Skip to main content

Parent Selection – Usefulness and Prediction of Hybrid Performance

  • Chapter
  • First Online:
Diagnostics in Plant Breeding

Abstract

Efficiency of breeding programs depends on choice of optimal parental combinations. The ability to identify parental combinations that will result in greater genetic variance of progeny would help to maximize genetic gain from selection in plant breeding programs. Substantial efforts have been invested to study the possible correlations between various predictors based on parental information with population mean \( ({\mu_m}) \) and genetic variance of segregating population \( \left( {\Delta {\sigma_{g(m) }}} \right) \). With the development of DNA-based markers, it became possible to determine genetic distances \( (G{\overset{\lower0.0em\hbox{$\smash{\scriptscriptstyle\frown}$}}{D}}) \) among parental lines. However, prediction \( \Delta {\sigma_{g(m) }} G{\overset{\lower0.0em\hbox{$\smash{\scriptscriptstyle\frown}$}}{D}} \) based on DNA marker data remains a challenging issue. In view of the weakness of traditional marker-assisted selection in prediction potential \( \Delta {\sigma_{g(m) }}, \) the use of genomic selection (GS) is considered as promising approach. Rather than seeking to identify individual markers significantly associated with a quantitative trait, GS could use all marker data as predictors of parental line performance and contributes to accurate predictions of the usefulness of parental combinations.

The ability to predict hybrid performance (HP) of breeding lines based on molecular-based genetic data would greatly enhance the efficiency of hybrid breeding programs. Therefore, the relationship between genetic distance \( G{\overset{\lower0.0em\hbox{$\smash{\scriptscriptstyle\frown}$}}{D}} \) and HP was intensively studied by many authors, predominantly by allogamous crop breeders. Prediction of HP without having to produce and assess hundreds of single-cross hybrids would reduce the time and effort required to identify promising combinations. Earlier studies indicated that the success of predicting HP based on \( G{\overset{\lower0.0em\hbox{$\smash{\scriptscriptstyle\frown}$}}{D}} \) of parental information was not encouraging and at best inconsistent. However, recent marker-based prediction approaches based on expression profiling and those based on multiple linear regressions gave results often superior or at least similar to phenotypic and pedigree data approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajmone MP, Castiglioni P, Fusari F, Kuiper M, Motto M (1998) Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor Appl Genet 96:219–227

    Article  Google Scholar 

  • Barbosa-Neto JF, Sorrells ME, Cisar G (1996) Prediction of heterosis in wheat usingcoefficient of parentage and RFLP-basedestimates of genetic relationship. Genome 39:1142–1149

    Article  PubMed  CAS  Google Scholar 

  • Benchimol LL, De Souza JR, Garcia AAF, Kono PMS, Mangolin CA, Barbosa AMM, Coelho ASG, De Souza AP (2000) Genetic diversity in tropical maize inbred lines: heterotic group assignment and hybrid performance determined by RFLP markers. Plant Breed 119:491–496

    Article  CAS  Google Scholar 

  • Bernardo R (1992) Relationship between single-cross performance and molecular marker heterozygosity. Theor Appl Genet 83:628–634

    Article  Google Scholar 

  • Bernardo R (1994) Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Sci 34:20–25

    Article  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genome-wide selection for quantitative traits in maize. Crop Sci 47:1082–1090

    Article  Google Scholar 

  • Betrán FJ, Ribaut JM, Beck D, Gonzalez de Leon D (2003) Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci 43:797–806

    Article  Google Scholar 

  • Bohn M, Utz HF, Melchinger AE (1999) Genetic diversity among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci 39:228–237

    Article  CAS  Google Scholar 

  • Boppenmaier J, Melchinger AE, Brunklaus-Jung E, Geiger HH, Herrmann RG (1992) Genetic diversity for RFLPs in European maize inbreds: I. Relation to performance of Flint ✕ Dent croses for forage traits. Crop Sci 32:895–902

