Skip to main content

Solar Energy Conversion

  • Chapter
  • First Online:
Applied Photochemistry

Abstract

Photochemical conversion of solar photons is one of the most promising and sought after solutions to the current global energy problem. It combines the advantages of an abundant and widespread source of energy, the Sun, and Earth-abundant and environmentally benign materials, to produce other usable forms of energy such as electricity and fuels, without the negative impact of CO2 or other greenhouse gas release into the atmosphere. Dye-sensitised solar cells (DSSC) and organic bulk heterojunction (BHJ) solar cells are two examples of such systems, allowing the conversion of visible sunlight into electricity by inorganic or organic semiconductor materials, which are inexpensive and easy to process on a large scale. Photocatalytic (PC) and photoelectrochemical (PEC) water splitting systems offer a solution to the problem of diffuse and intermittent sunlight irradiation, by storing the energy of solar photons in the form of clean energy vectors such as H2. This chapter presents an overview of the technologies based on photochemical solar energy conversion and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lewis NS, Nocera DG (2006) Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15729–15735

    CAS  Google Scholar 

  2. Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196

    CAS  Google Scholar 

  3. Cook TR, Dogutan DK, Reece SY et al (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502

    CAS  Google Scholar 

  4. O’Regan B, Grätzel M (1991) A low-cost, high efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 335:737–740

    Google Scholar 

  5. Bessho T, Yoneda E, Yum J-H et al (2009) New paradigm in molecular engineering of sensitizers for solar cell applications. J Am Chem Soc 131:5930–5934

    CAS  Google Scholar 

  6. Moser J-E, Grätzel M (1998) Excitation-wavelength dependence of photoinduced charge injection at the semiconductor-dye interface: evidence for electron transfer from vibrationally hot excited states. Chimia 52:160–162

    CAS  Google Scholar 

  7. Ellingson RJ, Asbury JB, Ferrere S et al (1998) Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru(4,4′-dicarboxy-2,2′-bipyridine)2(NCS)2] by infrared transient absorption. J Phys Chem B 102:6455–6458

    CAS  Google Scholar 

  8. Benkö G, Kallioinen J, Korppi-Tommola JEI et al (2002) Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. J Am Chem Soc 124:489–493

    Google Scholar 

  9. Martinson ABF, Hamann TW, Pellin MJ et al (2008) New architectures for dye-sensitized solar cells. Chem Eur J 14:4458–4467

    CAS  Google Scholar 

  10. Arnaut LG, Formosinho SJ, Burrows HD (2007) Chemical kinetics. From molecular structure to chemical reactivity. Elsevier, Amsterdam

    Google Scholar 

  11. Tachibana Y, Haque SA, Mercer IP et al (2001) Modulation of the rate of electron injection in dye-sensitized nanocrystalline TiO2 films by externally applied bias. J Phys Chem B 105:7424–7431

    CAS  Google Scholar 

  12. Kuciauskas D, Freund MS, Gray HB et al (2001) Electron transfer dynamics in nanocrystalline titanium dioxide solar cells sensitized with ruthenium or osmium polypyridyl complexes. J Phys Chem B 105:392–403

    CAS  Google Scholar 

  13. Durrant JR, Haque SA, Palomares E (2006) Photochemical energy conversion: from molecular dyads to solar cells. Chem Commun 31:3279–3289

    Google Scholar 

  14. Wang H, Nicholson PG, Peter L et al (2010) Transport and interfacial transfer of electrons in dye-sensitized solar cells utilizing a Co(dbbip)2 redox shuttle. J Phys Chem C 114:14300–14306

    CAS  Google Scholar 

  15. Peter L (2009) “Sticky Electrons” transport and interfacial transfer of electrons in the dye-sensitized solar cell. Acc Chem Res 42:1839–1847

    CAS  Google Scholar 

  16. Ardo S, Meyer GJ (2009) Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem Soc Rev 38:115–164

    CAS  Google Scholar 

  17. Ito S, Chen P, Comte P et al (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog Photovolt Res Appl 15:603–612

    CAS  Google Scholar 

  18. Zhang D, Ito S, Wada Y et al (2001) Nanocrystalline TiO2 electrodes prepared by water-medium screen printing technique. Chem Lett 30:1042–1043

    Google Scholar 

  19. Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851

    Google Scholar 

  20. Nazeeruddin MK, Angelis FD, Fantacci S et al (2005) Combined experimental and DFT–TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847

    CAS  Google Scholar 

  21. Kilså K, Mayo EI, Brunschwig BS et al (2004) Anchoring group and auxiliary ligand effects on the binding of ruthenium complexes to nanocrystalline TiO2 photoelectrodes. J Phys Chem B 108:15640–15651

    Google Scholar 

  22. Odobel F, Blart E, Lagrée M et al (2003) Porphyrin dyes for TiO2 sensitization. J Mater Chem 13:502–510

    CAS  Google Scholar 

  23. Ito S, Murakami TN, Comte P et al (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516:4613–4619

    CAS  Google Scholar 

  24. Smestad GP, Grätzel M (1998) Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter. J Chem Educ 75:752–756

    CAS  Google Scholar 

  25. Nazeeruddin MK, Humphry-Baker R, Liska P et al (2003) Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J Phys Chem B 107:8981–8987

    CAS  Google Scholar 

  26. Guo X-Z, Luo Y-H, Zhang Y-D et al (2010) Study on the effect of measuring methods on incident photon-to-electron conversion efficiency of dye-sensitized solar cells by home-made setup. Rev Sci Instr 81:103106–103114

    Google Scholar 

  27. Anderson AY, Barnes PRF, Durrant JR et al (2010) Simultaneous transient absorption and transient electrical measurements on operating dye-sensitized solar cells: elucidating the intermediates in iodide oxidation. J Phys Chem C 114:1953–1958

    CAS  Google Scholar 

  28. Grätzel M, Moser J-E (2001) Solar energy conversion. In: Balzani V (ed) Electron transfer in chemistry, vol V. Wiley-VCH, Weinheim, pp 588–644

    Google Scholar 

  29. Moser J-E, Noukakis D, Bach U et al (1998) Comment on “Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-dye molecules into empty electronic states in a colloidal anatase TiO2 film”. J Phys Chem B 102:3649–3650

    CAS  Google Scholar 

  30. Cao Y, Bai Y, Yu Q et al (2009) Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine. J Phys Chem C 113:6290–6297

    CAS  Google Scholar 

  31. Balraju P, Kumar M, Deol YS et al (2010) Photovoltaic performance of quasi-solid state dye sensitized solar cells based on perylene dye and modified TiO2 photo-electrode. Synth Met 160:127–133

    CAS  Google Scholar 

  32. Cid J–J, García-Iglesias M, Yum J-H et al (2009) Structure–function relationships in unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. Chem Eur J 15:5130–5137

    CAS  Google Scholar 

  33. Campbell WM, Jolley KW, Wagner P et al (2007) Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J Phys Chem C 111:11760–11762

    CAS  Google Scholar 

  34. Garcia CG, Polo AS, Iha NYM (2003) Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photoelectrochemical solar cells. J Photochem Photobiol A 160:87–91

    CAS  Google Scholar 

  35. Park N-G (2010) Light management in dye-sensitized solar cell. Korean J Chem Eng 27:375–384

    CAS  Google Scholar 

  36. Amadelli R, Argazzi R, Bignozzi CA et al (1990) Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2) 2−2 . J Am Chem Soc 112:7099–7133

    CAS  Google Scholar 

  37. Gajardo F, Leiva AM, Loeb B et al (2008) Interfacial electron transfer on TiO2 sensitized with an axially anchored trans tetradentate Ru(II) compound. Inorg Chim Acta 361:613–619

    CAS  Google Scholar 

  38. Chiu W-H, Lee C-H, Cheng H-M et al (2009) Efficient electron transport in tetrapod-like ZnO metal-free dye-sensitized solar cells. Energy Environ Sci 2:694–698

    CAS  Google Scholar 

  39. Thimsen E, Rastgar N, Biswas P (2008) Nanostructured TiO2 films with controlled morphology synthesized in a single step process: performance of dye-sensitized solar cells and photo water splitting. J Phys Chem C 112:4134–4140

    CAS  Google Scholar 

  40. Tiwari A, Snure M (2008) Synthesis and characterization of ZnO nano-plant-like electrodes. J Nanosci Nanotech 8:3981–3987

    CAS  Google Scholar 

  41. Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42:1819–1826

    CAS  Google Scholar 

  42. Zhang Z, Chen P, Murakami TN et al (2008) The 2,2,6,6-tetramethyl-1-piperidinyloxy radical: an efficient, iodine-free redox mediator for dye-sensitized solar cells. Adv Funct Mater 18:341–346

    CAS  Google Scholar 

  43. Wang P, Zakeeruddin M, Moser J-E et al (2003) A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Mater 2:402–407

    CAS  Google Scholar 

  44. Durrant JR, Haque SA (2003) Solar Cells Solid Compromise. Nature Mater 2:362–363

    CAS  Google Scholar 

  45. Li B, Wang LD, Kang BN et al (2006) Review of recent progress in solid-state dye-sensitized solar cells. Sol Energy Mater Sol Cells 90:549–573

    CAS  Google Scholar 

  46. O’Reagan BC, Lenzmann F, Muis R et al (2002) A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN: analysis of pore filling and IV characteristics. Chem Mater 14:5023–5029

    Google Scholar 

  47. Snure M, Tiwari A (2007) CuBO2-A p-type transparent oxide. Appl Phys Lett 91:092123

    Google Scholar 

  48. Nobuyuki I, Miysaka T (2005) A solid-state dye-sensitized photovoltaic cell with a poly(N-vinyl-carbazole) hole transporter mediated by an alkali iodide. Chem Commun, 1886–1888

    Google Scholar 

  49. Wang Y, Yang K, Kim S-C et al (2006) In situ polymerized carboxylated diacetylene as a hole conductor in solid-state dye-sensitized solar cells. Chem Mater 18:4215–4217

    CAS  Google Scholar 

  50. Liu X, Zhang W, Uchida S et al (2010) An efficient organic-dye-sensitized solar cell with in situ polymerized poly(3,4-ethylenedioxythiophene) as a hole-transporting material. Adv Mater 22:E150–E155

    CAS  Google Scholar 

  51. Tang CW (1986) Two-layer organic photovoltaic cell. Appl Phys Lett 48:183–185

    CAS  Google Scholar 

  52. Yoo S, Domercq B, Kippelen B (2004) Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions. Appl Phys Lett 85:5427–5429

    CAS  Google Scholar 

  53. Yu G, Gao J, Hummelen JC et al (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791

    CAS  Google Scholar 

  54. Blom PWM, Mihailetchi VD, Koster LJA et al (2007) Device physics of polymer:fullerene bulk heterojunction solar cells. Adv Mater 19:1551–1566

    CAS  Google Scholar 

  55. Jarzab D, Cordella F, Lenes M et al (2009) Charge transfer dynamics in polymer-fullerene blends for efficient solar cells. J Phys Chem B 113:16513–16517

    CAS  Google Scholar 

  56. Coropceanu V, Cornil J, da Silva Filho DA et al (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952

    CAS  Google Scholar 

  57. Gomes PJS, Nunes RMD, Serpa C et al (2010) Exothermic rate restrictions in long-range photoinduced charge separations in rigid media. J Phys Chem A 114:2778–2787. Correc J Phys Chem A 2114:10759–11760

    Google Scholar 

  58. Serpa C, Gomes PJS, Arnaut LG et al (2006) Electron transfer in supercritical carbon dioxide: Ultraexothermic charge recombination at the end of the “Inverted Region”. Chem Eur J 12:5014–5023

    CAS  Google Scholar 

  59. Bässler H, Schweitzer B (1999) Site-selective fluorescence spectroscopy of conjugated polymers and oligomers. Acc Chem Res 32:173–182

    Google Scholar 

  60. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    CAS  Google Scholar 

  61. Arnaut LG, Formosinho SJ (1998) Modelling intramolecular electron transfer reactions in cytochromes and in photosynthetic bacteria rection centres. J Photochem Photobiol A Chem 118:173–181

    CAS  Google Scholar 

  62. Kestner NR, Logan J, Jortner J (1974) Thermal electron transfer reactions in polar solvents. J Phys Chem 78:2148–2166

    CAS  Google Scholar 

  63. Baxter J, Bian Z, Chen G et al (2009) Nanoscale design to enable the revolution in renewable energy. Energy Environ Sci 2:559–588

    CAS  Google Scholar 

  64. Javey A, Guo J, Wang Q et al (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    CAS  Google Scholar 

  65. Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736–6767

    CAS  Google Scholar 

  66. Zhu X-Y (2009) Charge-transfer excitons at organic semiconductor surfaces and interfaces. Acc Chem Res 42:1779–1787

    CAS  Google Scholar 

  67. Brédas J-L, Norton JE, Cornil J et al (2009) Molecular understanding of organic solar cells: the challenges. Acc Chem Res 42:1691–1699

    Google Scholar 

  68. Ohkita H, Cook S, Astuti Y et al (2008) Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. J Am Chem Soc 130:3030–3042

    CAS  Google Scholar 

  69. Nemec H, Nienhuys H-K, Perzon E et al (2009) Ultrafast conductivity in a low-band-gap polyphenylene and fullerene blend studied by terahertz spectroscopy. Phys Rev B 79:245326–245333

    Google Scholar 

  70. Seixas de Melo J, Silva LM, Arnaut LG et al (1999) Singlet and triplet energies of a-oligothiophenes: a spectroscopic, theoretical, and photoacoustic study. J Chem Phys 111:5427–5433

    Google Scholar 

  71. Hains AW, Liu J, Martinson ABF et al (2010) Anode interfacial tuning via electron-blocking/hole-transport layers and indium tin oxide surface treatment in bulk-heterojunction organic photovoltaic cells. Adv Funct Mater 20:595–606

    CAS  Google Scholar 

  72. Roncali J (2009) Molecular bulk heterojunctions : an emerging approach to organic solar cells. Acc Chem Res 42:1719–1730

    CAS  Google Scholar 

  73. Turner J, Sverdrup G, Mann MK et al (2008) Renewable hydrogen production. Int J Energy Res 32:379–407

    CAS  Google Scholar 

  74. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  Google Scholar 

  75. Chen X, Shen S, Guo L et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    CAS  Google Scholar 

  76. Yagi M, Kaneko M (2000) Molecular catalysts for water oxidation. Chem Rev 101:21–36

    Google Scholar 

  77. Sala X, Romero I, Rodríguez M et al (2009) Molecular catalysts that oxidize water to dioxygen. Ang Chem Int Ed Engl 48:2842–2852

    CAS  Google Scholar 

  78. Blankenship RE, Tiede DM, Barber J et al (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    CAS  Google Scholar 

  79. Nozik AJ, Memming R (1996) Physical chemistry of semiconductor–liquid interfaces. J Phys Chem 100:13061–13078

    CAS  Google Scholar 

  80. Walter MG, Warren EL, McKone JR et al (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    CAS  Google Scholar 

  81. van de Krol R (2012) Principles of photoelectrochemical cells. In: van de Krol R, Grätzel M (eds) Photoelectrochemical hydrogen production. Electronic Materials: Science & Technology, vol 102. Springer US, pp 13–67

    Google Scholar 

  82. Miller EL (2010) Solar hydrogen production by photoelectrochemical water splitting: The promise and challenge. In: On solar hydrogen & nanotechnology. Wiley, pp 1–35

    Google Scholar 

  83. Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20:35

    CAS  Google Scholar 

  84. Memming R (1980) Solar-energy conversion by photoelectrochemical processes. Electrochim Acta 25:77–88

    CAS  Google Scholar 

  85. Hardee KL, Bard AJ (1976) Semiconductor electrodes. J Electrochem Soc 123:1024–1026

    CAS  Google Scholar 

  86. Harris LA, Wilson RH (1978) Semiconductors for photoelectrolysis. Ann Rev Mater Sci 8:99–134

    CAS  Google Scholar 

  87. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    CAS  Google Scholar 

  88. Anpo M, Takeuchi M (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J Catal 216:505–516

    CAS  Google Scholar 

  89. Sivula K, Zboril R, Le Formal F et al (2010) Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132:7436–7444

    CAS  Google Scholar 

  90. Liu X, Wang F, Wang Q (2012) Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys Chem Chem Phys 14:7894–7911

    CAS  Google Scholar 

  91. Pendlebury SR, Cowan AJ, Barroso M et al (2012) Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy Environ Sci 5:6304–6312

    CAS  Google Scholar 

  92. Pendlebury SR, Barroso M, Cowan AJ et al (2011) Dynamics of photogenerated holes in nanocrystalline α-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chem Commun 47:716–718

    CAS  Google Scholar 

  93. Cowan AJ, Tang JW, Leng WH et al (2010) Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J Phys Chem C 114:4208–4214

    CAS  Google Scholar 

  94. Tang JW, Durrant JR, Klug DR (2008) Mechanism of photocatalytic water splitting in TiO2. reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J Am Chem Soc 130:13885–13891

    CAS  Google Scholar 

  95. Cowan AJ, Barnett CJ, Pendlebury SR et al (2011) Activation energies for the rate-limiting step in water photooxidation by nanostructured α-Fe2O3 and TiO2. J Am Chem Soc 133:10134–10140

    CAS  Google Scholar 

  96. Cesar I, Sivula K, Kay A et al (2009) Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J Phys Chem C 113:772–782

    CAS  Google Scholar 

  97. Brillet J, Grätzel M, Sivula K (2010) Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett 10:4155–4160

    CAS  Google Scholar 

  98. Zhong DK, Cornuz M, Sivula K et al (2011) Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energ Environ Sci 4:1759–1764

    CAS  Google Scholar 

  99. Barroso M, Mesa CA, Pendlebury SR et al (2012) Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1118326109

    Google Scholar 

  100. Barroso M, Cowan AJ, Pendlebury SR et al (2011) The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J Am Chem Soc 133:14868–14871

    CAS  Google Scholar 

  101. Heller A (1984) Hydrogen-evolving solar cells. Science 223:1141–1148

    CAS  Google Scholar 

  102. Heller A, Aharonshalom E, Bonner WA et al (1982) Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst. J Am Chem Soc 104:6942–6948

    CAS  Google Scholar 

  103. Barreca D (2009) The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production. Chemsuschem 2:230–233

    CAS  Google Scholar 

  104. de Jongh PE, Vanmaekelbergh D, Kelly JJ (2000) Photoelectrochemistry of electrodeposited Cu2O. J Electrochem Soc 147:486–489

    Google Scholar 

  105. Engel CJ, Polson TA, Spado JR et al (2008) Photoelectrochemistry of porous p-Cu2O films. J Electrochem Soc 155:F37–F42

    CAS  Google Scholar 

  106. Hara M (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 3:357–358

    Google Scholar 

  107. Hu CC, Nian JN, Teng H (2008) Electrodeposited p-type Cu2O as photocatalyst for H-2 evolution from water reduction in the presence of WO3. Sol Energy Mater Sol Cells 92:1071–1076

    CAS  Google Scholar 

  108. Siripala W, Ivanovskaya A, Jaramillo TF et al (2003) A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol Energy Mater Sol Cells 77:229–237

    CAS  Google Scholar 

  109. Paracchino A, Laporte V, Sivula K et al (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461

    CAS  Google Scholar 

  110. Szklarczyk M, Bockris JOM (1984) Photoelectrocatalysis and electrocatalysis on p-silicon. J Phys Chem 88:1808–1815

    CAS  Google Scholar 

  111. Aharon-Shalom E, Heller A (1982) Efficient p-InP(Rh-H alloy) and p-InP(Re-H alloy) hydrogen evolving photocathodes. J Electrochem Soc 129:2865–2866

    CAS  Google Scholar 

  112. Dominey RN, Lewis NS, Bruce JA et al (1982) Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. J Am Chem Soc 104:467–482

    CAS  Google Scholar 

  113. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1:2655–2661

    CAS  Google Scholar 

  114. Maeda K, Higashi M, Lu D et al (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868

    CAS  Google Scholar 

  115. Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 208:425–427

    Google Scholar 

  116. Reece SY, Hamel JA, Sung K et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334:645–648

    CAS  Google Scholar 

  117. Youngblood WJ, Lee S-HA, Maeda K et al (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42:1966–1973

    CAS  Google Scholar 

  118. Andreiadis ES, Chavarot-Kerlidou M, Fontecave M et al (2011) Artificial photosynthesis: from molecular catalysts for light-driven water splitting to photoelectrochemical cells. Photochem Photobiol 87:946–964

    CAS  Google Scholar 

  119. Concepcion JJ, Jurss JW, Brennaman MK et al (2009) Making oxygen with ruthenium complexes. Acc Chem Res 42:1954–1965

    CAS  Google Scholar 

  120. Gersten SW, Samuels GJ, Meyer TJ (1982) Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J Am Chem Soc 104:4029–4030

    CAS  Google Scholar 

  121. Duan L, Xu YH, Gorlov M et al (2010) Chemical and photochemical water oxidation catalyzed by mononuclear ruthenium complexes with a negatively charged tridentate ligand. Chem Eur J 16:4659–4668

    CAS  Google Scholar 

  122. Armstrong FA (2008) Why did nature choose manganese to make oxygen? Phil Trans R Soc B Biol Sci 363:1263–1270

    CAS  Google Scholar 

  123. Kurz P (2009) Oxygen evolving reactions catalysed by manganese-oxo-complexes adsorbed on clays. Dalton Trans 31:6103–6108

    Google Scholar 

  124. McDaniel ND, Coughlin FJ, Tinker LL et al (2007) Cyclometalated iridium(III) aquo complexes: efficient and tunable catalysts for the homogeneous oxidation of water. J Am Chem Soc 130:210–217

    Google Scholar 

  125. Herrero C, Lassalle-Kaiser B, Leibl W et al (2008) Artificial systems related to light driven electron transfer processes in PSII. Coord Chem Rev 252:456–468

    CAS  Google Scholar 

  126. Fujita E (1999) Photochemical carbon dioxide reduction with metal complexes. Coord Chem Rev 185–186:373–384

    Google Scholar 

  127. Doherty MD, Grills DC, Muckerman JT et al (2010) Toward more efficient photochemical CO2 reduction: use of scCO2 or photogenerated hydrides. Coord Chem Rev 254:2472–2482

    CAS  Google Scholar 

  128. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42:1983–1994

    CAS  Google Scholar 

  129. Takeda H, Ishitani O (2010) Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord Chem Rev 254:346–354

    CAS  Google Scholar 

  130. Kumar B, Llorente M, Froehlich J et al (2012) Photochemical and photoelectrochemical reduction of CO2. Ann Rev Phys Chem 63:541–569

    CAS  Google Scholar 

  131. Law C, Pathirana SC, Li X et al (2010) Water-based electrolytes for dye-sensitized solar cells. Adv Mater 22:4505–4509

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis G. Arnaut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arnaut, L.G., Barroso, M., Serpa, C. (2013). Solar Energy Conversion. In: Evans, R., Douglas, P., Burrow, H. (eds) Applied Photochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3830-2_7

Download citation

Publish with us

Policies and ethics