Skip to main content

Metacognition in Science Education: Defi nitions, Constituents, and Their Intricate Relation with Cognition

  • Chapter
  • First Online:
Metacognition in Science Education

Part of the book series: Contemporary Trends and Issues in Science Education ((CTISE,volume 40))

Abstract

This chapter provides a general overview of the role of metacognition in science education. First, a distinction is made between metacognitive knowledge and skills. Metacognitive knowledge refers to the knowledge about the cognitive system, while metacognitive skills concern the regulation of cognitive processes. The historical roots, the nature of processes involved, the development and acquisition, and assessment methods are discussed for both concepts. It is argued that adequate metacognitive knowledge is prerequisite to the acquisition of metacognitive skills. Metacognitive skills, in turn, are the main determinant of learning outcomes. A comprehensive theory of metacognitive skills as self-instructions is presented, indicating that metacognitive skillfulness is not merely a response to anomalies in task performance but also includes the active, self-induced regulation of problem-solving and learning behavior. Next, the role of metacognitive skills in science education is discussed from the perspective of various learning processes involved in task performance. That is, from the perspective of how metacognitive skills are enacted in reading text, problem-solving, inquiry learning, and writing. It appears that metacognitive skills for orientation, planning, monitoring, and evaluation are equally important for these learning processes in science education. Finally, implications for the instruction of metacognitive skills are discussed. The chapter emphasizes the recurrent problems with the “fuzziness” of the concept “metacognition” and of its constituents. Nevertheless, it provides a concise review of many of the main approaches to metacognition that appear in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, P. A., & Jetton, T. L. (2000). Learning from text: A multidimensional and developmental perspective. In M. L. Kamil, P. B. Mosenthal, P. D. Pearson, & R. Barr (Eds.), Handbook of reading research (Vol. III, pp. 285–310). Mahwah: Erlbaum.

    Google Scholar 

  • Alexander, P. A., Schallert, D. L., & Hare, V. C. (1991). Coming to terms: How researchers in learning and literacy talk about knowledge. Review of Educational Research, 61, 315–343.

    Google Scholar 

  • Anderson, J. R. (1996). The architecture of cognition. Mahwah: Erlbaum.

    Google Scholar 

  • Anderson, D., & Nashon, S. (2007). Interpreting students’ metacognition in an amusement park physics program. Science Education, 91, 298–320.

    Article  Google Scholar 

  • Anderson, J. R., & Schunn, C. D. (2000). Implications of the ACT-R learning theory: No magic bullets. In R. Glaser (Ed.), Advances in instructional psychology (Vol. 5, pp. 1–33). Mahwah: Erlbaum.

    Google Scholar 

  • Anderson, J. R., Fincham, J. M., & Douglass, S. (1997). The role of examples and rules in the acquisition of a cognitive skill. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 932–945.

    Article  Google Scholar 

  • Armstrong, N. A., Wallace, C. S., & Chang, S.-M. (2008). Learning from writing in college biology. Research in Science Education, 38, 483–499.

    Article  Google Scholar 

  • Azevedo, R. (2007). Understanding the complex nature of self-regulatory processes in learning with computer-based learning environments: An introduction. Metacognition and Learning, 2, 57–65.

    Article  Google Scholar 

  • Azevedo, R., Greene, J. A., & Moos, D. C. (2007). The effect of a human agent’s external regulation upon college students’ hypermedia learning. Metacognition and Learning, 2, 67–87.

    Article  Google Scholar 

  • Bartsch, K., & Estes, D. (1996). Individual differences in children’s developing theory of mind and implications for metacognition. Learning and Individual Differences, 8, 281–304.

    Article  Google Scholar 

  • Berk, L. E. (2003). Child development. Boston: Pearson Education.

    Google Scholar 

  • Brown, A. L. (1978). Knowing when, where, and how to remember: A problem of metacognition. In R. Glaser (Ed.), Advances in instructional psychology (Vol. 1, pp. 77–165). Hillsdale: Erlbaum.

    Google Scholar 

  • Brown, A. (1987). Metacognition, executive control, self-regulation, and other more mysterious mechanisms. In F. E. Weinert & R. H. Kluwe (Eds.), Metacognition, motivation and understanding (pp. 65–116). Hillsdale: Erlbaum.

    Google Scholar 

  • Butler, D. L. (1998). Metacognition and learning disabilities. In B. Y. L. Wong (Ed.), Learning about learning disabilities (2nd ed., pp. 277–307). San Diego: Academic.

