Skip to main content
Log in

Induction of 2n pollen formation in Begonia by trifluralin and N2O treatments

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

In this study, treatments of both trifluralin (at 10, 100 and 1000 μM) and N2O (in the form of gas under pressure) were applied to Begonia flower buds to induce the formation of 2n pollen. Three male fertile species (B. cucullata, B. subvillosa var. leptotricha and B. fischeri) and two male sterile hybrids (B. schmidtiana × B. cucullata and B. subvillosa var. leptotricha × B. cucullata) were treated. Pollen size, which is related to pollen DNA content, increased after both N2O and trifluralin treatments, but the induction of large pollen was genotype dependent. Trifluralin induced large pollen only in the male fertile species, while N2O treatments induced fertile 2n pollen in the male sterile B. schmidtiana × B. cucullata. Cytological studies showed that trifluralin induced multinuclear monads that resulted in 4n gametes in stead of 2n gametes. In general, large pollen obtained after trifluralin treatments showed low germination capability, while large pollen obtained after N2O treatments retained high germination capability. Seedlings with raised ploidy level could only be obtained after crosses were performed with large pollen obtained from N2O treatments. Hence, N2O treatments are preferable to the use of trifluralin to induce 2n gametes in Begonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akutsu M, Kitamura S, Toda R, Miyajima I, Okazaki K (2007) Production of 2n pollen of Asiatic hybrid lilies by nitrous oxide treatments. Euphytica 155:143–152

    Article  CAS  Google Scholar 

  • Anurita D, Girjesh K (2007) Morphogenetic analysis of colchitetraploids in Impatiens balsamina L. Caryologia 60:199–202

    Google Scholar 

  • Barba-Gonzalez R, Miller CT, Ramanna MS, Van Tuyl JM (2006) Nitrous oxide N2O induces 2n gametes in sterile F1 hybrids of Oriental × Asiatic lilies (Lilium) and leads to intergenomic recombination. Euphytica 148:303–309

    Article  CAS  Google Scholar 

  • Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autoploid plants. New Phytol 129:1–22

    Article  Google Scholar 

  • Brinkley BR, Rao PN (1973) Nitrous oxide: effects on the mitotic apparatus and chromosome movement in HeLa cells. J Cell Biol 58:96–106

    Article  CAS  PubMed  Google Scholar 

  • Carputo D, Frusciante L, Peloquin SJ (2003) The role of 2n gametes and endosperm balance number in the origin and evolution of polyploids in the tuber-bearing Solanums. Genetics 163:287–294

    CAS  PubMed  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    Article  CAS  PubMed  Google Scholar 

  • Comai L (2005) The advantage and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • Contreras RN, Ranney TG, Tallury SP (2007) Reproductive behavior of diploid and allotetraploid Rhododendron L. ‘fragrant affinity’. HortScience 42:31–34

    Google Scholar 

  • De Schepper S, Leus L, Mertens M, Debergh P, Van Bockstaele E, De Loose M (2001) Somatic polyploidy and its consequences for flower coloration and flower morphology in azalea. Plant Cell Rep 20:583–590

    Article  CAS  Google Scholar 

  • Dewitte A, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E (2009a) Occurrence of viable unreduced pollen in a Begonia collection. Euphytica 168:81–94

    Article  Google Scholar 

  • Dewitte A, Leus L, Vanstechelman I, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E (2009b) Genome size variation in Begonia. Genome 52:829–838

    Article  CAS  PubMed  Google Scholar 

  • Dhooghe E, Grunewald W, Leus L, Van Labeke M-C (2009) In vitro polyploidisation of Helleborus species. Euphytica 165:89–95

    Article  Google Scholar 

  • Dover GA (1972) The organization and polarity of pollen mother cells of Triticum Aestivum. J Cell Sci 11:699–711

    CAS  PubMed  Google Scholar 

  • Dvorak J, Harvey BL, Coulman BE (1973) The use of nitrous oxide for producing eupolyploids and aneuploids in wheat and barley. Can J Genet Cytol 15:205–214

    CAS  Google Scholar 

  • Eeckhaut T, Werbrouck S, Leus L, Van Bockstaele E, Debergh P (2004) Chemically induced polyploidization in Spathiphyllum wallisii Regel through somatic embryogenesis. Plant Cell Tissue Organ Cult 78:241–246

    Article  CAS  Google Scholar 

  • Hancock J (1997) The colchicine story. HortScience 32:1011–1012

    Google Scholar 

  • Iizuka M, Ikeda A (1968) Induction of polyploidy in Lilium formosanum Wallace. Jpn J Genet 43:95–101

    Article  Google Scholar 

  • Jovtchev G, Schubert V, Meister A, Barow M, Schubert I (2006) Nuclear DNA content and nuclear and cell volume are positively correlated in angiosperms. Cytogenet Genome Res 114:77–82

    Article  CAS  PubMed  Google Scholar 

  • Kato A (1999) Induction of bicellular pollen by trifluralin treatment and occurrence of triploids and aneuploids after fertilization in maize. Genome 42:154–157

    Article  Google Scholar 

  • Kato A (2002) Chromosome doubling of haploid maize seedling using nitrous oxide gas at the flower primordial stage. Plant Breed 121:370–377

    Article  Google Scholar 

  • Kato A, Birchler JA (2006) Induction of tetraploid derivates of maize inbred lines by nitrous oxide gas treatment. J Hered 97:39–44

    Article  CAS  PubMed  Google Scholar 

  • Kehr AE (1996) Woody plant polyploidy. Am Nurserym 183:38–47

    Google Scholar 

  • Kermani MJ, Sarasan V, Roberts AV, Yokoya K, Wentworth J, Sieber VK (2003) Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor Appl Genet 107:1195–1200