    Article  Google Scholar 

  • Boppenmaier J, Melchinger AE, Seiltz G, Geiger HH, Herrmann RG (1993) Genetic diversity for RFLPs in European maize inbreds: III. Performance of crosses within versus between heterotic groups for grain traits. Plant Breed 11:217–226

    Article  Google Scholar 

  • Burkhamer RL (1998) Predicting progeny variance from parental divergence in hard red spring wheat. Crop Sci 38:243–248

    Article  Google Scholar 

  • Busch RH, Lucken KA, Frohberg RC (1971) F1 hybrids versus random F5 line performance and estimates of genetic effects in spring wheat. 11:357--316

    Google Scholar 

  • Burstin J, Charcosset A, Barrière Y, Hébert Y, Devienne D, Damerval C (1995) Molecular markers and protein quantities as genetic descriptors in maize. II. Prediction of performance of hybrids for forage traits. Plant Breed 114:427–433

    Google Scholar 

  • Ceccarelli S (2009) Main stages of a plant breeding program. In: Ceccarelli S, Guimarães EP, Weltzien E (eds) Plant breeding and farmer participation. Food and Agriculture Organization (FAO), Rome, pp 63–74

    Google Scholar 

  • Cheres MT, Miller JF, Crane JM, Knapp SJ (2000) Genetic distance as a predictor of heterosis and hybrid performance within and between heterotic groups in sunflower. Theor Appl Genet 100:889–894

    Article  Google Scholar 

  • Cox TS, Lookhart GL, Walker DE, Harrell LG, Albers LD, Rogers DM (1985) Genetic relationships among hard red winter wheat cultivars as evaluated by pedigree analysis and gliadin polyacrylamide gel-electrophoretic patterns. Crop Sci 25:1058–1063

    Article  Google Scholar 

  • De Paepe A, Vuylsteke M, Van Hummelen P, Zabeau M, Van Der Straeten D (2004) Transcriptional profiling by cDNA AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J 39:537–559

    Article  PubMed  CAS  Google Scholar 

  • Dhliwayo T, Pixley K, Menkir A, Warburton M (2010) Combining ability, genetic distances, and heterosis among elite CIMMYT and IITA tropical maize inbred lines. Crop Sci 49:1201–1210

    Article  Google Scholar 

  • Dreisigacker S, Melchinger AE, Zhang P, Ammar K, Flachenecker C, Hoisington D, Warburton ML (2005) Hybrid performance and heterosis in spring bread wheat, and their relations to SSR-based genetic distances and coefficient of parentage. Euphytica 144:51–59

    Article  CAS  Google Scholar 

  • Duvick DN, Smith JSC, Cooper M (2004) Long-term selection in a commercial hybrid maize breeding program. In: Janick J (ed) Wiley, Engelwood Cliffs. Plant Breed Rev 24:109–51

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longmans Green, Harlow

    Google Scholar 

  • Fehr WR (1993) Principles of cultivar development, 1st edn. Macmillian Publishing Compant, New York

    Google Scholar 

  • Frascaroli E, Cane MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pe ME (2007) Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics 176:625–644

    Article  PubMed  CAS  Google Scholar 

  • Frei OM, Stuber CW, Goodman MM (1986) Use of allozymes as genetic markers for predicting performance in maize single cross hybrids. Crop Sci 26:37–42

    Article  Google Scholar 

  • Frisch M, Thiemann A, Tobias JF, Schrag A, Scholten S, Melchinger AE (2010) Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize. Theor Appl Genet 120:441–450

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci U S A 99:9573–9578

    Article  PubMed  CAS  Google Scholar 

  • Gallais A (1979) The concept of varietal ability in plant breeding. Euphytica 28:811–823

    Article  Google Scholar 

  • Garay G, Igartua E, Alvarez A (1996) Response to S1 selection in flint and dent synthetic maize populations. Crop Sci 36:1129–1134

