Skip to main content

Origin of Polyploidy

  • Chapter
  • First Online:
Polyploidy: Recent Trends and Future Perspectives

Abstract

In terms of time, polyploidy is believed to have accompanied the evolution of plants since the last 350 million years (Vision et al. 2000; Bowers et al. 2003). Since polyploids are known as successful invaders of newly opened habitats, it is hypothesized that the major decline and extinction of gymnosperms during the late Cretaceous period (some 65 million years ago) left room for the newly formed polyploids of woody angiosperms (Stebbins 1950). As of now, it has been reported in almost all groups of plants, being one of the best known of their evolutionary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hameed F, Snow R (1972) The origin of the allotetraploid Clarkia gracilis. Evolution 26:74–83

    Article  PubMed  Google Scholar 

  • Ahloowalia BS, Garber FD (1961) The genus Collinsia. XIII. Cytogenetic studies of interspecific hybrids involving species with pediceled flowers. Bot Gaz 122:219–228

    Article  Google Scholar 

  • Akutsu M, Kitamura S, Toda R, Miyajima I, Okazaki K (2007) Production of 2n pollen of Asiatic hybrid lilies by nitrous oxide treatment. Euphytica 155:143–152

    Article  CAS  Google Scholar 

  • Amato DF (1952) Polyploidy in the differentiation and function of tissues and cells in plants. Caryologia 4:311–358

    Article  Google Scholar 

  • Amato DF (1964) Endopolyploidy as a factor in plant tissue development. Caryologia 17:41–52

    Article  Google Scholar 

  • Anderson E (1936) A morphological comparison of triploid and tetraploid interspecific hybrids in Tradescantia. Genetics 21:61–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atwood SS (1936) Tetraploid and aneuploidy Melilotus alba resulting from heat treatment. Am J Bot 23:674–677

    Article  Google Scholar 

  • Belling J, Blakeslee AF (1924a) The configurations and sizes of chromosomes in the trivalents of 25-chromosome Daturas. Proc Natl Acad Sci U S A 10:116–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belling J, Blakeslee AF (1924b) The distribution of chromosomes in tetraploid Daturas. Am Nat 58:60–70

    Article  Google Scholar 

  • Bingham ET (1968) Aneuploids in seedling populations of tetraploid alfalfa, Medicago sativa L. Crop Sci 8:571–574

    Article  Google Scholar 

  • Blakeslee AF (1937) dédoublement du nombre des chromosomes chez les plantes par traitment chimique. Compt Rend Acad Sci Paris 205:476–479

    Google Scholar 

  • Blakeslee AF, Avery AG (1937) Method of inducing doubling of chromosomes in plants by treatment with colchicine. J Hered 28:393–411

    Article  CAS  Google Scholar 

  • Bouvier L, Fillon FR, Lespinasse Y (1994) Oryzalin as an efficient agent for chromosome doubling of haploid apple shoots in vitro. Plant Breed 113:343–346

    Article  CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  • Braak JP, Zeilinga AE (1957) Production of a colchicine-induced tetraploid Asparagus. Euphytica 6(20):1–212

    Google Scholar 

  • Breslavetz L (1939) Polyploids in rye induced by X-rays. Akad Nauk (Doklady) Moscow SSSR 22:354–357

    Google Scholar 

  • Buxton BH, Newton WCF (1928) Hybrids of Digitalis ambigua and Digitalis purpurea, their fertility and cytology. J Genet 19:1269–1279

    Article  Google Scholar 

  • Cheng ZM, Korban SS (2011) In vitro ploidy manipulation in the genomics era. Plant Cell Tissue Organ Cult 104:281–282

    Article  Google Scholar 

  • Clausen RE (1941) Polyploidy in Nicotiana. Am Nat 75:291–306

    Article  Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1940) Experimental studies on the nature of species.I. Effect of varied environments on western North American plants. Carnegie Institute of Washington, Publ. No. 520, pp 1–452

    Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1945) Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autoploidy, with examples from the Madiinae. Carnegie Institute of Washington, Publ. No. 564

    Google Scholar 

  • Collins JL (1933) Morphological and cytological characteristics of triploid pineapples. Cytologia 26:248–256

    Article  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploidy. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • Dar TH, Raina SN, Goel S (2017) Cytogenetic and molecular evidences revealing genomic changes after autopolyploidization: a case study of synthetic autotetraploid Phlox drummondii hook. Physiol Mol Biol Plants. https://doi.org/10.1007/s12298-017-0445-8

  • Dermen H (1931) Polyploidy in petunia. Am J Bot 18:250–261

    Article  Google Scholar 

  • Dermen H (1938) A cytological analysis of polyploidy induced by colchicine and by extremes of temperature. J Heredity 29:211–229

    Article  Google Scholar 

  • Dermen H (1947) Inducing polyploidy in peach varieties. J Hered 38:77–82

    Article  CAS  PubMed  Google Scholar 

  • Dermen H (1954) Colchicine in grapes. J Hered 45:159–172

    Article  Google Scholar 

  • Dewey DR, Asay KH (1975) The crested wheat grasses of Iran. Crop Sci 15:844–849

    Article  Google Scholar 

  • Dewitte A, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E (2010) Induction of 2n pollen formation in Begonia by trifluralin and N2O treatments. Euphytica 171:283–293

    Article  Google Scholar 

  • Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult 104:359–373

    Article  Google Scholar 

  • Dorsey E (1936) Induced polyploidy in wheat and rye. Chromosome doubling in Triticum, Secale and Triticum-Secale hybrids produced by temperature changes. J Hered 27:155–160

    Article  Google Scholar 

  • Doyle JJ, Doyle JL, Rauscher J, Brown AHD (2004) Evolution of gene families and gene conversion in the Glycine polyploid complex. Biol J Linn Soc 82(4):583–597

    Article  Google Scholar 

  • Dujardin M, Hanna WW (1988) Cytology and breeding behavior of a partially fertile triploid pearl millet. J Hered 79:216–218

    Article  Google Scholar 

  • Dustin P (1984) Microtubules. Springer, New York

    Book  Google Scholar 

  • Dvorak J, Harvey BL, Coulman BE (1973) The use of nitrous oxide for producing euploids and aneuploids in wheat and barley. Can J Genet Cytol 15:205–214

    Article  CAS  Google Scholar 

  • Gao SL, Zhu DN, Cai ZH, DR X (1996) Autotetraploid plants from colchicine-treated bud culture of Salvia miltiorrhizaBge. Plant Cell Tissue Organ Cult 47:73–77

    Article  CAS  Google Scholar 

  • Gao SL, Chen BJ, Zhu DN (2002) In vitro production and identification of autotetraploids of Scutellaria baicalensis. Plant Cell Tissue Organ Cult 70:289–293

    Article  CAS  Google Scholar 

  • Gauthier P, Lumaret R, Bedecarrats A (1998) Genetic variation and gene flow in alpine diploid and tetraploid populations of Lotus. I. Insights from morphological and allozyme markers. Heredity 80:683–693

    Article  CAS  Google Scholar 

  • Grant V (1952) Cytogenetics of the hybrid Gilia millefoliata × Achilleaefolia.I.Variations in meiosis and polyploidy rate as affected by nutritional and genetic conditions. Chromosoma 5:372–390

    Article  CAS  PubMed  Google Scholar 

  • Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New York

    Google Scholar 

  • Hahn SK, Bai KV, Asiedu R (1990) Tetraploids, triploids, and 2n pollen from diploid interspecific crosses with cassava. Theor Appl Genet 79:433–439

    Article  CAS  PubMed  Google Scholar 

  • Heckard LR (1960) Taxonomic studies in the Phacelia magellanica polyploid complex. Univ Calif Publ Bot 32:1–126

    Google Scholar 

  • Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of polyploid plants. Curr Biol 18:R435–R444

    Article  CAS  PubMed  Google Scholar 

  • Hiesey WM, Nobs MA, Björkman O (1971) Experimental studies on the nature of species. V. Biosystematics, genetics, and physiological ecology of the Erythranthe section of Mimulus. Carnegie Institute of Washington Publ 628, pp 1–213

    Google Scholar 

  • Hornsey KG (1973) The occurrence of hexaploid plants among autotetraploids populations of sugar beet (Beta vulgaris L.), and the production of tetraploid progeny using a diploid pollinator. Caryologia 26:225–228

    Article  Google Scholar 

  • Jones HA, Clarke AF (1942) A natural amphi diploid from an onion species hybrid. J Hered 33:25–32

    Article  Google Scholar 

  • Kang XY, Zhu ZT, Zhang ZY (2000) Suitable period of high temperature treatment for 2n pollen of Populus tomentosa × P. bolleana. J Beijing For Univ 22:1–4

    Google Scholar 

  • Karpechenko GD (1927) The production of polyploid gametes in hybrids. Hereditas 9:349–368

    Article  Google Scholar 

  • Kato A (2002) Chromosome doubling of haploid maize seedling using nitrous oxide gas at the flower primordial stage. Plant Breed 121:370–377

    Article  Google Scholar 

  • King E (1933) Chromosome behavior in a triploid Tradescantia. J Hered 24:253–256

    Article  Google Scholar 

  • Kitamura S, Akutsu M, Okazaki K (2009) Mechanism of action of nitrous oxide gas applied as a polyploidizing agent during meiosis in lilies. Sex Plant Reprod 22:9–14

    Article  CAS  PubMed  Google Scholar 

  • Lammerts WE (1931) Interspecific hybridization in Nicotiana. XII. The amphidiploid rustica paniculata hybrid: its origin and cytogenetic behavior. Genetics 16:191–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leitch IL, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Levan A (1937) Cytological studies in the Allium paniculatum group. Hereditas 23:317–370

    Article  Google Scholar 

  • Levan A (1941) The cytology of the species hybrid Allium cepa fistulosum and its polyploid derivatives. Hereditas 27:253–272

    Article  Google Scholar 

  • Lewis H, Szweykowski J (1964) The genus Gayophytum (Onagraceae). Brittonia 16:343–391

    Article  Google Scholar 

  • Li Y, Tian M, Zhang P (2017) Embryo sac chromosome doubling in Populus alba × P. Glandulosa induced by high temperature exposure to produce triploids. Breed Sci 267(3):233–238

    Article  Google Scholar 

  • Lindstrom EW, Humphrey LM (1933) Comparative cyto-genetic studies of tetraploid tomatoes from different origins. Genetics 18:193–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Zhang P, Kang X (2013) Induction of 2n female gametes in Populus adenopoda Maxim by high temperature exposure during female gametophyte development. Breed Sci 63(1):96–103

    Article  PubMed  PubMed Central  Google Scholar 

  • Martelotto LG, Ortiz JPA, Stein J, Espinoza F, Quarin CL, Pessino SC (2007) Genome rearrangements derived from auto polyploidization in Paspalum sp. Plant Sci 172:970–977

    Article  CAS  Google Scholar 

  • Matusima K (1935) Chromosome doubling in the rice plants treated with high temperature. Jpn J Genet 11:235–237

    Article  Google Scholar 

  • Medrano FJ, Andreu JM, Gorbunoff MJ, Timasheff SN (1989) Role of colchicine rings B and C in the binding process to tubulin. Biochemistry 28:5589–5599

    Article  CAS  PubMed  Google Scholar 

  • Mishra BK, Pathak S, Sharma A, Trivedi PK, Shukla S (2010) Modulated gene expression in newly synthesized auto-tetraploid of Papaver somniferum L. S Afr J Bot 76:447–452

    Article  CAS  Google Scholar 

  • Müntzing A (1930) Outlines to a genetic monograph of the genus Galeopsis with special reference to the nature and inheritance of partial sterility. Hereditas 13:185–341

    Article  Google Scholar 

  • Müntzing A (1932) Cyto-genetic investigations on synthetic Galeopsis tetrahit. Hereditas 16:105–154

    Article  Google Scholar 

  • Nakasone HY, Kamemoto H (1961) Artificial induction of polyploidy in orchids by the use of colchicine. Technical Bulletin No 42, Hawaii Agricultural, Experiment Station, University of Hawaii

    Google Scholar 

  • Nebel BR (1937) Mechanism of polyploidy through colchicine. Nature 140:1101

    Article  Google Scholar 

  • Nettancourt DD, Dijkhuis P, Gastel AV, Broertjes C (1971) The combined use of leaf irradiation and of the adventitious bud technique for inducing and detecting polyploidy, marker mutations and self-compatibility in clonal populations of Nicotiana alata Link and Otto. Euphytica 20:508–520

    Article  Google Scholar 

  • Newton WCF, Pellew C (1929) Primula kewensis and its derivatives. J Genet 20:405–467

    Article  Google Scholar 

  • Norrmann G, Quarín C, Keeler K (1997) Evolutionary implications of meiotic chromosome behavior, reproductive biology, and hybridization in 6x and 9x cytotypes of Andropogon gerardii (Poaceae). Am J Bot 84:201–208

    Article  CAS  PubMed  Google Scholar 

  • Nygren A (1955) Polyploids in Melandrium produced by nitrous oxide. Hereditas 41:287–290

    Google Scholar 

  • Ostergren G (1954) Polyploids and aneuploids of Crepis capillaris produced by treatment with nitrous oxide. Genetica 27:54–64

    Article  CAS  PubMed  Google Scholar 

  • Ostergren G (1957) Production of polyploids and aneuploids of Phalaris by means of nitrous oxide. Hereditas 43:512–516

    Article  Google Scholar 

  • Peto FH (1938) Hybridization of Triticum and Agropyron V. Doubling the chromosome number in T. vulgare and F1 of T. vulgare X A. glaucum by temperature treatments. Can J Res 16:516–529

    Article  Google Scholar 

  • Pikaard CS (2001) Genomic changes and gene silencing in polyploids. Trends Genet 17(12):675–677

    Article  CAS  PubMed  Google Scholar 

  • Podwyszynska M, Gabryszewska E, Jasinski A, Sochacki D (2011) Histogenic identification by cytological analysis of colchicine-induced polyploids of Hemerocallis. Acta Hortic (886):245–250

    Google Scholar 

  • Poole CF (1931) The interspecific hybrid, Crepis rubra ×C. foetida, and some of its derivatives. I. Univ Calif Publ Agric Sci 6:169–200

    Google Scholar 

  • Pratassenja GD (1939) Production of polyploid plants: haploids and triploids in Prunus persica. Akademiia Nauk (Doklady), N.S. SSSR 22:348–351

    Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathway, mechanism and rates of polyploidy formation in flowering plants. Ann Rev Eco Syst 29:467–501

    Article  Google Scholar 

  • Randolph LF (1932) Some effects of high temperature on polyploidy and other variations in maize. Proc Natl Acad Sci U S A 18:222–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogalska SM, Achrem M, Kalinka A (2007) Mechanisms of genome changes and gene expression in plant hybrid polyploids. Kosmos 56:421–433

    CAS  Google Scholar 

  • Särkilahti E (1988) Micropropagation of a mature colchicine-polyploid and irradiation-mutant of Betula pendula Roth. Tree Physiol l4:173–179

    Article  Google Scholar 

  • Satina S, Blakeslee AF (1937) Chromosome behavior in triploids of Datura stramonium.I. The male gametophyte. Am J Bot 24:518–527

    Article  Google Scholar 

  • Skalińska M (1945) Cytogenetic studies in triploid hybrids of Aquilegia. J Genet 47:87–111

    Article  Google Scholar 

  • Soltis DE, Soltis PS (1993a) Molecular data facilitate a reevaluation of traditional tenets of polyploidy evolution. Crit Rev Plant Sci 12:243–273

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1993b) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243–273

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: origins of species and genomic evolution. Trends Ecol Evol 9:348–352

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate J, Mavrodiev E (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol J Linn Soc 82:485–501

    Article  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Taylor NL, Anderson MK, Quesenbery KH, Watson L (1976) Doubling the chromosome number of Trifolium species using nitrous oxide. Crop Sci 16:516–518

    Article  CAS  Google Scholar 

  • Thompson RC (1942) An amphidiploids Lactuca. J Hered 33:253–264

    Article  Google Scholar 

  • Trojak-Goluch A, Skomra U (2013) Artificially induced polyploidization in Humulus lupulus L. and its effect on morphological and chemical traits. Breed Sci 63:393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Tuyl JM, Meijer B, Van D¨nMP (1992) The use of oryzalin as an alternative for colchicine in vitro chromosome doubling of Lilium and Nerine. Acta Hort 325:625–630

    Article  Google Scholar 

  • Viehmannová I, Cusimamani EF, Bechyne M, Vyvadilová M, Greplová M (2009) In vitro induction of polyploidy in yacon (Smallanthus sonchifolius). Plant Cell Tissue Organ Cult 97:21–25

    Article  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  CAS  PubMed  Google Scholar 

  • Wagenaar EB (1968) Meiotic restitution and the origin of polyploidy. I. Influence of genotype on polyploid seed set in a Triticum crassum × T. turgidum hybrid. Can J Genet Cytol 10:836–843

    Article  Google Scholar 

  • Wang J, Li DL, Kang XY (2012) Induction of unreduced megaspores with high temperature during megasporogenesis in Populus. Ann For Sci 15:1–9

    CAS  Google Scholar 

  • Webber JM (1940) Polyembryony. Bot Rev 6:575–598

    Article  CAS  Google Scholar 

  • Wilson L, Miller HP, Jordan MA, Farrell KW (1985) In: De Brabander M, De May J (eds) Microtubules & microtubule inhibitors. Elsevier Science Publishers B. V, Amsterdam, pp 71–78

    Google Scholar 

  • Yao PQ, Li GH, Long QY, He LG, Kang XY (2017) Microsporogenesis and induction of unreduced pollen with high temperatures in rubber tree clone RRIM 600. Forests 8:152

    Article  Google Scholar 

  • Zhang XZ, Liu GJ, Yan LY, Zhao YB, Chang RF, LP W (2002) Creating triploid germplasm via induced 2n pollen in Capsicum L. J Horticult Sci Biotechnol l78:84–88

    Google Scholar 

  • Zhang QY, Luo FX, Liu L, Guo FC (2010) In vitro induction of tetraploids in crape myrtle (Lagerstroemia indica L.) Plant Cell Tissue Organ Cult 101:41–47

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, TUH., Rehman, RU. (2017). Origin of Polyploidy. In: Polyploidy: Recent Trends and Future Perspectives. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3772-3_2

Download citation

Publish with us

Policies and ethics