Skip to main content
Log in

Ninety-six-well planar lipid bilayer chip for ion channel recording Fabricated by hybrid stereolithography

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2008

Abstract

We present a micro fluidic chip for parallel ion channel recording in a large array of artificial planar lipid bilayer membranes. To realize a composite structure that features an array of recording wells with free-standing microapertures for lipid bilayer reconstitution, the device was fabricated by the hybrid stereolithography technology, in which a Parylene film with pre-formed microapertures was inserted during the rapid stereolithography process. We designed and tested a hybrid chip that has 96 (12×8) addressable recording wells to demonstrate recording of ion channel current in high-throughput manner. Measurement was done by sequentially moving the recording electrode, and, as a result, the channel current of model membrane protein was detected in 44 wells out of 96. We also showed that this hybrid fabrication process was capable of integrating micropatterned electrodes suitable for automated recording. These results support the efficiency of our present architecture of the parallel ion channel recording chip toward realization of the high-throughput screening of ion channel proteins in the artificial lipid bilayer system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • A. Brueggemann, M. George, M. Klau, M. Beckler, J. Steindl, J.C. Behrends et al., Curr. Drug Discov. Technol. 1, 91–96 (2004), doi:10.2174/1570163043484833

    Article  Google Scholar 

  • J. Denyer, J. Worley, B. Cox, G. Allenby, M. Banks, Drug Discov. Today 3, 323–332 (1998), doi:10.1016/S1359-6446(98)01199-4

    Article  Google Scholar 

  • Y. Fang, A.G. Frutos, B. Webb, Y. Hong, A. Ferrie, F. Lai, et al. Biotechniques. (Suppl) 62–65 (2002)

  • N. Fertig, R.H. Blick, J.C. Behrends, Biophys. J. 82, 3056–3062 (2002)

    Article  Google Scholar 

  • J.T. Groves, Curr. Opin. Drug Discov. Devel. 5, 606–612 (2002)

    Google Scholar 

  • J. Hallborn, R. Carlsson. Biotechniques (Suppl), 30–37 (2002)

  • K. Ikuta, T. Hasegawa, T. Adachi, S. Maruo. Fluid drive chips containing multiple pumps and switching valves for biochemical IC family. Proc. Int. Conf. MEMS, 739–744 (2000).

  • K. Ikuta, S. Maruo, T. Fujisawa, A. Yamda, Micro concentrator with opto-sense micro reactor for biochemical IC ship family. Proc. Int. Conf. MEMS, 376–381 (1999).

  • T. Kodadek, Chem. Biol. 8, 105–115 (2001), doi:10.1016/S1074-5521(00)90067-X

    Article  Google Scholar 

  • M. Kreir, C. Farre, M. Beckler, M. George, N. Fertig, Lab Chip. 8, 587–595 (2008), doi:10.1039/b713982a

    Article  Google Scholar 

  • M. Mayer, J.K. Kriebel, M.T. Tosteson, G.M. Whitesides, Biophys. J. 85, 2684–2695 (2003)

    Article  Google Scholar 

  • C. Miller. Ed., Ion Channel Reconstitution (Plenum Pub. Corp., New York, 1986).

  • R. Pantoja, D. Sigg, R. Blunck, F. Bezanilla, J.R. Heath, Biophys. J. 81, 2389–2394 (2001)

    Article  Google Scholar 

  • M.C. Peterman, J.M. Ziebarth, O. Braha, H. Bayley, H.A. Fishman, D.M. Bloom, Biomed Microdev. 4, 231–236 (2002)

    Article  Google Scholar 

  • B.L. Pioufle, H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Anal Chem 80, 328–332 (2008)

    Article  Google Scholar 

  • M.E. Sandison, H. Morgan, J Micromech Microeng 15, S139–S144 (2005)

    Article  Google Scholar 

  • M.E. Sandison, M. Zagnoni, H. Morgan, Langmuir 23, 8277–8284 (2007)

    Article  Google Scholar 

  • H. Suzuki, K. Tabata, Y. Kato-Yamada, H. Noji, S. Takeuchi, Lab Chip 4, 502–505 (2004)

    Article  Google Scholar 

  • H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Langmuir 22, 1937–1942 (2006)

    Article  Google Scholar 

  • H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Biosens Bioelectron 22, 1111–1115 (2007)

    Article  Google Scholar 

  • H. Suzuki, S. Takeuchi, Anal Bioanal Chem, Online First, (2008)

  • C. Wood, C. Williams, G.J. Waldron, Drug Discov Today 9, 434–441 (2004)

    Article  Google Scholar 

  • J. Xu, X. Wang, B. Ensign, M. Li, L. Wu, A. Guia, J. Xu, Drug Discov Today 6, 1278–1287 (2001)

    Article  Google Scholar 

  • M. Zagnoni, M.E. Sandison, P. Marius, A.G. Lee, H. Morgan, Lab Chip 7, 1176–83 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Takeuhci.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10544-008-9218-z

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Raw data of recordings of two sweeps. Upper and lower frames in each address show the result from the 1st and 2nd sweeps, respectively. Empty circle represents the event in which good electrical sealing was achieved, but no gramicidin signal was detected (case A in the main text). × represent the event in which electrical sealing was low (case B). Raw signal data is shown in the cases where the gramicidin signal was detected. (DOC 1.58 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, H., Pioufle, B.L. & Takeuhci, S. Ninety-six-well planar lipid bilayer chip for ion channel recording Fabricated by hybrid stereolithography. Biomed Microdevices 11, 17–22 (2009). https://doi.org/10.1007/s10544-008-9205-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9205-4

Keywords

Navigation