Skip to main content

Transposable Elements and Epigenetic Mechanisms: Significance and Implications

  • Chapter
Plant Breeding
  • 1767 Accesses

Abstract

Our understanding of the dynamic potential of the genetic material in living organisms is largely a consequence of the discovery and genetic characterization of plant transposable elements. The ubiquitous presence of transposons, and their significance in relation to structure, organization, and evolution of plant genomes are now well-recognized. Molecular characterization of major plant transposons, particularly in maize, led to isolation of an array of genes influencing plant development, biotic stress resistance and other economically important traits in various crop species, through homologous/heterologous transposon tagging strategies. Retrotransposons are also being utilized as molecular tools in DNA fingerprinting, genetic linkage mapping, phylogenetic studies, and molecular breeding in crop plants. Concurrent with these significant developments, ‘epigenetics’, the study of heritable changes in gene expression that occur without a change in DNA sequence, has developed as an important frontier in genetics research. Intensive research in recent years provided a better understanding of how epigenetic mechanisms regulate plant transposons. Besides transposon regulation, epigenetic control of gene expression is recognized as a fundamental feature of plant development, particularly flowering and seed development. A detailed understanding of salient epigenetic mechanisms, such as DNA methylation, paramutation, genomic imprinting and gene silencing, should lead to practical solutions and novel strategies for future plant improvement programmes. The purpose of this review is to highlight the significance and implications of transposon function and major epigenetic phenomena in relation to genome evolution, gene regulation and crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796–815.

    Article  Google Scholar 

  • Barlow D. P. 1993. Methylation and imprinting: from host defense to gene regulation? Science, 260: 309–310.

    Article  PubMed  CAS  Google Scholar 

  • Becker H. A. and Kunze R. 1997. Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal sequences and the terminal inverted repeats. Mol Gen. Genet., 254: 219–230.

    Article  PubMed  CAS  Google Scholar 

  • Beckett J. B. 1978. B-A translocations in maize. I. Use in locating genes by chromosome arms. J. Hered., 69: 27–36.

    Google Scholar 

  • Beguiristain T., Grandbastien M., Puigdomenech P. and Casacuberta J. M. 2001. Three Tntl subfamilies show different stress-associated patterns of expression in tobacco. Consequence of retrotransposon control and evolution in plants. Plant Physiol., 127: 212–221.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen J. L. 2000. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol., 42: 251–269.

    Article  PubMed  CAS  Google Scholar 

  • Birchler J. A. and Hart J. R. 1987. Interaction of endosperm size factors in maize. Genetics, 177: 309–317.

    Google Scholar 

  • Brink R. A. 1956. A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics, 41: 872–889.

    PubMed  CAS  Google Scholar 

  • Brink R. A. 1958. Paramutation at the R locus in maize. Cold Spring Harbor Symp. Quant. Biol., 23: 379–391.

    Article  PubMed  CAS  Google Scholar 

  • Brink R. A. 1973. Paramutation. Annu. Rev. Genet., 7: 129–152.

    Article  PubMed  CAS  Google Scholar 

  • Brink R. A. and Mikula B. 1958. Plant color effects of certain anomalous forms of the R-r allele in maize. Genetics, 54: 899–910.

    Google Scholar 

  • Carpenter R., Hudson A., Robbins T., Almeida J., Martin C. and Coen E. 1988. Genetic and molecular analyses of transposable elements in Antirrhinum majus. In: Plant Transposable Elements. (ed. ) O. E. Nelson, Plenum Press, New York, pp. 69–81.

    Chapter  Google Scholar 

  • Casa A. M., Brouwer C., Nagel A., Wang L., Zhang Q., Kresovich S. and Wessler S. R. 2000. The MITE family Heartbreaker (Hbr): Molecular markers in maize. Proc. Natl. Acad. Sci., USA, 97: 10083–10089.

    Article  PubMed  CAS  Google Scholar 

  • Chandler V. L., Eggleston W. B. and Dorweiler J. E. 2000. Paramutation in maize. Plant Mol Biol., 43: 121–145.

    Article  PubMed  CAS  Google Scholar 

  • Chen M. P., San Miguel P., De Oliviera A. C., Woo S. S., Zhang H., Wing R. A. and Bennetzen J. L. 1997. Microcolinearity in the sh2-homologous regions of the maize, rice and sorghum genomes. Proc. Natl. Acad. Sci., USA, 94: 3431–3435.

    Article  PubMed  CAS  Google Scholar 

  • Coe E. H. Jr. 1959. A regular and continuing conversion-type phenomenon at the B locus in maize. Proc. Natl. Acad. Sci., USA, 45: 828–832.

    Article  PubMed  CAS  Google Scholar 

  • Coe E. H. Jr. 1966. The properties, origin, and mechanism of conversion-type inheritance at the B locus in maize. Genetics, 53: 1035–1063.

    PubMed  CAS  Google Scholar 

  • Ellis T. H, Poyser S. J., Knox M. R., Vershinin A. V. and Ambrose M. J. 1998. Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen. Genet., 260: 9–19.

    PubMed  CAS  Google Scholar 

  • Fagard M., Boutet S., Morel J. B., Belleni C. and Vaucheret H. 2000. AGO1, QDE-2 and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl. Acad. Sci., USA, 97: 11650–11654.

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff N. V. 1983. Controlling elements in maize. In: Mobile Genetic Elements. (ed. ). J. Shapiro Academic Press, New York, pp. 1–63.

    Google Scholar 

  • Fedoroff N. V. 2000. Transposons and genome evolution in plants. Proc. Natl. Acad. Sci., USA, 97: 7002–7007.

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff N. V., Wessler S. and Shure M. 1983. Isolation of the transposable maize controlling elements Ac and Ds. Cell, 35: 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C. and Wessler S. R. 2001. Treasures in the attic: rolling circle transposons discovered in eukaryotic genomes. Proc Natl. Acad. Sci., USA, 98: 8923–8924.

    Article  PubMed  CAS  Google Scholar 

  • Flavell A. J., Pearce S. R. and Kumar A. 1994. Plant transposable elements and the genome. Curr. Opin. Genet. Dev., 4: 838–844.

    Article  PubMed  CAS  Google Scholar 

  • Flavell A. J, Knox M. R., Pearce S. R. and Ellis T. H. 1998. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J., 16: 643–650.

    Article  PubMed  CAS  Google Scholar 

  • Frey M., Reinecke J., Grant S., Saedler H. and Gierl A. 1990. Excision of the En/Spm transposable elements of Zea mays requires two-element encoded proteins. EMBO J., 9: 4037–4044.

    PubMed  CAS  Google Scholar 

  • Frey M., Stettner C. and Gierl A. 1998. A general method for gene isolation in tagging approaches: amplification of insertion mutagenised sites (AIMS). Plant J., 13: 717–721.

    Article  CAS  Google Scholar 

  • Gierl A., Lutticke S. and Saedler H. 1988. TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J., 7: 4045–4053.

    PubMed  CAS  Google Scholar 

  • Grandbastien M. A. 1992. Retroelements in higher plants. Trends Genet., 8: 103–108.

    PubMed  CAS  Google Scholar 

  • Gribbon B. M., Pearce S. R., Kalendar R., Schulman A. H., Paulin L., Jack P., Kumar A. and Flavell A. J. 1999. Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol. Gen. Genet., 261: 883–891.

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus U., Spillane C., Page D. R. and Kvhler C. 2001. Genomic imprinting and seed development: endosperm formation with and without sex. Curr. Opin. Plant Sci., 4: 21–27.

    Article  CAS  Google Scholar 

  • Haring M. A., Rommens C. M. T., Nijkamp H. J. J. and Hille J. 1991. The use of transgenic plants to understand transposition mechanisms and to develop transposon strategies. Plant Mol Biol., 16: 449–461.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S. and Comai L. 1998. Trans-sensing effects: the ups and downs of being together. Cell, 93: 329–332.

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H., Okamoto H. and Kakutani T. 2000. Silencing of retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell, 12: 357–369.

    PubMed  CAS  Google Scholar 

  • Hirochika H. 2001. Contribution of the Tos17 retrotransposon to rice functional genomics. Curr. Opin. Plant Biol., 4: 118–122.

    Article  PubMed  CAS  Google Scholar 

  • Hollick J. B., Dorweiler J. E. and Chandler V. L. 1997. Paramutation and related allelic interactions. Trends Genet., 13: 302–308.

    Article  PubMed  CAS  Google Scholar 

  • Hollick J. B., Patterson G. I., Coe E. H. Jr., Cone K. C. and Chandler V. L. 1995. Allelic interactions heritably alter the activity of a metastable maize pl1 allele. Genetics, 141: 709–719.