    Google Scholar 

  • Butler, D. L., & Winne, P. H. (1995). Feedback and self-regulated learning: A theoretical synthesis. Review of Educational Research, 65, 245–281.

    Google Scholar 

  • Cavanaugh, J. C., & Perlmutter, M. (1982). Metamemory: A critical review. Child Development, 53, 11–28.

    Article  Google Scholar 

  • Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and transfer of the control of variables strategy. Child Development, 70, 1098–1120.

    Article  Google Scholar 

  • Connor, L. N. (2007). Cueing metacognition to improve researching and essay writing in a final year high school biology class. Research in Science Education, 37, 1–16.

    Article  Google Scholar 

  • De Jong, T., & Ferguson-Hessler, M. G. M. (1984). Strategiegebruik bij het oplossen van problemen in een semantisch rijk domein: electriciteit en magnetisme [Strategy use while solving problems in a semantic rich domain: Electricity and magnetism]. Tijdschrift voor Onderwijsresearch, 9, 3–15.

    Google Scholar 

  • De Jong, T., & Van Joolingen, W. R. (1998). Scientific discovery learning with com puter simulations of conceptual domains. Review of Educational Research, 68, 179–201.

    Google Scholar 

  • Dunlosky, J. (1998). Epilogue. Linking metacognitive theories to education. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 367–381). Mahwah: Erlbaum.

    Google Scholar 

  • Efklides, A. (2006). Metacognition and affect: What can metacognitive experiences tell us about the learning process? Educational Research Review, 1, 3–14.

    Article  Google Scholar 

  • Elio, R., & Scharf, P. B. (1990). Modeling novice-to-expert shifts in problem-solving strategy and knowledge organization. Cognitive Science, 14, 579–639.

    Article  Google Scholar 

  • Elshout, J. J. (1987). Probleemoplossen als context voor leren probleemoplossen [Problem solving as context for learning to solve problems]. Nederlands tijdschrift voor de Psychologie, 42, 344–353.

    Google Scholar 

  • Elshout, J. J. (1996). Architecture of cognition. In E. de Corte & F. E. Weinert (Eds.), International encyclopedia of developmental and instructional psychology (pp. 369–372). Oxford: Pergamon.

    Google Scholar 

  • Elshout, J. J., Veenman, M. V. J., & van Hell, J. G. (1993). Using the computer as a help tool during learning by doing. Computers in Education, 21, 115–122.

    Article  Google Scholar 

  • Ertmer, P. A., & Newby, T. J. (1996). The expert learner: Strategic, self-regulated, and reflective. Instructional Science, 24, 1–24.

    Article  Google Scholar 

  • Flavell, J. H. (1970). Developmental studies of mediated memory. In H. W. Reese & L. P. Lipsitt (Eds.), Advances in child development and behavior (Vol. 5, pp. 181–211). New York: Academic.

    Google Scholar 

  • Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick (Ed.), The nature of intelligence (pp. 231–235). Hillsdale: Erlbaum.

    Google Scholar 

  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34, 906–911.

    Article  Google Scholar 

  • Flavell, J. H. (2004). Theory-of-Mind development: Retrospect and prospect. Merrill-Palmer Quarterly, 50, 274–290.

    Article  Google Scholar 

  • Flavell, J. H., & Wellman, H. M. (1977). Metamemory. In R. V. Kail & J. W. Hagen (Eds.), Perspectives on the development of memory and cognition (pp. 3–33). Hillsdale: Erlbaum.

    Google Scholar 

  • Glaser, R., & Chi, M. T. H. (1988). Oveview. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise (pp. xv–xxviii). Hillsdale: Erlbaum.

    Google Scholar 

  • Glaser, R., Schauble, L., Raghavan, K., & Zeitz, C. (1992). Scientific reasoning across different domains. In E. de Corte, M. C. Linn, H. Mandl, & L. Verschaffel (Eds.), Computer-based learning environments and problem solving (NATO ASI series F, Vol. 84, pp. 345–371). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Hadwin, A. F., Nesbit, J. C., Jamieson-Noel, D., Code, J., & Winne, P. H. (2007). Examining trace data to explore self-regulated learning. Metacognition and Learning, 2, 107–124.

    Article  Google Scholar 

  • Hayes, J. R., & Flower, L. S. (1986). Writing research and the writer. American Psychologist, 41, 1106–1113.

    Article  Google Scholar 

  • Israel, S. E., Collins Block, C., Bauserman, K. L., & Kinnucan-Welsch, K. (2005). Metacognition in literacy learning. Mahwah: Erlbaum.

    Google Scholar 

  • Kaberman, Z., & Dori, Y. J. (2009). Metacognition in chemical education: Question posing in the case-based computerized learning environment. Instructional Science, 37, 403–436.

    Article  Google Scholar 

  • Kelemen, W. L., Frost, P. J., & Weaver, C. A., III. (2000). Individual differences in metacognition: Evidence against a general metacognitive ability. Memory and Cognition, 28, 92–107.

    Article  Google Scholar 

  • Kipnis, M., & Hofstein, A. (2008). The inquiry laboratory as a source for the development of metacognitive skills. International Journal of Science and Mathematics Education, 6, 601–627.

    Article  Google Scholar 

  • Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1–48.

    Article  Google Scholar 

  • Klein, P. D. (2004). Scientific explanation through writing. Instructional Science, 32, 191–231.

    Article  Google Scholar 

  • Kluwe, R. H. (1987). Executive decisions and regulation of problem solving behavior. In F. E. Weinert & R. H. Kluwe (Eds.), Metacognition, motivation, and understanding (pp. 31–64). Hillsdale: Erlbaum.

    Google Scholar 

  • Kluwe, R. H., Misiak, C., & Haider, H. (1990). Learning by doing in the control of a complex system. In H. Mandl, E. de Corte, S. N. Bennett, & H. F. Friedrich (Eds.), Learning and instruction: European research in an international context. Vol. 2.1. Social and cognitive aspects of learning and instruction (pp. 197–218). Oxford: Pergamon Press.

    Google Scholar 

  • Kneser, C., & Ploetzner, R. (2001). Collaboration on the basis of complementary domain knowledge: Observed dialogue structures and their relation to learning success. Learning and Instruction, 11, 53–83.

    Article  Google Scholar 

  • Koch, A. (2001). Training in metacognition nad comprehension of physics texts. Science Education, 85, 758–768.

    Article  Google Scholar 

  • Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13, 205–226.

    Article  Google Scholar 

  • Kuhn, D. (1999). Metacognitive development. In L. Balter & C. S. Tamis-LeMonda (Eds.), Child psychology. A handbook of contemporary issues (pp. 259–286). Philadelphia: Psychology Press.

    Google Scholar 

  • Kuhn, D., Garcia-Mila, M., Zohar, A., & Andersen, C. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development, 60(4), 1–160.

    Article  Google Scholar 

  • Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Models of competence in solving physics problems. Cognitive Science, 4, 317–345.

    Article  Google Scholar 

  • Lockl, K., & Schneider, W. (2006). Precursors of metamemory in young children: The role of theory of mind and metacognitive vocabulary. Metacognition and Learning, 1, 15–31.

    Article  Google Scholar 

  • Manlove, S., Lazonder, A. W., & De Jong, T. (2007). Software scaffolds to promote regulation during scientific inquiry learning. Metacognition and Learning, 2, 141–155.

    Article  Google Scholar 

  • Meijer, J., Veenman, M. V. J., & van Hout-Wolters, B. H. A. M. (2006). Metacognitive activities in text-studying and problem-solving: Development of a taxonomy. Educational Research and Evaluation, 12, 209–237.

    Article  Google Scholar 

  • Mettes, C. T. C. W., Pilot, A., & Roossink, H. J. (1981). Linking factual and procedural knowledge in solving science problems: A case study in a thermodynamics course. Instructional Science, 10, 333–361.

    Article  Google Scholar 

  • Nelson, T. O. (1996). Consciousness and metacognition. American Psychologist, 51, 102–116.

    Article  Google Scholar 

  • Nelson, T. O. (1999). Cognition versus metacognition. In R. J. Sternberg (Ed.), The nature of cognition (pp. 625–641). Cambridge: MIT Press.

    Google Scholar 

  • Nelson, T. O., & Narens, L. (1990). Metamemory: A theoretical framework and new findings. In G. Bower (Ed.), The psychology of learning and motivation, 26 (pp. 125–173). San Diego: Academic.

    Chapter  Google Scholar 

  • Pressley, M., & Afflerbach, P. (1995). Verbal protocols of reading: The nature of constructively responsive reading. Hillsdale: Erlbaum.

    Google Scholar 

  • Pressley, M., & Gaskins, I. (2006). Metacognitive competent reading is constructively responsive reading: How can such reading be developed in students? Metacognition and Learning, 1, 99–113.

    Article  Google Scholar 

  • Pressley, M., Borkowski, J. G., & Schneider, W. (1989). Good information processing: What it is and how education can promote it. International Journal of Educational Research, 13, 866–878.

    Article  Google Scholar 

  • Prins, F. J. (2002). Search & see. The roles of metacognitive skillfulness and intellectual ability during novice inductive learning in a complex computer-simulated environment. (Dissertation, Universiteit van Leiden, Leiden).

    Google Scholar 

  • Reder, L. M., & Schunn, C. D. (1996). Metacognition does not imply awareness: Strategy choice is governed by implicit learning and memory. In L. M. Reder (Ed.), Implicit memory and metacognition (pp. 45–77). Mahwah: Erlbaum.

    Google Scholar 

  • Rickey, D., & Stacy, A. M. (2000). The role of metacognition in learning chemistry. Journal of Chemical Education, 77, 915–920.

    Article  Google Scholar 

  • Scardamalia, M., & Bereiter, C. (1991). Literate expertise. In K. A. Ericsson (Ed.), Toward a general theory of expertise (pp. 172–194). Cambridge: Cambridge University Press.

    Google Scholar 

  • Schauble, L., Raghavan, K., & Glaser, R. (1993). The discovery and reflection notation: A graphical trace for supporting self-regulation in computer-based laboratories. In S. P. Lajoie & S. J. Derry (Eds.), Computers as cognitive tools (pp. 319–337). Hillsdale: Erlbaum.

    Google Scholar 

  • Schellings, G., Aarnoutse, C., & van Leeuwe, J. (2006). Third-grader’s think-aloud protocols: Types of reading activities in reading an expository text. Learning and Instruction, 16, 549–568.

    Article  Google Scholar 

  • Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7, 351–371.

    Article  Google Scholar 

  • Schraw, G., & Nietfeld, J. (1998). A further test of the general monitoring skill hypothesis. Journal of Educational Psychology, 90, 236–248.

    Article  Google Scholar 

  • Schraw, G., Dunkle, M. E., Bendixen, L. D., & Roedel, T. D. (1995). Does a general monitoring skill exist? Journal of Educational Psychology, 87, 433–444.

    Article  Google Scholar 

  • Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36, 111–139.

    Article  Google Scholar 

  • Schunn, C. D., & Anderson, J. R. (1999). The generality/specificity of expertise in scientific reasoning. Cognitive Science, 23, 337–370.

    Article  Google Scholar 

  • Shute, V. J., & Glaser, R. (1990). A large-scale evaluation of an intelligent discovery world: Smithtown. Interactive Learning Environments, 1, 51–77.

    Google Scholar 

  • Simons, P. R. J. (1996). Metacognition. In E. de Corte & F. E. Weinert (Eds.), International encyclopedia of developmental and instructional psychology (pp. 436–441). Oxford: Pergamon.

    Google Scholar 

  • Slife, B. D., Weiss, J., & Bell, T. (1985). Separability of metacognition and cognition: Problem solving in learning disabled and regular students. Journal of Educational Psychology, 77, 437–445.

    Article  Google Scholar 

  • Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4, 295–312.

    Article  Google Scholar 

  • Van Boxtel, C., Van der Linden, J., & Kanselaar, G. (2000). Collaborative learning tasks and the elaboration of conceptual knowledge. Learning and Instruction, 10, 311–330.

    Article  Google Scholar 

  • Van der Stel, M., & Veenman, M. V. J. (2008). Relation between intellectual ability and metacognitive skillfulness as predictors of learning performance of young students performing tasks in different domains. Learning and Individual Differences, 18, 128–134.

    Article  Google Scholar 

  • Veenman, M. V. J. (2005). The assessment of metacognitive skills: What can be learned from multi-method designs? In C. Artelt & B. Moschner (Eds.), Lernstrategien und Metakognition: Implikationen für Forschung und Praxis (pp. 75–97). Berlin: Waxmann.

    Google Scholar 

  • Veenman, M. V. J. (2006). Self-questioning as a metacognitive skill. In H. Pedrosa de Jesus & H. van der Meij (Eds.), Research on questioning. Aveiro: University of Aveiro.

    Google Scholar 

  • Veenman, M. V. J. (2007). The assessment and instruction of self-regulation in computer-based environments: A discussion. Metacognition and Learning, 2, 177–183.

