Skip to main content
Log in

Crack paths and hydrogen-Afinssisted crack growth response in AlSi 4340 steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A study of the correlation between crack paths and crack growth response was undertaken to define better the elemental processes involved in gaseous hydrogen embrittlement. AISI 4340 steel fractured under sustained load in hydrogen and in hydrogen sulfide over a range of temperatures and pressures, whose crack growth kinetics have been well characterized previously, was chosen for study. Fractographic results showed that crack growth followed predominantly along prior-austenite grain boundaries, with a small amount of quasi-cleavage, at low temperatures. At high temperatures, crack growth occurred primarily by microvoid coalescence. The fracture surface morphology, which is indicative of the micromechanisms for crack growth, was essentially the same for hydrogen and hydrogen sulfide. Changes in fracture morphology,i.e., crack paths, corresponded to changes in crack growth kinetics, both of which depended on pressure and temperature. There was no evidence for crack nucleation in advance of the main crack, and this suggests that the fracture process zone is located within one prior-austenite grain diameter from the crack tip. The experimental results indicate that microstructure plays an important role in determining crack growth response. The prior-austenite grain boundaries are seen to be most susceptible to hydrogen embrittlement, followed by the (110)α’ and (112)α’ cleavage planes. The martensite matrix, on the other hand, is relatively immune. The observed changes in crack growth rate with temperature and pressure in the higher temperature region are explained in terms of the partitioning of hydrogen into the different microstructural elements and the consequent changes in the micromechanisms for fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Williams and H. G. Nelson:Metall. Trans., 1970, vol. 1, p. 63.

    CAS  Google Scholar 

  2. H. G. Nelson, D.P. Williams, and A. S. Tetelman:Metall. Trans., 1971, vol. 2, p. 953.

    CAS  Google Scholar 

  3. G.W. Simmons, P.S. Pao, and R.P. Wei:Metall. Trans. A, 1978, vol. 9A, p. 1147.

    CAS  Google Scholar 

  4. M. Lu, P. S. Pao, N. H. Chan, K. Klier, and R. P. Wei: in Proceedings of Second Japan Institute of Metals International Symposium (JIMIS-2),Hydrogen in Metals, Suppl. to Trans. Japan Inst. Metals, 1980, vol. 21, p. 449.

    Google Scholar 

  5. M. Lu, P. S. Pao, T. W. Weir, G. W. Simmons, and R. P. Wei:Metall. Trans. A, 1981, vol. 12A, p. 805.

    Google Scholar 

  6. R.P. Wei: inHydrogen Effects of Metals, I. M. Bernstein and Anthony W. Thompson, eds., TMS-AIME, Warrendale, PA, 1981, p. 677.

    Google Scholar 

  7. R. P. Gangloff and R. P. Wei: inFractography in Failure Analysis, B. M. Strauss and W. H. Cullen, Jr., eds., ASTM STP 654, American Society for Testing and Materials, 1978, p. 87.

  8. R.A. Oriani: inStress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, J. Hochmann, J. Slater, and R.W. Staehle, eds., NACE-5, Houston, TX, 1978, p. 351.

    Google Scholar 

  9. R. A. Oriani:Berichte Bunsen-Gesellschaft für Physik Chemie, 1972, vol. 76, p. 848.

    CAS  Google Scholar 

  10. W. W. Gerberich, Y. T. Chan, and C. St. John:Metall. Trans. A, 1975, vol. 6A, p. 1485.

    CAS  Google Scholar 

  11. W. W. Gerberich: inHydrogen in Metals, I.M. Bernstein and A.W. Thompson, eds., ASM, Metals Park, OH, 1974, p. 115.

    Google Scholar 

  12. Shigehane Hinotani, Fukunaga Terasaki, and Fukukazu Natasato: in Proceedings of Second Japan Institute of Metals International Symposium (JIMIS-2),Hydrogen in Metals, Suppl. to Trans. Japan Inst. Metals, 1980, vol. 21, p. 421.

    Google Scholar 

  13. Yoneo Kikuta, Takao Araki, and Toshir Kutodo: inFractography in Failure Analysis, B. M. Strauss and W. H. Cullen, Jr., eds., ASTM STP 645, American Society for Testing and Materials, 1978, p. 107.

  14. Takao Araki and Yoneo Kikuta: in Proceedings of Second Japan Institute of Metals International Symposium (JIMIS-2),Hydrogen in Metals, Suppl. to Trans. Japan Inst. Metals, 1980, vol. 21, p. 425.

