Skip to main content

Abstract

The solar radiation can be collected and employed in different passive and active technological processes, which include the thermochemical, electrochemical, and photochemical/photobiological routes for production of storable and transportable fuels. Today, the conversion of solar radiation into electric and thermal energy is a reality. Meanwhile, CO2 photocatalytic reduction and the production of solar fuels remain the big challenges for the forthcoming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    AM refers to Air Mass, and AM1.5 considers a longer atmospheric path length with a zenith angle of 48°

References

  • Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M (1997) Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt. J Phys Chem B 101:2632–2636

    Article  Google Scholar 

  • Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang SG, Ichihashi Y, Park DR, Suzuki Y, Koyano K, Tatsumi T (1998) Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catal Today 44:327–332

    Article  Google Scholar 

  • Armor JN (2005) Catalysis and the hydrogen economy. Catal Lett 101(3–4):131–135

    Article  Google Scholar 

  • Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  Google Scholar 

  • Brause M, Kempter V (2001) CO2 chemisorption on alkalated TiO2 (1 0 0)-(1 × 3) studied with MIES and UPS (HeI). Surf Sci 476:78–84

    Article  Google Scholar 

  • Butti K, Perlin J (1980) A golden thread: 2,500 years of solar architecture and technology. Chesvile Books, New York

    Google Scholar 

  • Caputo T, Lisi L, Pirone R, Russo G (2008) On the role of redox properties of CuO/CeO2 catalysts in the preferential oxidation of CO in H2-rich gases. Appl Catal A 348(1):42–53

    Article  Google Scholar 

  • Escobedo JF, Gomes EN, Oliveira AP, Soares J (2009) Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil. Appl Energ 86(3):299–309

    Article  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  • Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42:1890–1898

    Article  Google Scholar 

  • Heinzel A, Vogel B, Hübner P (2002) Reforming of natural gas—hydrogen generation for small scale stationary fuel cell systems. J Power Sources 105:202–207

    Article  Google Scholar 

  • Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energ Environ Sci 2:1231–1257

    Article  Google Scholar 

  • Hwang JS, Chang JS, Park SE, Ikeue K, Anpo M (2005) Photoreduction of carbon dioxide on surface functionalized nanoporous catalysts. Topics Catal 35:311–319

    Google Scholar 

  • Ikeue K, Yamashita H, Anpo M (2001) Photocatalytic reduction of CO2 with H2O on Ti-β Zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J Phys Chem B 105:8350–8355

    Article  Google Scholar 

  • Indrakanti VP, Kubicki JD, Schobert HH (2009) Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energ Environ Sci 2:745–758

    Article  Google Scholar 

  • Inoue T, Fujishima A, Konishi S, Honda Kenichi (1979) Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 277:637–638

    Article  Google Scholar 

  • Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125(10):3082

    Article  Google Scholar 

  • Kohno Y, Ishikawa H, Tanaka T, Funabiki T, Yoshida S (2001) Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Phys Chem Chem Phys 3:1108–1113

    Article  Google Scholar 

  • Leitner W (1995) Carbon dioxide as a raw material: the synthesis of formic acid and its derivatives from CO2. Angew Chem Int Ed 34:2207–2221

    Article  Google Scholar 

  • Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1:2655–2661

    Article  Google Scholar 

  • Mouchot A (1869) La chaleur solaire et ses applicationsindustrielles. Imprimerie Ernest Mazereau, Tours (France)

    Google Scholar 

  • Navarro RM, Sánchez-Sánchez MC, Alvarez-Galvan MC, del Valle F, Fierro JLG (2009) Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energ Environ Sci 2:35–54

    Article  Google Scholar 

  • Nguyen TV, Wu JCS, Chiou CH (2008) Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catal Commun 9:2073–2076

    Article  Google Scholar 

  • Nozik A (1977) Photochemical diodes. J Appl Phys Lett 30(11):567–570

    Article  Google Scholar 

  • Ohno T, Bai L, Hisatomi T, Maeda K, Domen K (2012) Photocatalytic water splitting using modified GaN: ZnO solid solution under visible light: long-time operation and regeneration of activity. J Am Chem Soc 134:8254–8259

    Article  Google Scholar 

  • Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44:2636–2639

    Article  Google Scholar 

  • Osterloh FE (2008) Inorganic materials as catalysts for photochemical splitting of water. Chem Mater 20(1):35–54

    Article  Google Scholar 

  • Patsoura A, Kondarides DI, Verykios XE (2007) Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal Today 124(3–4):94–102

    Article  Google Scholar 

  • Romero M, Steinfeld A (2012) Concentrating solar thermal power and thermochemical fuels. Energ Environ Sci 5:9234–9245

    Article  Google Scholar 

  • Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259–1278

    Google Scholar 

  • Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3 /I shuttle redox mediator under visible light irradiation. Chem Commun Roy Soc Chem 23:2416–2417

    Article  Google Scholar 

  • Subrahmanyam M, Kaneco S, Alonso-Vante N (1999) A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Appl Catal B-Environ 23:169–174

    Article  Google Scholar 

  • Tseng IH, Wu JCS, Chou HY (2004) Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal 221:432–440

    Article  Google Scholar 

  • Ulagappan N, Frei H (2000) Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy. J Phys Chem A 104:7834–7839

    Article  Google Scholar 

  • Usubharatana P, MacMartin D, Veawab A, Tontiwachwuthikul P (2006) Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Ind Eng Chem Res 45:2558–2568

    Article  Google Scholar 

  • Varguese OK, Paulose M, LaTempa TJ, Grimes CA (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9:731–737

    Article  Google Scholar 

  • Williams R (1960) Becquerel photovoltaic effect in binary compounds. J Chem Phys 32(5):1505

    Article  Google Scholar 

  • Wu JCS (2009) Photocatalytic reduction of greenhouse gas CO2 to fuel. Catal Surv Asia 13:30–40

    Article  Google Scholar 

  • Yamashita H, Shiga A, Kawasaki S, Ichihashi Y, Ehara S, Anpo M (1995) Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium oxide catalysts. Energ Convers Manage 36:617–620

    Article  Google Scholar 

  • Yamashita H, Fujii Y, Ichihashi Y, Zhang SG, Ikeue K, Park DR, Koyano K, Tatsumi T, Anpo M (1998) Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catal Today 45:221–227

    Article  Google Scholar 

  • Zhou H, Fan T, Zhang D (2011) An insight into artificial leaves for sustainable energy inspired by natural photosynthesis. ChemCatChem 3:513–528

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Dolores Hernández-Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Hernández-Alonso, M.D., Portela, R., Coronado, J.M. (2013). Turning Sunlight into Fuels: Photocatalysis for Energy. In: Coronado, J., Fresno, F., Hernández-Alonso, M., Portela, R. (eds) Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5061-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5061-9_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5060-2

  • Online ISBN: 978-1-4471-5061-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics