Pividori MI, Alegret S, Galve R, Marco MP (2006) Electrochemical biosensing of pesticide residues based on affinity biocomposite platforms. Anal Chem 78:1780–1788

    Article  PubMed  CAS  Google Scholar 

  • Zachariasova M, Lacina O, Malachova A, Kostelanska M, Poustka J, Godula M, Hajslova J (2010) Novel approaches in analysis of Fusarium mycotoxins in cereals employing ultra performance liquid chromatography coupled with high resolution mass spectrometry. Anal Chim Acta 662:51–61

    Article  PubMed  CAS  Google Scholar 

  • Zinedine A, Soriano JM, Moltò JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulation and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45:1–18

    Article  PubMed  CAS  Google Scholar 

  • Zöllner P, Leitner A, Jodlbauer J, Mayer BX, Linder W (1999) Improving LC–MS/MS analyses in complex food matrices, part II-Mass spectrometry. J Chromatogr A 858:167–174

    Article  PubMed  Google Scholar 

  • Zougagh M, Ríos Á (2008) Supercritical fluid extraction as an on-line clean-up technique for determination of riboflavin vitamins in food samples by capillary electrophoresis with fluorimetric detection. Electrophoresis 29:3213–3219

    PubMed  CAS  Google Scholar 

  • Zougahg M, Téllez H, Sánchez A, Chicharro M, Ríos A (2008) Validation of a screening method for rapid control of macrocyclic lactone mycotoxins in maize flour samples. Anal Bioanal Chem 391:709–714

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea L. Astoreca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Astoreca, A.L., Magliano, T.M.A., Ortega, L.M. (2013). Fusarium Mycotoxins. An Overview of Chemical Characterization and Techniques for its Determination from Agricultural Products. In: Alconada Magliano, T., Chulze, S. (eds) Fusarium Head Blight in Latin America. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7091-1_6

Download citation

Publish with us

Policies and ethics