    Article  Google Scholar 

  • Veenman, M. V. J. (2011). Learning to self-monitor and self-regulate. In R. Mayer & P. Alexander (Eds.), Handbook of Research on Learning and Instruction (pp. 197–218). New York: Routledge.

    Google Scholar 

  • Veenman, M. V. J., & Beishuizen, J. J. (2004). Intellectual and metacognitive skills of novices while studying texts under conditions of text difficulty and time constraint. Learning and Instruction, 14, 619–638.

    Google Scholar 

  • Veenman, M. V. J., & Spaans, M. A. (2005). Relation between intellectual and metacognitive skills: Age and task differences. Learning and Individual Differences, 15, 159–176.

    Article  Google Scholar 

  • Veenman, M. V. J., & Verheij, J. (2003). Identifying technical students at risk: Relating general versus specific metacognitive skills to study success. Learning and Individual Differences, 13, 259–272.

    Article  Google Scholar 

  • Veenman, M. V. J., Samarapungavan, A., van Hout-Wolters, B. H. A. M., & Beishuizen, J. J. (1992). De relatie tussen cognitieve en metacognitieve vaardigheden: een introductie [The relation between cognitive and metacognitive skills: An introduction]. Tijdschrift voor Onderwijsresearch, 17, 269–272.

    Google Scholar 

  • Veenman, M. V. J., Elshout, J. J., & Busato, V. V. (1994). Metacognitive mediation in learning with computer-based simulations. Computers in Human Behavior, 10, 93–106.

    Article  Google Scholar 

  • Veenman, M. V. J., Elshout, J. J., & Meijer, J. (1997). The generality vs. domain-specificity of metacognitive skills in novice learning across domains. Learning and Instruction, 7, 187–209.

    Article  Google Scholar 

  • Veenman, M. V. J., Prins, F. J., & Elshout, J. J. (2002). Initial learning in a complex computer simulated environment: The role of metacognitive skills and intellectual ability. Computers in Human Behavior, 18, 327–342.

    Article  Google Scholar 

  • Veenman, M. V. J., Prins, F. J., & Verheij, J. (2003). Learning styles: Self-reports versus thinking-aloud measures. British Journal of Educational Psychology, 73, 357–372.

    Article  Google Scholar 

  • Veenman, M. V. J., Wilhelm, P., & Beishuizen, J. J. (2004). The relation between intellectual and metacognitive skills from a developmental perspective. Learning and Instruction, 14, 89–109.

    Article  Google Scholar 

  • Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and Learning: Conceptual and methodological considerations. Metacognition and Learning, 1, 3–14.

    Article  Google Scholar 

  • Walczyk, J. J. (1994). The development of verbal efficiency, metacognitive strategies, and their interplay. Educational Psychology Review, 6, 173–189.

    Article  Google Scholar 

  • Whitebread, D., Coltman, P., Pasternak, D. P., Sangster, C., Grau, V., Bingham, S., Almeqdad, Q., & Demetriou, D. (2009). The development of two observational tools for assessing metacognition and self-regulated learning in young children. Metacognition and Learning, 4, 63–85.

    Article  Google Scholar 

  • Winne, P. H. (1996). A metacognitive view of individual differences in self-regulated learning. Learning and Individual Differences, 8, 327–353.

    Article  Google Scholar 

  • Zimmerman, B. J. (1995). Self-regulation involves more than metacognition: A social cognitive perspective. Educational Psychologist, 30, 217–221.

    Article  Google Scholar 

  • Zohar, A., & Ben David, A. (2008). Explicit teaching of meta-strategic knowledge in authentic classroom situations. Metacognition and Learning, 3, 59–82.

    Article  Google Scholar 

  • Zohar, A., & Ben David, A. (2009). Paving a clear path in a thick forest: A conceptual analysis of a metacognitive component. Metacognition and Learning, 4, 177–195.

    Article  Google Scholar 

  • Zohar, A., & Peled, B. (2008). The effects of explicit teaching of metastrategic knowledge on low- and high-achieving students. Learning and Instruction, 18, 337–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel V. J. Veenman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science +Business Media B.V.

About this chapter

Cite this chapter

Veenman, M.V.J. (2012). Metacognition in Science Education: Defi nitions, Constituents, and Their Intricate Relation with Cognition. In: Zohar, A., Dori, Y. (eds) Metacognition in Science Education. Contemporary Trends and Issues in Science Education, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2132-6_2

Download citation

Publish with us

Policies and ethics