    Article  CAS  PubMed  Google Scholar 

  • Kihara H, Tsunewaki K (1960) Production of polyploidy wheat by nitrous oxide. Proc Jpn Acad 36:658–663

    CAS  Google Scholar 

  • Kitamura S, Akutsu M, Okazaki K (2008) Mechanisms of action of nitrous oxide gas applied as a polyploidizing agent during meiosis in lilies. Sex Plant Reprod 22:9–14

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Yamashita S, Ohta K, Hosoki T (2008) Morphological characteristics and their inheritance in colchicines-induced Salvia polyploids. J Jpn Soc Hort Sci 77:186–191

    Article  Google Scholar 

  • Leitch I, Bennett M (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Levin D (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Lewis W (1980) Polyploidy in species populations. In: Lewis W (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 103–144

    Google Scholar 

  • Liu G, Li Z, Bao M (2007) Colchicine induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica 157:145–154

    Article  Google Scholar 

  • Lu C, Bridgen M (1997) Chromosome doubling and fertility study of Alstroemeria aurea × A. caryophyllaea. Euphytica 94:75–81

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Negri V, Lemmi G (1998) Effect of selection and temperature stress on the production of 2n gametes in Lotus tenuis. Plant Breed 117:345–349

    Article  Google Scholar 

  • Okazaki K, Kurimoto K, Miyajima I, Enami A, Mizuochi H, Matsumoto Y, Ohya H (2005) Induction of 2n pollen by arresting the meiotic process with nitrous oxide gas. Euphytica 143:101–114

    Article  CAS  Google Scholar 

  • Osborn T, Pires J, Birchler J, Auger D, Chen Z, Lee H, Comai L, Madlung A, Doerge R, Colot V, Martienssen R (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    Article  CAS  PubMed  Google Scholar 

  • Östergren G (1954) Polyploids and aneuplods of Crepis capilaris produced by treatment with nitrous oxide. Genetica 27:54–64

    Article  PubMed  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    Article  CAS  PubMed  Google Scholar 

  • Planchais S, Glab N, Inzé D, Bergounioux C (2000) Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett 476:78–83

    Article  CAS  PubMed  Google Scholar 

  • Ramanna MS, Jacobsen E (2003) Relevance of sexual polyploidization for crop improvement—a review. Euphytica 133:3–18

    Article  Google Scholar 

  • Robb L, Ladiges PY (1981) Morphological forms and polyploidy in Triglochin agg. in Victoria. Aust J Bot 29:639–651

    Article  Google Scholar 

  • Roberts A, Lloyd D, Short K (1990) In vitro procedures for the induction of tetraploidy in a diploid rose. Euphytica 49:33–38

    Article  Google Scholar 

  • Rose J, Kubba J, Tobutt K (2000a) Chromosome doubling in sterile Syringa vulgaris × S. pinnatifolia hybrids by in vitro culture of nodal explants. Plant Cell Tissue Organ Cult 63:127–132

    Article  Google Scholar 

  • Rose J, Kubba J, Tobutt K (2000b) Induction of tetraploidy in Buddleia globosa. Plant Cell Tissue Organ Cult 63:121–125

    Article  Google Scholar 

  • Soltis P, Soltis D (2000) The role of genetic and genomic attributes in the success of polyploids. PNAS 97:7051–7057

    Article  CAS  PubMed  Google Scholar 

  • Stebbins G (1971) Chromosomal evolution of higher plants. Edward Arnold Ltd., London

    Google Scholar 

  • Susin I, Álvarez JM (1997) Fertility and pollen tube growth in polyploidy melons (Cucumis melo L.). Euphytica 93:369–373

    Article  Google Scholar 

  • Takamura T, Miyajima I (1996) Colchicine induced tetraploids in yellow-flowered cyclamens and their characteristics. Sci Hort 65:305–312

    Article  CAS  Google Scholar 

  • Thompson JN, Nuismer SL, Merg K (2004) Plant polyploidy and the evolutionary ecology of plant/animal interactions. Biol J Linn Soc 82:511–519

    Article  Google Scholar 

  • Väinölä A (2000) Polyploidization and early screening of Rhododendron hybrids. Euphytica 112:239–244

    Article  Google Scholar 

  • Vaughn K, Lehnen L (1991) Mitotic disruptor herbicides. Weed Sci 39:450–457

    CAS  Google Scholar 

  • Veilleux RE, Lauer FI (1981) Variation for 2n pollen production in clones of Solanum phureja Juz. and Buk. Theor Appl Genet 59:95–100

    Article  Google Scholar 

  • Wan Y, Duncan DR, Rayburn AL, Petolino JF, Widholm JM (1991) The use of antimicrotubule herbicides for the production of doubled haploid plants from anther-derived maize callus. Theor Appl Genet 81:205–211

    Article  CAS  Google Scholar 

  • Zlesak DC (2009) Pollen diameter and guard cell length as predictor of ploidy in diverse rose cultivars, species, and breeding lines. In: Zlesak DC (ed) Roses. Floricult ornament biotechnol, vol 3 (special issue 1). Global science books Ltd., UK, pp 53–70

  • Zlesak DC, Thill CA, Anderson NO (2005) Trifluralin-mediated polyploidization of Rosa chinensis minima (Sims) Voss seedlings. Euphytica 141:281–290

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the Institute for Agricultural and Fisheries Research (ILVO) and IWT-Flanders (project 40696) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Dewitte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewitte, A., Eeckhaut, T., Van Huylenbroeck, J. et al. Induction of 2n pollen formation in Begonia by trifluralin and N2O treatments. Euphytica 171, 283–293 (2010). https://doi.org/10.1007/s10681-009-0060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-009-0060-z

Keywords

Navigation