    Google Scholar 

  15. J. P. Fidelle, J. Legrand, and C. Couderc: “A Fractographic Study of Hydrogen Gas Embrittlement in Steels,” TMS-AIME Paper No. F 71-81, 1971.

  16. CD. Beachem:Metall. Trans., 1972, vol. 3, p. 437.

    CAS  Google Scholar 

  17. R. A. Oriani and P. H. Josephic:Acta Metall., 1974, vol. 22, p. 1065.

    Article  CAS  Google Scholar 

  18. G.E. Kerns: Ph.D. Dissertation, The Ohio State University, Columbus, OH, 1973.

    Google Scholar 

  19. P. Mclntyre: inStress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, J. Hochmann, J. Slater, and R.W. Staehle, eds., NACE-5, Houston, TX, 1978, p. 788.

    Google Scholar 

  20. H. G. Nelson and D. P. Williams: inStress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, J. Hochmann, J. Slater, and R.W. Staehle, eds., NACE-5, Houston, TX, 1978, p. 390.

    Google Scholar 

  21. A.J. Stavros and H. W. Paxton:Metall. Trans., 1970, vol. 1, p. 3049.

    CAS  Google Scholar 

  22. S. K. Banerji, H. C. Feng, and C. J. McMahon, Jr.:Metall. Trans. A, 1978, vol. 9A, p. 237.

    CAS  Google Scholar 

  23. J.F. Lessar and W.W. Gerberich:Metall. Trans. A, 1976, vol. 7A, p. 953.

    CAS  Google Scholar 

  24. R. P. Gangloff: Ph.D. Dissertation, Lehigh University, Bethlehem, PA, 1974.

    Google Scholar 

  25. R.P. Gangloff and R.P. Wei:Metall. Trans. A, 1977, vol. 8A, p. 1043.

    CAS  Google Scholar 

  26. M.L. Wayman and G.C. Smith:Metall. Trans., 1970, vol. 1, p. 1189.

    CAS  Google Scholar 

  27. C. D. Beachem and R. M. N. Pelloux: in Fracture Toughness Testing and Its Application, ASTM STP 381, American Society for Testing and Materials, 1965, p. 210.

  28. Ming Gao: M. S. Thesis in Metallurgy and Materials Engineering, Lehigh University, Bethlehem, PA, 1982.

    Google Scholar 

  29. R.P. Wei, S.R. Novak, and D.P. Williams:Mails. Res. & Stand., 1972, vol. 12, p. 75.

    Google Scholar 

  30. H. H. Johnson, J. G. Morlet, and A. R. Troiano:Trans. TMS-AIME, 1958, vol. 212, p. 528.

    CAS  Google Scholar 

  31. J. Kameda and C. J. McMahon, Jr.: inResearch in Progress, University of Pennsylvania, Philadelphia, PA, December 1979.

    Google Scholar 

  32. J.E. Costa and A.N. Thompson:Metall. Trans. A, 1981, vol. 12A, p. 761.

    Google Scholar 

  33. Ming Gao: Ph. D. Dissertation in Metallurgy and Materials Engineering, Lehigh University, Bethlehem, PA, 1982.

    Google Scholar 

  34. T. D. Lee, T. Goldenberg, and J. P. Hirth:Metall. Trans. A, 1979, vol. 1OA, p. 439.

    Google Scholar 

  35. R. A. Oriani and P. H. Josephic: inEnvironment Sensitive Fracture of Engineering Materials, Z. A. Foroulis, ed., TMS-AIME, Warrendale, PA, 1979, p. 232.

    Google Scholar 

  36. J. Crank:The Mathematics of Diffusion, Oxford University Press, 1976, p. 37.

  37. A.A. Wells:Br. Weld. J., 1963, vol. 10, p. 563.

    Google Scholar 

  38. J. R. Rice and M. A. Johnson :Inelastic Behavior of Solid, McGraw-Hill, 1970, pp. 641–47.

  39. H. H. Johnson: inHydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., ASM, Metals Park, OH, 1974, p. 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Leave from the Department of Materials Science, Shanghai Jaio Tong University, Shanghai, People’s Republic of China.

Formerly Research Associate, Department of Mechanical Engineering and Mechanics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, M., Lu, M. & Wei, R.P. Crack paths and hydrogen-Afinssisted crack growth response in AlSi 4340 steel. Metall Trans A 15, 735–746 (1984). https://doi.org/10.1007/BF02644205

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644205

Keywords

Navigation