    Article  Google Scholar 

  • Gibson G, Dworkin I (2004) Uncovering cryptic genetic variation. Nat Rev Genet 5:681–690

    Article  PubMed  CAS  Google Scholar 

  • Griffing B (1956) Concept of general combining ability and specific combining ability to diallele cross system. Aust J Bio Sci 9:463–493

    Google Scholar 

  • Gumber RK, Schill B, Link W, Kittlitz EV, Melchinger AE (1999) Mean, genetic variance, and usefulness of selfing progenies from intra- and inter-pool crosses in faba beans (Vicia faba L.) and their prediction from parental parameters. Theor Appl Genet 98:569–580

    Article  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Hochholdinger F, Hoecker N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12:427–432

    Article  PubMed  CAS  Google Scholar 

  • Jannink J, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    Article  PubMed  CAS  Google Scholar 

  • Jinks JL, Pooni HS (1976) Predicting the properties of recombinant inbred lines derived by single seed descent. Heredity 36:253–266

    Article  Google Scholar 

  • Jordan DR, Tao Y, Godwin ID, Henzell RG, Cooper M, McIntyre CL (2003) Prediction of hybrid performance in grain sorghum using RFLP markers. Theor Appl Genet 106:559–567

    PubMed  CAS  Google Scholar 

  • Joshi SP, Bhave SG, Chowdari KV, Apte GS, Dhonukshe BL, Lalitha K, Ranjekar PK, Gupta VS (2001) Use of DNA markers in prediction of hybrid performance and heterosis for a three-line hybrid system in rice. Biochem Genet 39:179–200

    Article  PubMed  CAS  Google Scholar 

  • Kearsey M, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman & Hall, London

    Google Scholar 

  • Kim BH, Arnim AG (2006) The early dark-response in Arabidopsis thaliana revealed by cDNA microarray analysis. Plant Mol Biol 60:321–342

    Article  PubMed  CAS  Google Scholar 

  • Kisha TJ, Sneller CH, Diers BW (1997) Relationship between genetic distance among parents and genetic variance in populations of soybean. Crop Sci 37:1317–1325

    Article  Google Scholar 

  • Kotzamanidis ST, Lithourgidisb AS, Mavromatisc AG, Chasiotic DI, Roupakias DG (2008) Prediction criteria of promising F3 populations in durum wheat: a comparative study. Field Crop Res 107:257–264

    Article  Google Scholar 

  • Kuczyńska A, Surma M, Kaczmarek Z, Adamski T (2007) Relationship between phenotypic and genetic diversity of parental genotypes and the frequency of transgression effects in barley (Hordeum vulgare L.). Plant Breed 126:361–368

    Article  Google Scholar 

  • Lai J, Li R, Xu X, Jin W, Xu M (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1030

    Article  PubMed  CAS  Google Scholar 

  • Lanza LLB, Souza Júnior CL, Ottoboni LMM, Vieira MLC, de Souza AP (1997) Genetic distance of inbred lines and prediction of maize single-cross performance using RAPD markers. Theor Appl Genet 94:1023–1030

    Article  CAS  Google Scholar 

  • Lee EA, Ash MJ, Good B (2007) Re-examining the relationship between degree of relatedness, genetic effects, and heterosis in maize. Crop Sci 47:629–635

    Article  Google Scholar 

  • Legesse BW, Myburg AA, Pixley KV, Twumasi-Afriyie S, Botha AM (2008) Relationship between hybrid performance and AFLP based genetic distance in highland maize inbred lines. Euphytica 162:313–323

    Article  CAS  Google Scholar 

  • Lian X, Wang S, Zhang J, Feng Q, Zhang L, Fan D, Li X, Yuan D, Han B, Zhang Q (2006) Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol 60:617–631

    Article  PubMed  CAS  Google Scholar 

  • Link W, Schill B, Barbera AC, Cubero JI, Filippetti A, Stringi L, Kittlitz EV, Melchinger AE (1996) Comparison of intra- and inter-pool crosses in fababean (ViciafabaL.): I. Hybrid performance and heterosis of crosses in Mediterranean and German environments. Plant Breed 115:352–360

    Article  Google Scholar 

  • Lonnquist JH (1967) Genetic variability in maize and indicated procedures for its maximum procedures for its maximum utilization. Sciencia y Cultura 19:135–144

    Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink J (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:78–109

    Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    Article  PubMed  Google Scholar 

  • Malécot G (1948) Les mathématiques de l’hérédité. Masson et Cie, Paris

    Google Scholar 

  • Malik SI, Malik HN, Minhas NM, Munir M (2004) General and specific combining ability studies in maize diallelcrosses. Int J AgrBiol 6:856–859

    Google Scholar 

  • Manjarrez-Sandoval P, Carter TE Jr, Webb DM, Burton JW (1997) RFLP genetic similarity estimates and coefficient of parentage as genetic variance predictors for soybean yield. Crop Sci 37:698–703

    Article  Google Scholar 

  • Marsan AP, Castiglioni P, Fusari F, Kuiper M, Motto M (1998) Genetic diversity and its relationship to hybrid performance in maize, as revealed by RFLP and AFLP markers. Theor Appl Genet 96:219–227

    Article  CAS  Google Scholar 

  • Martinez OJ, Goodman MM, Timothy DH (1983) Measuring racial differentiation in maize using multivariate distance measures standardized by variation in F2 populations. Crop Sci 23:775–781

    Article  Google Scholar 

  • Melchinger AE (1993) Use of RFLP markers for analyses of genetic relationships among breeding materials and prediction of hybrid performance. In: Proceedings of the First International Crop Science Congress

    Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis. ASA, CSSA, and SSSA, Madison, pp 99–118

    Google Scholar 

  • Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. CSSA, Madison

    Google Scholar 

  • Melchinger AE, Lee M, Lamkey KR, Woodman WL (1990) Genetic diversity for restriction fragment length polymorphisms: Relation to estimated genetic effects in maize inbreds. Crop Sci 30:1033–1040

    Article  CAS  Google Scholar 

  • Melchinger AE, Gumber RK, Leipert RB, Vuylsteke M, Kuiper M (1998) Prediction of test cross means and variances among F3 progenies of F1 crosses from test cross means and genetic distances of their parents in maize. Theor Appl Genet 96:503–512

    Article  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Miedaner T, Schneider B, Oettler G (2006) Means and variances for Fusarium head blight resistance of F2-derived bulks from winter triticale and winter wheat crosses. Euphytica 152:405–411

    Article  Google Scholar 

  • Moser H, Lee M (1994) RFLP variation and genealogical distance, multivariate distance, heterosis, and genetic variation in oats. TheorAppl Genet 87:947–956

    CAS  Google Scholar 

  • Munhoz REF, Prioli AJ, Amaral Júnior AT, Scapim CA, Simon GA (2009) Genetic distances between popcorn populations based on molecular markers and correlations with heterosis estimates made by diallel analysis of hybrids. Genet Mol Res 8:951–962

    PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Ni XL, Zhang T, Jiang KF, Yang L, Yang QH, Cao CY, Wen CY, Zheng JK (2009) Correlations between specific combining ability, heterosis and genetic distance in hybrid rice. Yi Chuan 31:849–854

    Article  PubMed  CAS  Google Scholar 

  • Qi X, Kimatu JN, Li Z, Jiang L, Cui Y, Liu B (2010a) Heterotic analysis using AFLP markers reveals moderate correlations between specific combining ability and genetic distance in maize inbred lines. Afr J Biot 9:1568–1572

    CAS  Google Scholar 

  • Qi X, Li ZH, Jiang LL, Yu XM, Ngezahayo F, Liu B (2010b) Grain-yield heterosis in Zea mays L. shows positive correlation with parental difference in CHG methylation. Crop Sci 50:2338–2346

    Article  CAS  Google Scholar 

  • Quinby JR (1963) Manifestation of hybrid vigor in sorghum. Crop Sci 3:288–291

    Article  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Beck D, Bohn M, Frisch M (2003a) Use of SSRs for establishing heterotic groups in subtropical maize. Theor Appl Genet 83:628–634

    Google Scholar 

  • Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Srinivasan G, Bohn M, Frisch M (2003b) Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci 43:1275–1282

    Article  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC, Warburton ML (2003c) Use of SSRs for establishing heterotic groups in subtropical maize. Theor Appl Genet 107:947–957

    Article  PubMed  CAS  Google Scholar 

  • Reif JC, Melchinger AE, Frisch M (2005) Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Sci 41:1–7

    Article  Google Scholar 

  • Riday H, Brummer EC, Campbell TA, Luth D, Cazcarro PM (2003) Comparisons of genetic and morphological distance with heterosis between Medicago sativa subsp. sativa and subsp. falcata. Euphytica 131:37–45

    Article  CAS  Google Scholar 

  • Robinson HF, Harvey PH (1955) Genetic variances in open-pollinated crops varieties of corn. Genetics 40:45–60

    PubMed  CAS  Google Scholar 

  • Rojas BA, Sprague GF (1952) A comparison of variance components in corn yield trials: III. General and specific combining ability and their interaction with locations and years. Agron J 44:462–466

    Article  Google Scholar 

  • Saghai-Maroof MA, Yang GP, Zhang Q, Gravois KA (1997) Correlation between molecular marker distance and hybrid performance in U.S. Southern long grain rice. Crop Sci 37:145–150

    Article  Google Scholar 

  • Sarawat P, Stoddard FL, Marshall DR, Ali SM (1994) Heterosis for yield and related characters in pea. Euphytica 80:39–48

    Article  Google Scholar 

  • Schnell FW (1982) A synoptic study of the methods and categories of plant breeding. Z Pflanzenzücht 89:1–18

    Google Scholar 

  • Schnell FW, Utz HF (1975) F1-Leistung und Elternwahl in der Züchtung von Selbstbefruchtern. Berichtüber die Arbeitstagung der Vereinigungösterreichischer. Z Pflanzenzüchter 243–248

    Google Scholar 

  • Schrag TA, Maurer HP, Melchinger AE, Piepho H-P, Peleman J, Frisch M (2007) Prediction of single-cross hybrid performance in maize using haplotype blocks associated with QTL for grain yield. Theor Appl Genet 114:1345–1355

    Article  PubMed  Google Scholar 

  • Schrag TA, Möhring J, Kusterer B, Melchinger AE, Dhillon BS, Piepho H, Frisch M (2010) Prediction of hybrid performance in maize using molecular markers and joint analyses of hybrids and parental inbreds. Theor Appl Genet 120:451–461

    Article  PubMed  CAS  Google Scholar 

  • Selvaraj I, Nagarajan P, Thiyagarajan K, Bharathi M (2010) Predicting the relationship between molecular marker heterozygosity and hybrid performance using RAPD markers in rice (Oryza sativa L.). Afr J Biot 9:7641–7653

    CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. W H Freeman & Co, San Francisco, 573 pp

    Google Scholar 

  • Song S, Qu H, Chen C, Hu S, Yu J (2007) Differential gene expression in an elite hybrid rice cultivar (Oryzasativa, L) and its parental lines based on SAGE data. Plant Biol 7:1–15

    Google Scholar 

  • Souza E, Sorrells ME (1989) Pedigree analysis of North American oat cultivars released from 1951 to 1985. Crop Sci 29:595–601

    Article  Google Scholar 

  • Souza E, Sorrells ME (1991) Relationships among 70 North American oat germplasms. I. Cluster analysis using quantitative characters. Crop Sci 31:599–605

    Article  Google Scholar 

  • Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275

    Article  PubMed  CAS  Google Scholar 

  • Springer NM, Stupar RM (2011) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275

    Article  CAS  Google Scholar 

  • Sun GL, William M, Liu J, Kasha KJ, Pauls KP (2004) Microsatellite and RAPD polymorphisms in Ontario corn hybrids are related to the commercial sources and maturity ratings. Mol Breed 7:13–24

    Article  Google Scholar 

  • Tams SH, Bauer E, Oettler G, Melchinger AE, Schön CC (2006) Prospects for hybrid breeding in winter triticale: II. Relationship between parental genetic distance and specific combining ability. Plant Breed 125:331–336

    Article  Google Scholar 

  • Tao Z, Xian-lin N, Kai-Feng J, Qianhua Y, Li Y, Xian-Qi W, Yingjiang C, Jiakui Z (2010) Correlation between heterosis and genetic distance based on molecular markers of functional genes in rice. Rice Sci 17:288–295

    Article  Google Scholar 

  • Thiemann A, Fu J, Schrag TA, Melchinger AE, Frisch M, Scholten S (2010) Correlation between parental transcriptome and field data for the characterization of heterosis in Zea mays L. Theor Appl Genet 120:401–413

    Article  PubMed  CAS  Google Scholar 

  • Utz HF, Bohn M, Melchinger AE (2001) Predicting progeny means and variances of winter wheat crosses from phenotypic values of their parents. Crop Sci 41:1470–1478

    Article  Google Scholar 

  • Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824

    Article  PubMed  CAS  Google Scholar 

  • Wright AJ (1974) A genetic theory of general varietal ability for diploid crops. Theor Appl Genet 45:163–169

    Google Scholar 

  • Xiao J, Li J, Yuan L, McCouch SR, Tanksley SD (1996) Genetic diversity and its relationships to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor Appl Genet 92:637–643

    Article  CAS  Google Scholar 

  • Xin Q, Kimatu JN, Li Z, Jiang L, Cui Y, Liu B (2010) Heterotic analysis using AFLP markers reveals moderate correlations between specific combining ability and genetic distance in maize inbred lines. Afr J Biotechnol 9:1568–1572

    Google Scholar 

  • Yang GX, Jan A, Shen SH, Yazaki J, Ishikawa M, Shimatani Z, Kishimoto N, Kikuchi S, Matsumoto H, Komatsu S (2004) Microarray analysis of brassinosteroids- and gibberellin regulated gene expression in rice seedlings. Mol Genet Genomics 271:468–478

    Article  PubMed  CAS  Google Scholar 

  • Zhang PJ, Cai HW, Li HC, Yang LS, Bai YS, Hu XM, Xu CW (2000) RAPD molecular markers of rice genetic distance and its relationship with heterosis. J Anhui Agric Univ 28:697–700 (in Chinese with English abstract)

    Google Scholar 

  • Zheng D, Van K, Wang L, Lee S (2008) Molecular genetic distance and hybrid performance between Chinese and American maize (Zea mays L.) inbreds. Aust J Agri Res 59:1010–1020

    Article  CAS  Google Scholar 

  • Zhong S, Jannink J (2007) Using quantitative trait loci results to discriminate among crosses on the basis of their progeny mean and variance. Genetics 177:567–576

    Article  PubMed  Google Scholar 

  • Zhong S, Dekkers JCM, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a barley case study. Genetics 182:355–364

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This book chapter was prepared while Dr. Adel Abdel-Ghani was a visiting Fulbright Postdoctoral Fellow and during the sabbatical leave granted to Dr. Adel Abdel-Ghani from Mu’tah University, Jordan during the academic year 2011–2012 at Iowa State University, Ames, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel H. Abdel-Ghani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Abdel-Ghani, A.H., Lübberstedt, T. (2013). Parent Selection – Usefulness and Prediction of Hybrid Performance. In: Lübberstedt, T., Varshney, R. (eds) Diagnostics in Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5687-8_17

Download citation

Publish with us

Policies and ethics