    PubMed  CAS  Google Scholar 

  • Holliday R. 1987. Inheritance of epigenetic defects. Science, 238: 163–170.

    Article  PubMed  CAS  Google Scholar 

  • John R. M. and Surani M. A. 1996. Imprinting genes and regulation of gene expression by epigenetic inheritance. Curr. Opin. Cell Biol., 8: 348–353.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen R. A. 1995. Cosuppression, flower color patterns, and metastable gene expression states. Science, 268: 686–691.

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R., Grob T., Regina M., Suoniemi A. and Schulman A. 1999. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet., 98: 704–711.

    Article  CAS  Google Scholar 

  • Kalendar R., Tanskanen J., Immonen S., Nevo E. and Schulman A. H. 2000. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci., USA, 97: 6603–6607.

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov V. V. and Jurka J. 2001. Rolling-circle transposons in eukaryotes. Proc. Natl. Acad. Sci., USA, 98: 8714–8719.

    Article  PubMed  CAS  Google Scholar 

  • Kermicle J. L. 1970. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics, 66: 69–85.

    PubMed  CAS  Google Scholar 

  • Kermicle J. L. and Alleman M. 1990. Gametic imprinting in maize in relation to the angiosperm life cycle. Development (supp1. ), 9–14.

    Google Scholar 

  • Krebbers E., Hehl R., Piotrowiak R., Lonnig W., Sommer H. and Saedler H. 1987. Molecular analysis of paramutant plants of Antirrhinum majus and the involvement of transposable elements. Mol. Gen. Genet., 214: 25–327.

    Google Scholar 

  • Kumar A. and Bennetzen J. L. 1999. Plant retrotransposons. Annu. Rev. Genet., 33: 479–532.

    Article  PubMed  CAS  Google Scholar 

  • Kumar A. and Hirochika H. 2001. Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci., 6: 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Kumar A., Pearce S. R., McLean K., Harrison G., Heslop-Harrison J. S., Waugh R. and Flavell A. J. 1997. The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers. Genetics, 100: 205–217.

    CAS  Google Scholar 

  • Kunze R., Saedler H. and Lonning W. E. 1997. Plant transposable elements. Adv. Bot. Res., 27: 331–470.

    Article  CAS  Google Scholar 

  • Le Q. H., Wright S., Yu Z. and Bureau T. 2000. Transposon diversity in Arabidopsis thaliana. Proc. Natl. Acad. Sci., USA, 97: 7376–7381.

    Article  PubMed  CAS  Google Scholar 

  • Lin B. Y. 1982. Association of endosperm reduction with parental imprinting in maize. Genetics, 100: 475–486.

    PubMed  CAS  Google Scholar 

  • Lin B. Y. 1984. Ploidy barrier in endosperm development in maize. Genetics, 107: 103–115.

    PubMed  CAS  Google Scholar 

  • Liu D. and Crawford N. M. 1998. Characterization of putative transposase mRNA of Tag1, which is ubiquitously expressed in Arabidopsis and can be induced by Agrobacterium-mediated transformation with dTag1 DNA. Genetics, 149: 393–401.

    Google Scholar 

  • Liu D., Wang R., Galli M. and Crawford N. M. 2001. Somatic and germinal excision activities of the Arabidopsis transposon Tag1 are controlled by distinct regulatory sequences within Tagl. Plant Cell, 13: 1851–1863.

    PubMed  CAS  Google Scholar 

  • Manninen O., Kalendar R., Robinson J., Schulman A. H. 2000. Application of BARE-1 retrotransposon markers to map a major resistance gene for net blotch in barley. Mol. Gen. Genet., 264: 325–334.

    PubMed  CAS  Google Scholar 

  • Martienssen R. 1998. Chromosomal imprinting in plants. Curr. Opin. Genet. Dev., 8: 240–244.

    Article  PubMed  CAS  Google Scholar 

  • Masson P. and Fedoroff N. 1989. Mobility of the maize Suppressor-mutator element in transgenic tobacco cells. Proc. Natl. Acad. Sci., USA, 86: 2219–2223.

    Article  PubMed  CAS  Google Scholar 

  • Matzke M. A. and Matzke A. J. M. 1993. Genomic imprinting in plants: parental effects and trans-inactivation phenomena. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44: 53–76.

    Article  CAS  Google Scholar 

  • Matzke M. A., Matzke A. J. M. and Eggleston W. B. 1996. Paramutation and transgene silencing: a common response to invasive DNA? Trends Plant Sci., 1: 382–388.

    Google Scholar 

  • Matzke M. A., Mette M. F. and Matzke A. J. M. 2000. Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Mol. Biol., 43: 401–415.

    Article  PubMed  CAS  Google Scholar 

  • Matzke AJ. M., Neuhuber F., Park Y. D., Ambros D. F. and Matzke M. A. 1994. Homology-dependent gene silencing in transgenic plants, epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet., 244: 219–229.

    Article  PubMed  CAS  Google Scholar 

  • Matzke M. A., Matzke, AJ. M., Pruss G. J. and Vance V. B. 2001. RNA-based silencing strategies in plants. Curr. Opin. Genet. Dev., 11: 221–227.

    Article  PubMed  CAS  Google Scholar 

  • McClintock B. 1951. Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol., 16: 13–47.

    Article  PubMed  CAS  Google Scholar 

  • McClintock B. 1965. The control of gene action in maize. Brookhaven Symp. Biol., 18: 162–184.

    Google Scholar 

  • McClintock B. 1984. The significance of responses of the genome to challenge. Science, 226: 792–801.

    Article  PubMed  CAS  Google Scholar 

  • Messing J. and Grossnikiaus U. 1999. Genomic imprinting in plants. Results Probl. Cell Differ., 25: 23–40.

    PubMed  CAS  Google Scholar 

  • Meyer P., Linn F., Heidmann I., Meyer Z. A. H., Niedenhoff I. and Saedler H. 1992. Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol. Gen. Genet., 231: 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Mhiri C., Morel J. B., Vernhettes S., Casacuberta J. M., Lucas H., Grandbastien M. A. 1997. The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol. Biol, 33: 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Miura A., Yonebayashi S., Watanbe K., Toyama T., Shimada H. and Kakutani T. 2001. Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature, 411: 212–214.

    Article  PubMed  CAS  Google Scholar 

  • Moffat A. S. 2000. Transposons help sculpt a dynamic genome. Science, 289: 1455–1457.

    Article  PubMed  CAS  Google Scholar 

  • Nevers P., Shepherd N. S. and Saedler H. 1985. Plant transposable elements. Adv. Bot. Res., 12: 103–203.

    Google Scholar 

  • Pearce S. R, Stuart-Rogers C., Knox M. R., Kumar A., Ellis T. H. and Flavell A. J. 1999. Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. Plant J., 19: 711–717.

    Article  PubMed  CAS  Google Scholar 

  • Pearce S. R., Knox M., Ellis T. H., Flavell A. J. and Kumar A. 2000. Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol. Gen. Genet., 263: 898–907.

    Article  PubMed  CAS  Google Scholar 

  • Pereira A. 1998. Heterologous transposon tagging systems. In: Transgenic Plant Research, (ed. ). K. Lindsey, Harwood Academic Publishers, UK, pp. 91–108.

    Google Scholar 

  • Peterson P. A. 1987. Mobile elements in plants. CRC Crit. Rev. Plant Sci., 6: 105–208.

    Article  Google Scholar 

  • Peterson P. A. 1988. Transposons in maize and their role in corn breeding progress. Proc. 43rd Annu. Corn Sorghum Res. Conf., pp. 51–71.

    Google Scholar 

  • Prasanna B. M. 1991. Transposable genetic elements in maize. In: Maize Genetics Perspectives, (eds. ) K. R. Sarkar, J. K. S. Sachan and N. N. Singh. Indian Society of Genetics and Plant Breeding, New Delhi, pp. 113–120.

    Google Scholar 

  • Prasanna B. M. and Sarkar K. R. 1996. The R locus in maize — A versatile marker system for probing differential gene expression. Indian J. Genet., 56: 229–247.

    Google Scholar 

  • Prasanna B. M. and Sarkar K. R. 1997. Active transposable elements in Indian maize germplasm and assorted genetic testers. Curr. Sci., 73: 464–469.

    Google Scholar 

  • Purugganan M. D. and Wessler S. R. 1995. Transposon signature-species-specific molecular markers that utilize a class of multiple-copy nuclear-DNA. Mol. Ecol., 4: 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Razin A. and Riggs A. D. 1980. DNA methylation and gene function. Science, 210: 604–610.

    Article  PubMed  CAS  Google Scholar 

  • San Miguel P., Gaut B. S., Tikhonov A., Nakajima Y. and Bennetzen J. L. 1998. The paleontology of intergene retrotransposons of maize. Nat. Genet., 20: 43–45.

    Article  CAS  Google Scholar 

  • Sato Y., Sentoku N., Miura Y., Hirochika H., Kitano H. and Matsuoka M. 1999. Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J., 18: 992–1002.

    Article  PubMed  CAS  Google Scholar 

  • Schlappi M., Raina R. and Fedoroff N. 1994. Epigenetic regulation of the maize transposable element system: Novel activation of amethylated promoter by TnpA. Cell, 77: 427–437.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro J. A. 1969. Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. J. Mol. Biol., 40: 93.

    Article  PubMed  CAS  Google Scholar 

  • Singer T., Yordan C. and Martienssen R. 2001. Robertson’s Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene, decrease in DNA methylation. Genes Dev., 15: 591–602.

    Article  PubMed  CAS  Google Scholar 

  • Solter D. 1988. Differential imprinting and expression of maternal and paternal genomes. Annu. Rev. Genet., 22: 127–146.

    Article  PubMed  CAS  Google Scholar 

  • Sommer H., Hehl R., Krebbers E., Piotrowiak R., Lonning W. E. and Saedler H. 1988. Transposable elements in Antirrhinum majus. In: Plant Transposable Elements, (ed. ). O. E. Nelson, Plenum Press, New York, pp. 227–236.

    Chapter  Google Scholar 

  • Sundaresan V. 1996. Horizontal spread of transposon mutagenesis: new uses for old elements. Trends Plant Sci., 1: 184–190.

    Article  Google Scholar 

  • Sundaresan V., Springer P., Volpe T., Howard S., Jones J. D., Dean C., Ma H. and Martienssen R. 1995. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev., 9: 1797–1810.

    Article  PubMed  CAS  Google Scholar 

  • Surani M. A. H. 1987. Evidences and consequences of differences between maternal and paternal genomes during embryogenesis in the mouse. In: Experimental Approaches to Mammalian Embryonic Development, (eds. ) J. Rossant, and R. A. Pedersen, Cambridge University Press, London, pp. 401–435.

    Chapter  Google Scholar 

  • Takeda S., Sugimoto K., Otsuki H. and Hirochika H. 1998. Transcriptional activation of the tobacco retrotransposon Tto1 by wounding and methyl jasmonate. Plant Mol. Biol., 36: 365–376.

    Article  PubMed  CAS  Google Scholar 

  • Takeda S., Sugimoto K., Otsuki H. and Hirochika H. 1999. A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Tto1 is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J., 18: 383–393.

    Article  PubMed  CAS  Google Scholar 

  • Tarchini R., Biddle P., Winel and R., Tinguey S. and Rafalski A. 2000. The complete sequence of 340 kb of DNA around the rice Adh1-Adh2 region reveals interrupted collinearity with maize chromosome 4. Plant Cell, 12: 381–391.

    PubMed  CAS  Google Scholar 

  • Upadhyaya K. C. 1995. Transposable elements and transposon tagging in plants. In: Genetic Research and Education: Current Trends and the Next Fifty Years, (eds. ) B. Sharma et al. Indian Society of Genetics Plant Breeding, New Delhi, pp. 1168–1187.

    Google Scholar 

  • Upadhyaya K. C., Sommer H., Krebbers E. and Saedler H. 1985. The paramutagenic line niv44 has a 5-kb insert, Tam2, in the chalcone synthase gene of Antirrhinum majus. Mol. Gen. Genet., 199: 201–207.

    Article  CAS  Google Scholar 

  • Van Blokl and R., Lohuis M. and Meyer P. 1997. Condensation of chromatin in transcriptional regions of an inactivated plant transgene: evidence for an active role of transcription in gene silencing. Mol. Gen. Genet., 257: 1–13.

    Article  Google Scholar 

  • Van der Broeck D., Maes T., Saur M., Zethof J., De K. P., D’Hauw M., Van M. M. and Gerats T. 1998. Transposon display identifies individual transposable elements in high copy number lines. Plant J., 13: 121–129.

    PubMed  Google Scholar 

  • Van Houwelingen A., Souer E., Mol J. and Koes R. 1999. Epigenetic interactions among three dTph1 transposons in two homologous chromosomes activate a new excision-repair mechanism in Petunia. Plant Cell, 11: 1319–1336.

    PubMed  Google Scholar 

  • Varmuza S. and Mann M. 1994. Genomic imprinting — defusing the ovarian time bomb. Trends Genet., 10: 118–123.

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H., Beclin C., Elmayan T., Fuerbacj F., Godon C., Morel J. B., Mourrain P., Palauqui J. C. and Vernhettes S. 1998. Transgene-induced gene silencing in plants. Plant J., 16: 651–659.

    Article  PubMed  CAS  Google Scholar 

  • Vicient C. M., Suoniemi A., Anamthawat-Jonsson K., Tanskanen J. 1999. Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell, 11: 1769–1784.

    PubMed  CAS  Google Scholar 

  • Vicient C. M., Jddskeldinen M. J., Kalendar R. and Schulman A. H. 2001. Active retrotransposons are a common feature of grass genomes. Plant Physiol., 125: 1283–1292.

    Article  PubMed  CAS  Google Scholar 

  • Vielle-Calzada J. P., Baskar A. and Grossnikiaus U. 2000 Delayed activation of the paternal genome during seed development. Nature, 404: 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Vielle-Calzada J. P., Thomas J., Spillane C., Coluccio A., Hoeppner M. A. and Grossnikiaus U. 1999. Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev., 13: 2971–2982.

    Article  PubMed  CAS  Google Scholar 

  • Vongs A., Kakutani T., Martienssen R. and Richards E. J. 1993. Arabidopsis thaliana DNA methylation mutants. Science, 260: 926–1928.

    Article  Google Scholar 

  • Waddington C. H. 1956. Principles of Embryology. Allen and Unwin, London.

    Book  Google Scholar 

  • Walbot V. 1992. Reactivation of Mutator transposable elements of maize by ultraviolet light. Mol. Gen. Genet., 1992. 234: 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Walbot V. 1996. Sources and consequences of genotypic and phenotypic plasticity in flowering plants. Trends Plant Sci., 1: 27–32.

    Article  Google Scholar 

  • Walbot V. 2000. Saturation mutagenesis using maize transposons. Curr. Opin. Plant Biol., 3: 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse P. M., Wang M. B. and Lough T. 2001. Gene silencing as an adaptive defence against viruses. Nature, 411: 834–842.

    Article  PubMed  CAS  Google Scholar 

  • Waugh R., McClean K., Flavell A. J., Pearce S. R., Kumar A., Thomas B. T. and Powell W. 1997. Genetic distribution of BARE1 retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphism (S-SAP). Mol. Gen. Genet., 253: 687–694.

    Article  PubMed  CAS  Google Scholar 

  • Wessler S. R. 1988. Phenotypic diversity mediated by the maize transposable elements Ac and Spm. Science, 242: 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Wessler S. R. 1996. Turned on by stress. Plant retrotransposons. Curr. Biol., 6: 959–961.

    Article  PubMed  CAS  Google Scholar 

  • Wicker T., Stein N., Albar L., Feuillet C., Schlagenhauf E. and Keller B. 2001. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L. ) reveals multiple mechanisms of genome evolution. Plant J., 26: 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Wolffe A. P. and Matzke M. A. 1999. Epigenetics: regulation through repression. Science, 286: 481–486.

    Article  PubMed  CAS  Google Scholar 

  • Yephremov A. and Saedler H. 2000. Display and isolation transposon flanking sequences starting from genomic DNA or RNA. Plant J., 21: 495–505.

    Article  PubMed  CAS  Google Scholar 

  • Yoder J. A., Walsh C. P. and Bestor T. H. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet., 13: 335–340.

    Article  PubMed  CAS  Google Scholar 

  • Yu G. X. and Wise R. P. 2000. An anchored AFLP-and retrotransposons-based map of diploid Avena. Genome, 43: 736–749.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H K Jain M C Kharkwal

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Upadhyaya, K.C., Prasanna, B.M. (2004). Transposable Elements and Epigenetic Mechanisms: Significance and Implications. In: Jain, H.K., Kharkwal, M.C. (eds) Plant Breeding. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1040-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1040-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3773-0

  • Online ISBN: 978-94-007-1040-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics