Skip to main content

Hydrogen Embrittlement and Sensitization Cracking

  • Chapter
  • First Online:
Fatigue and Corrosion in Metals
  • 8768 Accesses

Abstract

Even dough sensitization and hydrogen embrittlement failures can be classified as stress corrosion cracking, they are so distinctive and important a form of corrosion that deserve to be treated in a section of their own. Therefore, this chapter will address just these two most devastating corrosive events that can jeopardize the integrity of metal structures: hydrogen embrittlement or cracking and stress corrosion of sensitized materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stickler, R., Vinckier, A.: Morphology of grain-boundary carbides and its influence on intergranular corrosion of 304 stainless steel. Trans. ASM. LIV, 362–380 (1961)

    Google Scholar 

  2. ASTM G-59: Standard method for conducting potentio-dynamic polarization resistance measurements (1997)

    Google Scholar 

  3. Strauss, B., Schottky, H., Innueber, J.: Die Carbidausseheidung beim Gluehen von Nichtrostenden, Unmagnetischen Cr-Ni Stahl. Z. Anorg. Allg. Chem. 188, 309–324 (1930)

    Article  Google Scholar 

  4. Chevenard, P., Portevin, A.: Etude Expérimentale de l’Héterogénéité de Métaux et Alliages. Rev. Mét. 33, 96–113 (1936)

    Google Scholar 

  5. Conserva, M., Leoni, M.: Met. Trans. A. Physical Metallurgy and Material Science, p. 189 (1975)

    Google Scholar 

  6. Osozawa, K., Hengell, H.J.: The anodic polarization curves of iron-nickel-chromium alloys. Corros. Sci. 6, 389 (1966)

    Google Scholar 

  7. Keddam, M., Mattos, O.R., Takenouti, H.: Methods of anode dissolution of iron-chromium alloys investigated by electrode impedances. Electrochim Acta 31, 1147 (1986)

    Google Scholar 

  8. Dobbelaar, J.A.L., Herman, E.C.M., De Wit, J.H.W.: Pitting corrosion of metals. Corros. Sci. 33, 765 (1992)

    Google Scholar 

  9. Szclarska-Smialovska, Z.: Pitting and Crevice Corrosion. NACE Press, Huston (2005)

    Google Scholar 

  10. Davidson, R.M., DeBold, T., Johnson, M.J.: Metals Handbook, ASM International, 13, 551 (1987)

    Google Scholar 

  11. Soppet, W.K., Kassner, T.F.: Evaluation of environmental corrective actions. In: Environmentally assisted cracking light water reactors, NUREG/CR-4287, ANL-85-33, Annual Report (1985)

    Google Scholar 

  12. Staehle, R.W.: Bases for predicting the earliest penetrations due to SCC for the alloy 600 on the secondary side of steam generators. US NRC NUREG/CR-6737, p. 15 (2001)

    Google Scholar 

  13. Chaung, H.E., Lumsden, J.B.: Grain boundary segregation in nickel. EPRI Report FCC 7704, 9 (1977)

    Google Scholar 

  14. Unocic, K.A.: Structure-composition-property relationships in 5XXX series aluminum alloys. Dissertation for the degree of philosophy doctor, Graduate School of the Ohio State University, material science and engineering graduate program (2008)

    Google Scholar 

  15. Dillamore, I.L., Roberts, W.T., Wilson, D.V.: The Mechanical Properties of Stainless Steel with Particular Reference to Crystallographic Anisotropy, vol. 117, pp. 37–49. Iron and Steel Institute (1969)

    Google Scholar 

  16. Griffiths, A.J., Wright, J.C.: Mechanical Properties of Austenite and Metastable Stainless Steel Sheet and Their Relationship with Press Forming Behaviour, vol. 117, pp. 37–49. Iron and Steel Institute (1969)

    Google Scholar 

  17. Tedmon, C.S., Vermilyea, D.A., Jr., Broeker, D.E.: Technical note-effect of cold work on intergranular corrosion of sensitized stainless steel. Corrosion 27, NACE (1971)

    Google Scholar 

  18. Indig, M.E., Vermilyea, D.A.: Corrosion of sensitized stainless steel in hot aqueous solution under natural and electrochemical control. Corrosion 31, NACE (1975)

    Google Scholar 

  19. Vermilyea, D.A., Indig, M.E.: Corrosion and electrochemical studies in aqueous solution at 289 °C. In: Proceedings of 5th International Congress on Metallic Corrosion, NACE, Tokyo, Japan (1972)

    Google Scholar 

  20. Clarke, W.L.: Studies on AISI type 304 stainless steel piping weldments for use in BWR application. EPRI NP-944, Final Report, pp. 3–60 (1978)

    Google Scholar 

  21. Lai, G.Y.: High Temperature Corrosion of Engineering Alloys. ASM International (1990)

    Google Scholar 

  22. Jewett, C.W.: The Growth and stability of stress corrosion cracks in large-diameter BWR piping. EPRI NP-2472 2, Final Report, p. G-25 (1982)

    Google Scholar 

  23. Caine, T.A., Bensch, M.M.: Role of the loading mode on crack growth rates in sensitized 304 stainless steel. In: The growth and stability of stress corrosion cracks in large diameter piping. vol. 2: Appendixes, EPRI NP-2472 2, Final Report, p. H-86 (1982)

    Google Scholar 

  24. Cox, A.F., Pollok, W.J.: Investigation of the cracking in HS748 propeller blade retaining bolts. ARL File BM2/03/17, Material div., Ref. M89/83/AFC/WJP, DSTO, Melbourne (1984)

    Google Scholar 

  25. Troiano, A.R.: Delayed failure of high strength steel. Corrosion 15, 207t–212t (1959)

    Google Scholar 

  26. Dautovic, P.D., Floreen, S.: Stress corrosion cracking and hydrogen embrittlement of iron alloys. Metall. Trans. 4, 2627–2630 (1973)

    Google Scholar 

  27. Johnson, H.H., Paris, P.C.: Subcritical flaw growth. Eng. Fract. Mech. 1, 3–45 (1968)

    Article  Google Scholar 

  28. Bulloch, J.H., Buchanan, L.W.: Fatigue crack growth behavior of A 533-B steel in simulated PWR water. Corros. Sci. 24(8), 661–674 (1984)

    Article  Google Scholar 

  29. Atkinson, J.D., Forrest, J.E.: The role of MnS inclusion in the development of environmentally assisted cracking of nuclear reactor pressure vessel steels. In: Proceedings of the 2nd IAEA Specialist’s Meeting on Subcritical Crack Growth, Moscow, US NRC NUREG/CP-0067 2, 177 (1985)

    Google Scholar 

  30. Studies on AISI type 304 stainless steel piping weldments for use in BWR application. EPRI NP-944, Final Report, pp. 2–92 (1978)

    Google Scholar 

  31. Scott, P.M., Traswell, A.E.: The influence of water chemistry on fatigue crack propagation in LWR pressure vessel steels. In: Proceedings of the IAEA Specialists’ Meeting on Subcritical Crack Growth, NUREG/CP-0044 2, 91–126 (1981)

    Google Scholar 

  32. Green, J.A.S., Hyden, H.V.: Influence of two modes of loading on the stress corrosion susceptibility of Ti8Al1Mo1 V alloy in various chloride containing environments. In: Bernstain, I.M., Thompson, A.W. (eds.): Effects of Hydrogen in Metals, Metals Park OH, pp. 235–244 (1974)

    Google Scholar 

  33. Green, J.A.S., Hyden, H.V.: The hydrogen assisted cracking in ultra high-strength steels. In: Bernstain, I.M., Thompson, A.W. (eds.): Effects of Hydrogen in Metals, Metals Park, OH, pp. 235–244 (1974)

    Google Scholar 

  34. Thompson, A.W., Bernstein, I.M.: Stress corrosion cracking of AISI 304L and AISI 316L stainless steels. In: Fontana, M.G., Staehle, R.W. (eds.) Advances in Corrosion Sciences and Technology 7, p. 53 Plenum Press, New York (1980)

    Google Scholar 

  35. Riecke, R.M., Athens, A., Smith, I.O.: Mater. Sci. Technol. 2, 1066 (1986)

    Google Scholar 

  36. John, C.F.: The effect of crack loading mode on stress corrosion cracking. Scr. Metall. 9, 141 (1974)

    Google Scholar 

  37. Ruther, W.E., Kassner, T.F., Nichols, F.A.: Mechanistic studies in environmentally assisted cracking in light water reactors. NUREG/CR-4287, ANL-85-33, Annual Report, p. 121 (1985)

    Google Scholar 

  38. Johnson, H.H., et al.: Hydrogen crack initiation and delayed failure in steel. Trans. AIME 212, 526–536 (1958)

    Google Scholar 

  39. Darken, L.S., et al.: Behavior of hydrogen in steel during and after immersion in acid. Hydrogen damage, ASM, 60–75 (1977)

    Google Scholar 

  40. Germer, L.H., Macrae, A.U.: Adsorption of hydrogen on a (110) nickel surface. J. Appl. Phys. 37, 1382 (1962)

    Google Scholar 

  41. Van der Sluys, W.A.: Mechanisms of environmental induced subcritical flaw growth in AISI 4340 steel. Eng. Fract. Mech. 1, 447–462 (1968)

    Article  Google Scholar 

  42. Oriani, R.A., Josephic, P.H.: Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall. 22(9), 1065–1074 (1974)

    Article  Google Scholar 

  43. Oriani, R.A.: Stress-Corrosion Cracking and Hydrogen Embrittlement in Iron-Base Alloys, p. 351. NACE Publication, Houston (1977)

    Google Scholar 

  44. Bastien, P., Azou, P.: Proceeding World Metallurgical Congress, 1st American Society of Metals, 535–552 (1951)

    Google Scholar 

  45. Beachem, C.D.: A new model for hydrogen-assisted cracking. Metall. Trans. 3, 437–451 (1972)

    Article  Google Scholar 

  46. Tien, J.K. et al.: Hydrogen transported by dislocations. Metall. Trans. 7A, 821–829 (1976)

    Google Scholar 

  47. Lynch, S.P.: Cleavage fracture in face-centred cubic metals. Met. Sci. 15, 463–467 2, 189–200 (1981)

    MathSciNet  Google Scholar 

  48. Hirth, J.P.: Effects of hydrogen on the properties of iron and steel. Metall. Trans. 11A, 861–890 (1980)

    Google Scholar 

  49. Latanision, R.M., Opperhauser, H.: A molecular orbital model of intergranular embrittlement. Metall. Trans. 5, 483 (1974)

    Article  Google Scholar 

  50. Jones, R.H.: A review of combined impurity segregation-hydrogen embrittlement processes. In: Latanision, R.M., Fischer, T.E. (eds.), Advances in the Mechanics and Physics of Surfaces. Scientific and Technical Book Service (1986)

    Google Scholar 

  51. Raj, R., Varadan, V.K.: Mechanism of environment sensitive cracking of materials. In: Swann, P.R., Ford, F.P., Westwood, A.R.C. (eds.) The Metals Society, p. 426. University of Surrey, England (1977)

    Google Scholar 

  52. Scully, J.C., Powell, D.T.: The effect of strain-rate upon stress corrosion crack velocity in [alpha]-brass in ammoniacal solutions. Corros. Sci. 10, 719 (1970)

    Article  Google Scholar 

  53. McCoy, R.A., Gerberich, W.W.: Current understanding of the mechanisms of stress corrosion and corrosion fatigue. Metall. Trans. 4, 539 (1973)

    Article  Google Scholar 

  54. McCoy, R.A.: Effects of hydrogen on the high-temperature flow and fracture characteristics of metals. In: Bernstain, I.M., Thompson, A.W. (eds.) Effects of Hydrogen in Metals, p. 169. ASM Publication, New York (1973)

    Google Scholar 

  55. Bernstein, I.M., Thompson, A.W.: The role of metallurgical variables in hydrogen assisted environmental fracture. Rockwell Science Center Report, SCPP-75-63 (1976)

    Google Scholar 

  56. Zapffe, C.A., Sims, C.E.: Hydrogen embrittlement, internal stress and defects in steel. Trans. AIME 145, 225–259 (1941)

    Google Scholar 

  57. Tetelman, A.J., Robertson, W.D.: Current understanding of the mechanisms of stress corrosion and corrosion fatigue. Trans. AIME 224, 775 (1962)

    Google Scholar 

  58. Tetelman, A.J.: Fracture of Solids, p. 671. Wiley, New York (1963)

    Google Scholar 

  59. Petch, N.O., Stables, P.: Embrittlement of 4130 steel by low-pressure gaseous hydrogen. Nature 169, 842–843 (1952)

    Article  Google Scholar 

  60. Barnett, W.J., Troiano, A.R.: Testing for hydrogen environment embrittlement: primary and secondary influences. J. Met. 209, 486–494 (1957)

    Google Scholar 

  61. Griffith, A.A.: The phenomena of rupture and flow in solids. Transactions of royal society of London 221 (1920)

    Google Scholar 

  62. Zubko, A.M., Malkin, V.I., Medvedev, É.A., Pokidyshev, V.V., Khokhlov, S.F., Shnol, E.M.: Effect of phosphorus and sulfur on hydrogen absorption in high-strength steel and its suscptibility to corrosion cracking. Met. Sci. Heat Treat. 15(12), 1071–1073 (1973)

    Article  Google Scholar 

  63. Bowker, P., Hardie, D.: The effect of pre-straining and [delta]-ferrite on the embrittlement of 304L stainless steel by hydrogen. Met. Sci. 9, 432 (1975)

    Article  Google Scholar 

  64. Lu, M., Pao, P.S., Weir, T.W., Simmons, G.W., Wei, R.P.: Rate controlling processes for crack growth in hydrogen sulfide for an AISI 4340 steel. Met. Trans. 12, 805–811 (1981)

    Article  Google Scholar 

  65. Gao, M., Lu, M., Wei, R.P.: Crack path and hydrogen assisted crack growth response in AISI 4340 steel. Met. Trans. 15, 735–746 (1984)

    Article  Google Scholar 

  66. Gangloff, R.P., Wei, R.P.: Gaseous hydrogen embrittlement of high strength steels. Met. Trans. 8, 1043–1053 (1977)

    Article  Google Scholar 

  67. Gangloff, R.P., Wei, R.P.: Fractography in Failure Analysis, ASTM STP 645, pp. 87–106. ASTM International, West Conshohocken (1978)

    Book  Google Scholar 

  68. Fujita, F.E.: Theory of hydrogen induced delayed fracture of steels. In: 2nd International Congress on Hydrogen in Metals, Paper 2B10, Paris (1977)

    Google Scholar 

  69. Chopra, O.K., Shack, W.J.: Effect of LWR coolant environments on fatigue design curves of carbon and low-alloy steels. NRC NUREG/CR-6583 (1997)

    Google Scholar 

  70. Hanninen, H., Torronen, K., Kemppainen, M., Solonen, S.: On the mechanisms of environment sensitive cyclic crack growth of nuclear reactor pressure vessel steels. Corros. Sci. 23, 663 (1983)

    Article  Google Scholar 

  71. Groeneveld, T.P., Fessler, R.R.: Hydrogen stress cracking overview and controls. 6th Symposium on Line Pipe Research, Pipeline Research Committee of American Gas Ass., p. Y-17–Y-18, Huston TX (1979)

    Google Scholar 

  72. Atkinson J.D., Bulloch J.H., Forrest J.E.: A Fractographic Study of Fatigue Cracks Produced in A533B Pressure Vessel Steel Exposed to Simulated PWR Primary Water Environment. Proceedings of the 2nd IAEA Specialist’s meeting on subcritical crack growth, Moscow, US NRC NUREG/CP-0067 2, 290 (1985)

    Google Scholar 

  73. Phelps, E.H.: Microscopic identification of stress-corrosion cracking in steels with high yield strength. Specialists meeting on stress corrosion testing methods, AGARD Conference, AGARD-CP-98, 24–10 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Paolo Milella .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Milella, P.P. (2013). Hydrogen Embrittlement and Sensitization Cracking. In: Fatigue and Corrosion in Metals. Springer, Milano. https://doi.org/10.1007/978-88-470-2336-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2336-9_14

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2335-2

  • Online ISBN: 978-88-470-2336-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics