Skip to main content

Strategies for Integrating Membrane Proteins in Biomembranes

  • Chapter
  • First Online:
Biomimetic Membranes for Sensor and Separation Applications

Abstract

Correct integration of membrane proteins with biomimetic membranes is crucial for designing novel sensor and separation technologies based on the functionality of membrane proteins. Membrane proteins are generally delicate molecules and care need to be taken in order to retain protein structure and function during handling and reconstitution into model membranes. This chapter will give a detailed overview of available and novel membrane protein reconstitution strategies in both vesicular and planar model membrane designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelova, M.I., Soleau, S., Melerd, P., Faucon, J.F., Bothorel, P.: Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Prog. Colloid Polym. Sci. 89, 127–131 (1992)

    Article  Google Scholar 

  • Arora, A., Rinehart, D., Szabo, G., Tamm, L.K.: Refolded outer membrane protein A of Escherichia coli forms ion channels with two conductance states in planar lipid bilayers. J. Biol. Chem. 275, 1594–1600 (2000)

    Article  Google Scholar 

  • Ayala, G., Nascimento, A., Gomez-Puyou, A., Darszon, A.: Extraction of mitochondrial membrane proteins into organic solvents in a functional state. Biochim. Biophys. Acta 810, 115–122 (1985)

    Article  Google Scholar 

  • Ayala, G., de Gomez-Puyou, M.T., Gomez-Puyou, A., Darszon, A.: Thermostability of membrane systems in organic solvents. FEBS Lett. 203, 41–43 (1986)

    Article  Google Scholar 

  • Bamberg, E., Dencher, N.A., Fahr, A., Heyn, M.P.: Transmembranous incorporation of photoelectrically active bacteriorhodopsin in planar lipid bilayers. Proc. Natl. Acad. Sci. U.S.A. 78, 7502–7506 (1981)

    Article  ADS  Google Scholar 

  • Beddow, J.A., Peterson, I.R., Heptinstall, J., Walton, D.J.: Reconstitution of nicotinic acetylcholine receptors into gel-protected lipid membranes. Anal. Chem. 76, 2261–2265 (2004)

    Article  Google Scholar 

  • Booth, P.J.: Sane in the membrane: designing systems to modulate membrane proteins. Curr. Opin. Struct. Biol. 15, 435–440 (2005)

    Article  Google Scholar 

  • Buzhynskyy, N., Girmens, J.F., Faigle, W., Scheuring, S.: Human cataract lens membrane at subnanometer resolution. J. Mol. Biol. 374, 162–169 (2007a)

    Article  Google Scholar 

  • Buzhynskyy, N., Hite, R.K., Walz, T., Scheuring, S.: The supramolecular architecture of junctional microdomains in native lens membranes. EMBO Rep. 8, 51–55 (2007b)

    Article  Google Scholar 

  • Carr, C.M., Munson, M.: Tag team action at the synapse. EMBO Rep. 8, 834–838 (2007)

    Article  Google Scholar 

  • Castellana, E.T., Cremer, P.S.: Solid supported lipid bilayers: from biophysical studies to sensor design. Surf. Sci. Rep. 61, 429–444 (2006)

    Article  ADS  Google Scholar 

  • Cohen, F.S., Zimmerberg, J., Finkelstein, A.: Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane. J. Gen. Physiol. 75, 251–270 (1980)

    Article  Google Scholar 

  • Cohen, F.S., Akabas, M.H., Finkelstein, A.: Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane. Science 217, 458–460 (1982)

    Article  ADS  Google Scholar 

  • Curstedt, T., Johansson, J., Barros-Soderling, J., Robertson, B., Nilsson, G., Westberg, M., Jornvall, H.: Low-molecular-mass surfactant protein type 1. The primary structure of a hydrophobic 8-kDa polypeptide with eight half-cystine residues. Eur. J. Biochem. 172, 521–525 (1988)

    Article  Google Scholar 

  • Deamer, D.W., Uster, P.S.: Liposome preparation: methods and mechanism. In: Ostro, M.J. (ed.) Liposomes, pp. 27–51. Marcel Dekker, New York (1983)

    Google Scholar 

  • Dmitriev, O.Y., Altendorf, K., Fillingame, R.H.: Subunit A of the E. coli ATP synthase: reconstitution and high resolution NMR with protein purified in a mixed polarity solvent. FEBS Lett. 556, 35–38 (2004)

    Article  Google Scholar 

  • Fang, Y., Frutos, A.G., Lahiri, J.: Membrane protein microarrays. J. Am. Chem. Soc. 124, 2394–2395 (2002)

    Article  Google Scholar 

  • Fang, Y., Lahiri, J., Picard, L.: G protein-coupled receptor microarrays for drug discovery. Drug Discov. Today 8, 755–761 (2003)

    Article  Google Scholar 

  • Fang, Y., Hong, Y., Webb, B., Lahiri, J.: Applications of biomembranes in drug discovery. MRS Bull. 31, 5 (2006)

    Article  Google Scholar 

  • Feitosa, E., Barreleiro, P.C., Olofsson, G.: Phase transition in dioctadecyldimethylammonium bromide and chloride vesicles prepared by different methods. Chem. Phys. Lipids 105, 201–213 (2000)

    Article  Google Scholar 

  • Fendler, H.: Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev. 87, 877–899 (1987)

    Article  Google Scholar 

  • Furber, K.L., Churchward, M.A., Rogasevskaia, T.P., Coorssen, J.R.: Identifying critical components of native Ca2+− triggered membrane fusion. Integrating studies of proteins and lipids. Ann. N. Y. Acad. Sci. 1152, 121–134 (2009)

    Article  ADS  Google Scholar 

  • Gabriel, N.E., Roberts, M.F.: Spontaneous formation of stable unilamellar vesicles. Biochemistry 23, 4011–4015 (1984)

    Article  Google Scholar 

  • Ganesan, P.V., Boxer, S.G.: A membrane interferometer. Proc. Natl. Acad. Sci. U.S.A. 106, 5627–5632 (2009)

    Article  ADS  Google Scholar 

  • Goennenwein, S., Tanaka, M., Hu, B., Moroder, L., Sackmann, E.: Functional incorporation of integrins into solid supported membranes on ultrathin films of cellulose: impact on adhesion. Biophys. J. 85, 646–655 (2003)

    Article  Google Scholar 

  • Hansen, J.S., Perry, M., Vogel, J., Groth, J.S., Vissing, T., Larsen, M.S., Geschke, O., Emneus, J., Bohr, H., Nielsen, C.H.: Large scale biomimetic membrane arrays. Anal. Bioanal. Chem. 395, 719–727 (2009a)

    Article  Google Scholar 

  • Hansen, J.S., Perry, M., Vogel, J., Vissing, T., Hansen, C.R., Geschke, O., Emneus, J., Nielsen, C.H.: Development of an automation technique for the establishment of functional lipid bilayer arrays. J. Micromech. Microeng. 19, 025014 (2009b)

    Article  ADS  Google Scholar 

  • Hemmler, R., Bose, G., Wagner, R., Peters, R.: Nanopore unitary permeability measured by electrochemical and optical single transporter recording. Biophys. J. 88, 4000–4007 (2005)

    Article  Google Scholar 

  • Hong, H., Joh, N.H., Bowie, J.U., Tamm, L.K.: Methods for measuring the thermodynamic stability of membrane proteins. Methods Enzymol. 455, 213–236 (2009)

    Article  Google Scholar 

  • Janshoff, A., Steinem, C.: Transport across artificial membranes-an analytical perspective. Anal. Bioanal. Chem. 385, 433–451 (2006)

    Article  Google Scholar 

  • Jeremic, A., Kelly, M., Cho, J.A., Cho, S.J., Horber, J.K., Jena, B.P.: Calcium drives fusion of SNARE-apposed bilayers. Cell Biol. Int. 28, 19–31 (2004)

    Article  Google Scholar 

  • Joannic, R., Auvray, L., Lasic, D.D.: Monodisperse vesicles stabilized by grafted polymers. Phys. Rev. Lett. 78, 3402–3405 (1997)

    Article  ADS  Google Scholar 

  • Johansson, J., Curstedt, T., Robertson, B., Jornvall, H.: Size and structure of the hydrophobic low molecular weight surfactant-associated polypeptide. Biochemistry 27, 3544–3547 (1988)

    Article  Google Scholar 

  • Kendall, D.A., MacDonald, R.C.: A fluorescence assay to monitor vesicle fusion and lysis. J. Biol. Chem. 257, 13892–13895 (1982)

    Google Scholar 

  • Kleivdal, H., Benz, R., Jensen, H.B.: The Fusobacterium nucleatum major outer-membrane protein (FomA) forms trimeric, water-filled channels in lipid bilayer membranes. Eur. J. Biochem. 233, 310–316 (1995)

    Article  Google Scholar 

  • le Maire, M., Champeil, P., Møller, J.V.: Interaction of membrane proteins and lipids with solubilizing detergents. Biochim. Biophys. Acta Rev. Biomembr. 1508, 86–111 (2000)

    Article  Google Scholar 

  • Le Pioufle, B., Suzuki, H., Tabata, K.V., Noji, H., Takeuchi, S.: Lipid bilayer microarray for parallel recording of transmembrane ion currents. Anal. Chem. 80, 328–332 (2008)

    Article  Google Scholar 

  • Lee, J., Lentz, B.R.: Evolution of lipidic structures during model membrane fusion and the relation of this process to cell membrane fusion. Biochemistry 36, 6251–6259 (1997)

    Article  Google Scholar 

  • Lentz, B.R.: Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events. Chem. Phys. Lipids 73, 91–106 (1994)

    Article  Google Scholar 

  • Lorenceau, E., Utada, A.S., Link, D.R., Cristobal, G., Joanicot, M., Weitz, D.A.: Generation of polymerosomes from double-emulsions. Langmuir 21, 9183–9186 (2005)

    Article  Google Scholar 

  • Maguire, L.A., Zhang, H., Shamlou, P.A.: Preparation of small unilamellar vesicles (SUV) and biophysical characterization of their complexes with poly-l-lysine-condensed plasmid DNA. Biotechnol. Appl. Biochem. 37, 73–81 (2003)

    Article  Google Scholar 

  • Majd, S., Mayer, M.: Generating arrays with high content and minimal consumption of functional membrane proteins. J. Am. Chem. Soc. 130, 16060–16064 (2008)

    Article  Google Scholar 

  • Mitra, K., Ubarretxena-Belandia, I., Taguchi, T., Warren, G., Engelman, D.M.: Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl. Acad. Sci. U.S.A. 101, 4083–4088 (2004)

    Article  ADS  Google Scholar 

  • Montal, M., Mueller, P.: Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. U.S.A. 69, 3561–3566 (1972)

    Article  ADS  Google Scholar 

  • Mouritsen, O.G., Zuckermann, M.J.: What’s so special about cholesterol? Lipids 39, 1101–1113 (2004)

    Article  Google Scholar 

  • Mueller, P., Rudin, D.O.: Translocators in bimolecular lipid membranes: their role in dissipative and conservative bioenergetic transduction. Curr. Top. Bioenerg. 3, 157–249 (1969)

    Google Scholar 

  • Nielsen, C.H.: Biomimetic membranes for sensor and separation applications. Anal. Bioanal. Chem. 395, 697–718 (2009)

    Article  Google Scholar 

  • Niles, W.D., Cohen, F.S.: Video fluorescence microscopy studies of phospholipid vesicle fusion with a planar phospholipid membrane. Nature of membrane-membrane interactions and detection of release of contents. J. Gen. Physiol. 90, 703–735 (1987)

    Article  Google Scholar 

  • Ollivon, M., Lesieur, S., Grabielle-Madelmont, C., Paternostre, M.: Vesicle reconstitution from lipid-detergent mixed micelles. Biochim. Biophys. Acta 1508, 34–50 (2000)

    Article  Google Scholar 

  • Opekarova, M., Tanner, W.: Specific lipid requirements of membrane proteins–a putative bottleneck in heterologous expression. Biochim. Biophys. Acta 1610, 11–22 (2003)

    Article  Google Scholar 

  • Osborne, A.R., Rapoport, T.A., van den Berg, B.: Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 21, 529–550 (2005)

    Article  Google Scholar 

  • Paternostre, M.T., Roux, M., Rigaud, J.L.: Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reverse-phase evaporation) by triton X-100, octyl glucoside, and sodium cholate. Biochemistry 27, 2668–2677 (1988)

    Article  Google Scholar 

  • Perin, M.S., MacDonald, R.C.: Fusion of synaptic vesicle membranes with planar bilayer membranes. Biophys. J. 55, 973–986 (1989)

    Article  Google Scholar 

  • Perry, M., Vissing, T., Boesen, T.P., Hansen, J.S., Emneus, J., Nielsen, C.H.: Automated sampling and data processing derived from biomimetic membranes. Bioinspir. Biomim. 4, 044001 (2009)

    Article  ADS  Google Scholar 

  • Petrache, H.I., Dodd, S.W., Brown, M.F.: Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by (2)H NMR spectroscopy. Biophys. J. 79, 3172–3192 (2000)

    Article  Google Scholar 

  • Pettit, F.K., Bare, E., Tsai, A., Bowie, J.U.: HotPatch: a statistical approach to finding biologically relevant features on protein surfaces. J. Mol. Biol. 369, 863–879 (2007)

    Article  Google Scholar 

  • Pocanschi, C.L., Apell, H.J., Puntervoll, P., Hogh, B., Jensen, H.B., Welte, W., Kleinschmidt, J.H.: The major outer membrane protein of Fusobacterium nucleatum (FomA) folds and inserts into lipid bilayers via parallel folding pathways. J. Mol. Biol. 355, 548–561 (2006)

    Article  Google Scholar 

  • Rastogi, R., Anand, S., Koul, V.: Flexible polymerosomes–an alternative vehicle for topical delivery. Colloids Surf. B Biointerfaces 72, 161–166 (2009)

    Article  Google Scholar 

  • Rawicz, W., Olbrich, K.C., McIntosh, T., Needham, D., Evans, E.: Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000)

    Article  Google Scholar 

  • Reiken, S.R., Van Wie, B.J., Sutisna, H.: Bispecific antibody modification of nicotinic acetylcholine receptors for biosensing. Biosens. Bioelectron. 11, 91–102 (1996)

    Article  Google Scholar 

  • Rigaud, J.L., Paternostre, M.T., Bluzat, A.: Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry 27, 2677–2688 (1988)

    Article  Google Scholar 

  • Rosenkranz, T., Katranidis, A., Atta, D., Gregor, I., Enderlein, J., Grzelakowski, M., Rigler, P., Meier, W., Fitter, J.: Observing proteins as single molecules encapsulated in surface-tethered polymeric nanocontainers. Chembiochem 10, 702–709 (2009)

    Article  Google Scholar 

  • Samatey, F.A., Xu, C., Popot, J.L.: On the distribution of amino acid residues in transmembrane alpha-helix bundles. Proc. Natl. Acad. Sci. U.S.A. 92, 4577–4581 (1995)

    Article  ADS  Google Scholar 

  • Schmitt, E.K., Vrouenraets, M., Steinem, C.: Channel activity of OmpF monitored in nano-BLMs. Biophys. J. 91, 2163–2171 (2006)

    Article  ADS  Google Scholar 

  • Seddon, A.M., Curnow, P., Booth, P.J.: Membrane proteins, lipids and detergents: not just a soap opera. Biochim. Biophys. Acta 1666, 105–117 (2004)

    Article  Google Scholar 

  • Silvius, J.R.: Solubilization and functional reconstitution of biomembrane components. Annu. Rev. Biophys. Biomol. Struct. 21, 323–348 (1992)

    Article  Google Scholar 

  • Singer, M.A., Finegold, L., Rochon, P., Racey, T.J.: The formation of multilamellar vesicles from saturated phosphatidylcholines and phosphatidylethanolamines: morphology and quasi-elastic light scattering measurements. Chem. Phys. Lipids 54, 131–146 (1990)

    Article  Google Scholar 

  • Suzuki, H., Tabata, K.V., Noji, H., Takeuchi, S.: Electrophysiological recordings of single ion channels in planar lipid bilayers using a polymethyl methacrylate microfluidic chip. Biosens. Bioelectron. 22, 1111–1115 (2007)

    Article  Google Scholar 

  • Suzuki, H., Le Pioufle, B., Takeuchi, S.: Ninety-six-well planar lipid bilayer chip for ion channel recording fabricated by hybrid stereolithography. Biomed. Microdevices 11, 17–22 (2009)

    Article  Google Scholar 

  • Szoka Jr., F., Papahadjopoulos, D.: Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng. 9, 467–508 (1980)

    Article  Google Scholar 

  • Tornroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Tajkhorshid, E., Neutze, R., Kjellbom, P.: Structural mechanism of plant aquaporin gating. Nature 439, 688–694 (2006)

    Article  ADS  Google Scholar 

  • Ungermann, C., Langosch, D.: Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing. J. Cell Sci. 118, 3819–3828 (2005)

    Article  Google Scholar 

  • Van den Berg, B., Clemons Jr., W.M., Collinson, I., Modis, Y., Hartmann, E., Harrison, S.C., Rapoport, T.A.: X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004)

    Article  ADS  Google Scholar 

  • White, S.H.: Formation of “solvent-free” black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophys. J. 23, 337–347 (1978)

    Article  ADS  Google Scholar 

  • Wilburn, J.P., Wright, D.W., Cliffel, D.E.: Imaging of voltage-gated alamethicin pores in a reconstituted bilayer lipid membrane via scanning electrochemical microscopy. Analyst 131, 311–316 (2006)

    Article  ADS  Google Scholar 

  • Woodbury, D.J.: Nystatin/ergosterol method for reconstituting ion channels into planar lipid bilayers. Methods Enzymol. 294, 319–339 (1999)

    Article  Google Scholar 

  • Woodbury, D.J., Hall, J.E.: Role of channels in the fusion of vesicles with a planar bilayer. Biophys. J. 54, 1053–1063 (1988a)

    Article  Google Scholar 

  • Woodbury, D.J., Hall, J.E.: Vesicle-membrane fusion. Observation of simultaneous membrane incorporation and content release. Biophys. J. 54, 345–349 (1988b)

    Article  Google Scholar 

  • Woodbury, D.J., Miller, C.: Nystatin-induced liposome fusion. A versatile approach to ion channel reconstitution into planar bilayers. Biophys. J. 58, 833–839 (1990)

    Article  Google Scholar 

  • Yoshikawa, W., Akutsu, H., Kyogoku, Y.: Light-scaterring properties of osmotically active liposomes. Biochim. Biophys. Acta 735, 397–406 (1983)

    Article  Google Scholar 

  • Zagnoni, M., Sandison, M.E., Marius, P., Lee, A.G., Morgan, H.: Controlled delivery of proteins into bilayer lipid membranes on chip. Lab Chip 7, 1176–1183 (2007)

    Article  Google Scholar 

  • Zimmerberg, J., Cohen, F.S., Finkelstein, A.: Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane. J. Gen. Physiol. 75, 241–250 (1980a)

    Article  Google Scholar 

  • Zimmerberg, J., Cohen, F.S., Finkelstein, A.: Micromolar Ca2+ stimulates fusion of lipid vesicles with planar bilayers containing a calcium-binding protein. Science 210, 906–908 (1980b)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the Danish National Advanced Technology Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper S. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hansen, J.S., Plasencia, I., Pszon-Bartosz, K. (2011). Strategies for Integrating Membrane Proteins in Biomembranes. In: Hélix-Nielsen, C. (eds) Biomimetic Membranes for Sensor and Separation Applications. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2184-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2184-5_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2183-8

  • Online ISBN: 978-94-007-2184-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics