Skip to main content

DNA Microarray as Part of a Genomic-Assisted Breeding Approach

  • Chapter
  • First Online:
Molecular Techniques in Crop Improvement
  • 2503 Accesses

Abstract

In the struggle to achieve global food security, crop breeding retains an important role in crop production. A current trend is the diversification of the aims of crop production, to include an increased awareness of aspects and consequences of food quality. The added emphasis on food and feed quality made crop breeding more challenging and required a combination of new tools. We illustrate these concepts by taking examples from barley, one of the most ancient of domesticated grains with a diverse profile of utilisation (feed, brewing, new nutritional uses). Genomic-assisted breeding (GAB) is the ‘umbrella’ term used to describe a suite of tools now being applied to plant breeding. In the context of genomic-assisted breeding, we will briefly discuss in the second section of this chapter the molecular genetic-based tools underpinning GAB (understanding gene expression, candidate gene selection, allelic complement, quantitative trait loci [QTLs] and fine mapping). The subject of the third section is the use of DNA microarray as a potentially important tool in crop improvement. This section includes a discussion about what can we expect using the DNA microarray technology and what could be major considerations when the technique is applied. We consider the use of cDNA vs. oligonucleotide microarrays, target purification, labelling, hybridisation, image acquisition, minimising random errors, experimental design, biological and technical variability, quality control, normalisation, statistical and practical significances, fold changes, validation and possible additional regulatory mechanisms in gene expression. The subject of the fourth section is the applications of DNA microarrays to study of global gene expression during grain filling in monocot crops, especially barley. We compare large arrays vs. tissue/pathway specific approaches using an example of focused microarray and how it follows predicted changes during grain development. We describe of an extension of the study to field grown material and conclude that such an approach is able to interpret differences in the gene expression profiles of barley storage protein homologues. Therefore, microarray analysis could provide the knowledge required designing an improved amino acid profile with the possibility of breeding selectively for specific alleles/homologues to confer enhanced amino acid profile of the barley storage proteins and we outline the potential of microarray as a tool to support genomic-assisted breeding approach to improve the nutritional quality of barley.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alba R, Fei Z, Paxton Payton P, Liu Y, Moore SL, Debbie P, Cohn J, D’Ascenzo M, Gordon JS, Rose JKC, Martin G, Tanksley SD, Bouzayen M, Molly M, Jahn MM, Giovannoni J (2004) ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant J 39:697–714

    Article  PubMed  CAS  Google Scholar 

  • Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA 74:5350–5354

    Article  PubMed  CAS  Google Scholar 

  • Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  PubMed  CAS  Google Scholar 

  • Baik B-K, Ullrich SE (2008) Barley for food: characteristics, improvement, and renewed interest. J Cereal Sci 48:233–242

    Article  CAS  Google Scholar 

  • Bao J-Y, Lee S, Chen C, Zhang X-Q, Zhang Y, Liu S-Q, Clark T, Wang J, Cao M-L, Yang H-M, Wang SM, Yu J (2005) Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol 138:1216–1231

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Jakobsen JV, Jones RL (2000) Barley biotechnology. In: Black M, Bewley JD (eds) Seed technology and its biological basis. CRC Press LLC, Sheffield, pp 184–225

    Google Scholar 

  • Boisen S, Hvelplund T, Weisbjerg MR (2000) Ideal amino acid profiles as a basis for feed protein evaluation. Livestock Prod Sci 64:239–251

    Article  Google Scholar 

  • Breitling R (2006) Biological microarray interpretation: the rules of engagement. Biochim Biophys Acta 1759:319–327

    PubMed  CAS  Google Scholar 

  • Breitling R, Herzyk P (2005) Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarraydata. J Bioinform Comput Biol 3:1171–1189

    Article  PubMed  CAS  Google Scholar 

  • Breitling RP, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92

    Article  PubMed  CAS  Google Scholar 

  • Brem RB,Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–775

    Article  PubMed  CAS  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 6:630–634

    Article  CAS  Google Scholar 

  • Brown JKM (2002) Yield penalties of disease resistance in crops. Curr Opin Plant Biol 5:1–6

    Article  Google Scholar 

  • Brown AHD, Zohary D, Nevo E (1978) Outcrossing rates and heterozygosity in natural populations of Hordeum spontaneum Koch in Israel. Heredity 41:49–62

    Article  Google Scholar 

  • Chen JJ, Delongchamp RR, Tsai C-A, Hsueh H-M, Sistare F, Thompson KL, Desai VG, Fuscoe JC (2004) Analysis of variance components in gene expression data. Bioinformatics 20:1436–1446

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet 32 Suppl:490–495

    Article  PubMed  CAS  Google Scholar 

  • Collard BCY, Cruz CMV, McNally KL, Virk PS, Mackill DJ (2008) Rice molecular breeding laboratories in the genomics era: current status and future considerations. Int J Plant Genomics 2008: Article ID 524847, 25 pages

    Google Scholar 

  • Cui X, Churchill GA (2003) Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 4:210

    Article  PubMed  Google Scholar 

  • Curtis RK, Oresic M, Vidal-Puig A (2005) Pathways to the analysis of microarray data. Trends Biotechnol 23:429–435

    Article  PubMed  CAS  Google Scholar 

  • Dhanaraj AL, Alkharouf NW, Beard HS, Chouikha IB, Matthews BF, Wei H, Arora R, Rowland LJ (2007) Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta 225:735–751

    Article  PubMed  CAS  Google Scholar 

  • Diatchenko L, Lau Y-FC, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov E, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Doll H (1980) A nearly non-functional mutant allele of the storage protein locus Hor2 in barley. Hereditas 93:217–222

    Article  CAS  Google Scholar 

  • Duan MJ, Sun SSM (2005) Profiling the expression of genes controlling rice grain quality. Plant Mol Physiol 59:165–178

    CAS  Google Scholar 

  • Dudoit S, Yang YH, Callow MJ, Speed TP (2002) Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin 12:111–139

    Google Scholar 

  • Food and Drug Administration HHS (2008) Food labeling: health claims; soluble fiber from certain foods and risk of coronary heart disease. Final rule. Fed Regist 73:47828–47829

    Google Scholar 

  • Galili G, Amir R, Hoefgen R, Hesse H (2005) Improving the levels of essential amino acids and sulfur metabolites in plants. Biol Chem 386:817–831

    Article  PubMed  CAS  Google Scholar 

  • Gregersen PL, Brinch-Pedersen H, Holm PB (2005) A Microarray-based comparative analysis of gene expression profiles during grain development in transgenic and wild type wheat. Trans Res 14:887–905

    Article  CAS  Google Scholar 

  • Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, Smith OS, Bowen B (2006) Genome-wide transcript analysis of maize hybrids allelic additive gene expression and yield heterosis. Theor Appl Genet 113:831–845

    Article  PubMed  CAS  Google Scholar 

  • Gupta AK, Kaur N (2005) Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776

    Article  PubMed  CAS  Google Scholar 

  • Hammer GL, Kropff MJ, Sinclair TR, Porter JR (2002) Future contributions of crop modelling: from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. Eur J Agron 18:15–31

    Article  Google Scholar 

  • Hammer GL, Sinclair TR, Chapman SC, van Oosterom E (2004) On systems thinking, systems biology, and the in silico plant. Plant Physiol 134:909–911

    Article  PubMed  CAS  Google Scholar 

  • Han B, Altman NS, Mong JA, Klein LC, Pfaff DW, Vandenbergh DJ (2008) Comparing quantitative trait loci and gene expression data. Adv Bioinform 2008: Article ID 719818, 6 pages doi:10.1155/2008/719818

    Google Scholar 

  • Hansen M, Lange M, Friis C, Dionisio G, Holm, PB, Vincze E (2007) Antisense mediated suppression of C-hordein biosynthesis in the barley grain results in correlated changes in the transcriptome, protein profile and amino acid composition. J Exp Bot 58:3987–3995

    Article  PubMed  CAS  Google Scholar 

  • Hansen M, Bowra S, Friis C, Holm PB, Vincze E (2009) A pathway specific microarray analysis highlights the complex and coordinated transcriptional networks of the developing grain of field grown barley. J Exp Bot 60:153–167

    PubMed  Google Scholar 

  • Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153:1074–1079

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Gouis JL, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  PubMed  CAS  Google Scholar 

  • Hospital F (2008) Challenges for effective marker-assisted selection in plants. Genetica doi:10.1007/s10709-008-9307-1

    PubMed  Google Scholar 

  • Huang SS, Adams WR, Zhou Q, Malloy KP, Voyles DA, Anthony J, Kriz AL, Luethy MH (2004) Improving nutritional quality of maize proteins by expressing sense and antisense zein genes. J Agri Food Chem 52:1958–1964

    Article  CAS  Google Scholar 

  • Jason A, Holliday SG, White RR, Bohlmann J, Aitken SN (2008) Global monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (Picea sitchensis). New Phytol 178:103–122

    Article  CAS  Google Scholar 

  • Kirk RE (1996) Practical significance: a concept whose time has come. Educ Psychol Meas 56:746–759

    Article  Google Scholar 

  • Kohno-Murase J, Murase M, Ichikawa H, Imamura J (1995) Improvement in the quality of seed storage protein by transformation of Brassica napus with an antisense gene for cruciferin. Theor Appl Genet 91:627–631

    Article  CAS  Google Scholar 

  • Kondou H, Ooka H, Yamada H, Satoh K, Kikuchi S, Takahara Y, Yamamoto K (2006) Microarray analysis of gene expression at initial stages of rice seed development. Breed Sci 56:235–242

    Article  CAS  Google Scholar 

  • Kothapalli R, Yoder SJ, Mane S, Loughran Jr TP (2002) Microarray results: how accurate are they? BMC Bioinform 3:22

    Article  Google Scholar 

  • Kreis M, Shewry PR, Forde BG, Rahman S, Miflin BJ (1983) Molecular analysis of a mutation conferring the high lysine phenotype on the grain of barley (Hordeum-vulgare). Cell 34:161–167

    Article  PubMed  CAS  Google Scholar 

  • Kreis M, Shewry PR, Forde BG, Rahman S, Bahramian MB, Miflin BJ (1984) Molecular analysis of the effects of the Lys 3a gene on the expression of Hor loci in developing endosperms of barley (Hordeum-vulgare-L). Biochem Genet 22:231–255

    Article  PubMed  CAS  Google Scholar 

  • Lange M, Vincze E, Wieser H, Schjørring JK, Holm PB (2007) Effect of an antisense C-hordein gene on the storage protein composition in the barley seed. J Agri Food Chem 55:6074–6081

    Article  CAS  Google Scholar 

  • Laudencia-Chingcuanco DL, Stamova BS, You FM, Lazo GR, Cui X, Anderson OD (2006) Analysis of the wheat endosperm transcriptome. J Appl Genet 47:287–302

    PubMed  Google Scholar 

  • Laudencia-Chingcuanco DL, Stamova BS, You FM, Lazo GR, Beckles DM, Anderson OD (2007) Transcriptional profiling of wheat caryopsis development using cDNA microarrays. Plant Mol Biol 63:651–668

    Article  PubMed  CAS  Google Scholar 

  • Lasztity R (ed) (1996) Barley proteins. In: The chemistry of cereals proteins. CRC Press, Boca Raton, FL, pp 159–183

    Google Scholar 

  • Lee M (1995) DNA markers and plant breeding programs. Adv Agron 55:265–344

    Article  CAS  Google Scholar 

  • Lee MH, Kim B, Song SK, Heo JO, Yu NI, Lee SA, Kim M, Kim DG, Sohn SO, Lim CE, Chang KS, Lee MM (2008) Large-scale analysis of the GRAS gene family in Arabidopsis thaliana. Plant Mol Biol 67:659–670

    Article  PubMed  CAS  Google Scholar 

  • Lee M-LT, Frank C, Kuo FC, Whitmorei GA, Sklar J (2000) Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc Natl Acad Sci USA 97:9834–9839

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  • Linton KM, Hey Y, Saunders E, Jeziorska M, Denton J, Wilson CL, Swindell R, Dibben S, Miller CJ, Pepper SD, Radford JA, Freemont AJ (2008) Acquisition of biologically relevant gene expression data by Affymetrix microarray analysis of archival formalin-fixed paraffin-embedded tumours. Br J Cancer 98:1403–1414

    Article  CAS  Google Scholar 

  • Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836

    Article  PubMed  CAS  Google Scholar 

  • Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Hawkesford MJ, Barraclough BJ, Poulton PR, Wilson ID, Barker GL, Edwards KJ (2005) Markedly difference gene expression in wheat grown with organic and inorganic fertilizer. Proc Res Soc B 272:1901–1908

    Article  CAS  Google Scholar 

  • Mackay IM, Arden KE, Nitsche A (2002) Real time PCR in virology. Nucleic Acids Res 30:1292–1305

    Article  PubMed  CAS  Google Scholar 

  • Maruta Y, Ueki J, Saito H, Nitta N, Imaseki H (2002) Transgenic rice with reduced glutelin content by transformation with glutelin A antisense gene. Mol Breed 8:273–284

    Article  Google Scholar 

  • Morandini P, Salamini F (2003) Plant biotechnology and breeding: allied for years to come. Trends Plant Sci 8:70–75

    Article  PubMed  CAS  Google Scholar 

  • Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc Natl Acad Sci USA 104:3289–3294

    Article  PubMed  CAS  Google Scholar 

  • Munck L (1992) The case of high-lysine barley breeding. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology, biotechnology. C.A.B. International, Wallingford, pp 573–601

    Google Scholar 

  • Newman CW, Newman RK (2006) A brief history of barley food. Cereal Food World 51:4–7

    Google Scholar 

  • Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    Article  PubMed  CAS  Google Scholar 

  • Olson NE (2006) The microarray data analysis process: from raw data to biological significance. NeuroRx 3:373–383

    Article  PubMed  CAS  Google Scholar 

  • Panfili G, Fratianni F, Criscio TD, Marconi E (2008) Tocol and β-glucan levels in barley varieties and in pearling by-products. Food Chem 107:84–91

    Article  CAS  Google Scholar 

  • Parry MAJ, Flexas J, Medrano H (2005) Prospects for crop production under drought: research priorities and future directions. Ann Appl Biol 147:211–226

    Article  Google Scholar 

  • Parry MAJ, Madgwick PJ, Carvahlo JFC, Andralojc PJ (2007) Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. J Agri Sci 145:31–43

    Article  CAS  Google Scholar 

  • Pastinen T, Hudson TJ (2004) Cis-acting regulatory variation in the human genome. Science 306:647–650

    Article  PubMed  CAS  Google Scholar 

  • Pastinen T, Sladek R, Gurd S, Sammak A, Ge B, Lepage P, Lavergne K, Villeneuve A, Gaudin T, Brändström H, Beck A, Verner A, Kingsley J, Harmsen E, Labuda D, Morgan K, Vohl MC, Naumova AK, Sinnett D, Hudson TJ (2004) A survey of genetic and epigenetic variation affecting human gene expression. Physiol Genomics 16:184–193

    PubMed  CAS  Google Scholar 

  • Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    Article  PubMed  CAS  Google Scholar 

  • Pins JJ, Kaur H (2006) A review of the effects of barley b-glucan on cardiovascular and diabetic risk. Cereal Foods World 51:8–11

    CAS  Google Scholar 

  • Powlson DS, Riche AB, Shield I (2005) Biofuels and other approaches for decreasing fossil fuel emissions from agriculture. Ann Appl Biol 146:193–201

    Article  CAS  Google Scholar 

  • Ribaut J-M, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3: 236–239

    Article  Google Scholar 

  • Rieseberg LH, Widmer A, Arntz AM, Burke JM, (2003) The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philos Trans R Soc Lond B Biol Sci 358:1141–1147

    Article  PubMed  CAS  Google Scholar 

  • Rockett JC, Hellmann GM (2004) Confirming microarray data - is it really necessary? Genomics 83:541–549

    Article  PubMed  CAS  Google Scholar 

  • Saisho D, Purugganan MD (2007) Molecular phylogeography of domesticated barley traces expansion of agriculture in the Old World. Genetics 177:1765–1776

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Song RT, Messing J (2003) A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165:387–397

    PubMed  CAS  Google Scholar 

  • Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31:265–273

    Article  PubMed  CAS  Google Scholar 

  • Sparrow DHB (1970) Some genetical aspects of malting quality. In: Nilan RA (ed) Barley genetics 2, proceedings of 2nd international barley genetics symposium, Washington State University Press, Pullman, pp 559–574

    Google Scholar 

  • Sreenivasulu N, Altschmied L, Panitz R, Hahnel U, Michalek W, Weschke W, Wobus U (2002) Identification of genes specifically expressed in maternal and filial tissues of barley caryopses: a cDNA array analysis. Mol Genet Genomics 266:758–767

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Altschmeid L, Radchuk V, Gubatz S, Wobus U, Weschke W (2004) Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. Plant J 37:539–553

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Radchuk V, Strickert M, Miersch O, Weschke W, Wobus U (2006) Gene expression patterns reveal tissue-specific signalling networks controlling programmed cell death and ABA-regulated maturation in developing barley seeds. Plant J 47:310–327

    Article  PubMed  CAS  Google Scholar 

  • Stupar RM, Hermanson PJ, Springer NM (2007) Nonadditive expression and parent-of-origin effects identified by microarray and allele-specific expression profiling of maize endosperm. Plant Physiol 145:411–425

    Article  PubMed  CAS  Google Scholar 

  • Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Springer NM (2008) Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol 2008 8:33

    Article  CAS  Google Scholar 

  • Tang T, François N, Glatigny A, Agier N, Mucchielli MH, Aggerbeck L, Delacroix H (2007) Expression ratio evaluation in two-colour microarray experiments is significantly improved by correcting image misalignment. Bioinformatics 23:2686–2691

    Article  PubMed  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells, ME (2005a) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Graner A, Sorrells, ME (2005b) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Langridge P, Graner A (2007) Application of genomics to molecular breeding of wheat and barley. Adv Genetics 58:121–155

    Article  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  PubMed  CAS  Google Scholar 

  • Vincze E, Bowra S (2005) Northerns revisited: a protocol that eliminates formaldehyde from the gel while enhancing resolution and sensitivity. Anal Biochem 342:356–357

    Article  PubMed  CAS  Google Scholar 

  • Walker MS, Hughes TA (2008) Messenger RNA expression profiling using DNA microarray technology: diagnostic tool, scientific analysis or un-interpretable data? Int J Mol Med 21:13–17

    PubMed  CAS  Google Scholar 

  • Wan Y, Poole RL, Huttly AK, Toscano-Underwood C, Feeney K, Welham S, Gooding MJ, Mills C, Edwards KJ, Shewry PR, Mitchell RAC (2008) Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics 2008 9:121

    Article  CAS  Google Scholar 

  • Wang X, Le Roy I, Nicodeme E, Li R, Wagner R, Petros C, Churchill GA, Harris S, Darvasi A, Kirilovsky J et al (2003) Using advanced intercross lines for high-resolution mapping of HDL cholesterol quantitative trait loci. Genome Res 13:1654–1664

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Ni Z, Wu H, Nie X, Sun Q (2006) Heterosis in root development and differential gene expression between hybrids and their parental inbreds in wheat (Triticum aestivum L.). Theor Appl Genet 113:1283–1294

    Article  PubMed  CAS  Google Scholar 

  • Wayne ML, McIntyre LM (2002) Combining mapping and arraying: an approach to candidate gene identification. Proc Natl Acad Sci USA 99:14903–14906

    Article  PubMed  CAS  Google Scholar 

  • Wechter WP, Levi A, Harris KR, Davis AR, Fei Z, Katzir N, Giovannoni JJ, Salman-Minkov A, Hernandez A, Thimmapuram J, Tadmor Y, Portnoy V, Trebitsh T (2008) Gene expression in developing watermelon fruit. BMC Genomics 9:275

    Article  PubMed  CAS  Google Scholar 

  • White CA, Salamonsen LA (2005) A guide to issues in microarray analysis: application to endometrial biology. Reproduction 130:1–13

    Article  PubMed  CAS  Google Scholar 

  • Wu LM, Ni ZF, Meng FR, Lin Z, Sun QX (2003) Cloning and characterization of leaf cDNAs that are differentially expressed between wheat hybrids and their parents. Mol Genet Genomics 270:281–286

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Struik PC, Kropff MJ (2004) Role of crop physiology in predicting gene-to-phenotype relationships. Trends Plant Sci 9:426–432

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Mohammad I, Othman MI, Farjo R, Zareparsi S, MacNee SP, Yoshida S, Swaroop A (2002) Evaluation and optimization of procedures for target labeling and hybridization of cDNA microarrays. Mol Vision 8:130–137

    CAS  Google Scholar 

  • Zhang X, Richards EJ, Borevitz JO (2007) Genetic and epigenetic dissection of cis regulatory variation. Curr Opin Plant Biol 10:142–148

    Article  PubMed  CAS  Google Scholar 

  • Zhu T, Budworth P, Chen W, Provart N, Chang H-S, Guimil S, Su W, Estes B, Zou G, Wang X (2003) Transcriptional control of nutrient partitioning during ricegrain filling. Plant Biotechnol J 1:59–70

    Article  PubMed  CAS  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. Oxford University Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Vincze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vincze, E., Bowra, S. (2010). DNA Microarray as Part of a Genomic-Assisted Breeding Approach. In: Jain, S., Brar, D. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2967-6_17

Download citation

Publish with us

Policies and ethics