Skip to main content

Bacillus and Biopesticides in Control of Phytonematodes

  • Chapter
  • First Online:
Basic and Applied Aspects of Biopesticides

Abstract

Currently the major challenge of humanity is focused on population growth/increase through agricultural production in order to meet the demand for food. Overtime, different pests have emerged, with some being of great importance. Among these pests, the nematodes are noted for attacking leguminous plants, grasses, citrus, and other fruits. The main pest species are of the genus Heterodera, Meloidogyne, Pratylenchus, and Globodera. These nematodes cause losses up to 100 %, preventing agriculture of certain areas. Financially, about $100 billion annual damage is caused by nematodes. These amount to 90 % of the yield of cotton, yams, beans, and soybeans, and in citrus damage is estimated at 14 % of production. Alternative methods of control are being studied, and in this context, a bacterium of the genus Bacillus has prominence and importance. Besides Bacillus subtilis, some by pesticides are already marketed for the control of nematodes, such as Bioarc® the basis of Bacillus megaterium, Bio Zeid® the basis of Trichoderma album, and also using the brown alga, Ascophyllum nodosum (Algaefol®), among others. The objective of this chapter is to report the use of different Bacillus species and some biopesticides used to control nematodes of agricultural importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acea MJ, Moore CR, Alexander M (1988) Survival and growth of bacteria introduced into soil. Soil Biol Biochem 20:509–515. http://dx.doi.org/10.1016/0038-0717(88)90066-1

    Article  Google Scholar 

  • Al-Rehiayani S, Hafez SL, Thorton M, Sundararaj P (1999) Effects of Pratylenchus neglectus, Bacillus megaterium and oil radish or rapeseed green manure on reproductive potential of Meloidogyne chitwoodi on potato. Nematropica 29:37–49

    Google Scholar 

  • Anastasiadis IA, Giannakoua IO, Gowenb SR, Prophetou-Athanasiadou DA (2007) Effects of a non-chemical nematicide combined with soil solarization for the control of root-knot nematodes. Crop Prot 26:1644–1654. doi:10.1016/j.cropro.2007.02.003

    Article  Google Scholar 

  • Aranda E, Peferoen M, Guereca L, Bravo A (1996) Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cell of Spodoptera frugiperda (Lepidoptera: Noctuidae). J Invertebr Pathol 68:203–212. doi.org/10.1006/jipa.1996.0087

  • Araújo FF, Marchesi GVP (2009) Uso de Bacillus subtilis no controle da meloidoginose e na promoção do crescimento do tomateiro. Cienc Rural 39(5):1558–1561. doi.org/10.1590/S0103-84782009000500039

  • Araújo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21:1639–1645. doi:10.1007/s11274-005-3621-x

    Article  Google Scholar 

  • Ashoub AH, Amara MT (2010) Biocontrol activity of some bacterial genera against root-knot nematode, Meloidogyne incognita. J Am Sci 6(10):321–328

    Google Scholar 

  • Atkinson HJ, Lilley CJ, Urwin PE (2012) Strategies for transgenic nematode control in developed and developing world crops. Curr Opin Biotechnol 23:251–256. doi.org/10.1016/j.copbio.2011.09.004

  • Berlitz DL, Silva CS, Cassal MC, Santin RC, Guimarães A, Matsumura ATS, Fiuza LM (2012) Nematicidal activity of the Bacillus thuringiensis to Meloidogyne incognita (Nematoda: Meloidogynidae). 45 Annual Meeting Society Invertebrate pathology. Available in: http://www.sipweb.org/SIP2012/index.html

  • Bird DM, Williamson VM, Abad P, McCarter J, Danchin EGJ, Castagnone-Sereno P, Opperman CH (2009) The genomes of root-knot nematodes. Annu Rev Phytopathol 47:333–351. doi:10.1146/annurev-phyto-080508-081839

    Article  CAS  PubMed  Google Scholar 

  • Castilhos-Fortes R, Matsumura ATS, Diehl E, Fiuza LM (2002) Susceptibility of Nasutitermes ehrhardti (Isoptera: Termitidae) to Bacillus thuringiensis subspecies. Braz J Microbiol 33:219–222. http://dx.doi.org/10.1590/S1517-83822002000300006

    Article  Google Scholar 

  • Cavados CFG, Fonseca RN, Chaves JQ, Rabinovitch L, Araújo-Coutinho CJPC (2001) Identification of entomopathogenic Bacillus isolated from Simulium (Diptera, Simuliidae) larvae and adults. Mem Instit Osw Cruz 96(7):1017–1021. doi.org/10.1590/S0074-02762001000700023

  • Cazorla FM, Romero D, Pérez-García A, Lugtenberg BJJ, Vicente A, Bloemberg G (2007) Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol 103:1950–1959. doi:10.1111/j.1365-2672.2007.03433.x

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia B, Pandeya A, Palnib LMS, Trivedia P, Kumara B, Colvinc N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160:75–81. doi.org/10.1016/j.micres.2004.09.013

  • Chen J, Abawi GS, Zuckerman BM (2000) Efficacy of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus with and without organic amendments against Meloidogyne hapla infecting lettuce. J Nematol 32(1):70–77

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collange B, Navarrete M, Mateille T, Tchamitchian M (2011) Root-knot nematode (Meloidogyne sp.) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Prot 30(10):1251–1262. doi:10.1016/j.cropro.2011.04.016

    Article  Google Scholar 

  • Crickmore N (2014) http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/. Accessed 5 May 2014

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lerecus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal protein. Microbiol Mol Biol Rev 62(3):807–813. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC98935/

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davies KG, Curtis RHC (2011) Cuticle surface coat of plant-parasitic nematodes. Annu Rev Phytopathol 49:135–156. doi:10.1146/annurev-phyto-121310-111406

    Article  CAS  PubMed  Google Scholar 

  • De Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17(4):193–199. doi.org/10.1016/S0168-9525(01)02237-5

  • De Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433. doi:10.1146/annurev.genet.37.110801.143042

    Article  PubMed  Google Scholar 

  • Dyakov YT, Zinovyeva SV (2007) Parasitic nematodes as plant pathogens. In: Comprehensive and molecular phytopathology, 39–47pp

    Google Scholar 

  • El-Hadad ME, Mustafa MI, Selim SM, Mahgoob AEA, El-Tayeb TS, Aziz NHA (2010) In vitro evaluation of some bacterial isolates as biofertilizers and biocontrol agents against the second stage juveniles of Meloidogyne incognita. World J Microbiol Biotechnol 26:2249–2256. doi:10.1007/s11274-010-0413-8

    Article  Google Scholar 

  • Feitelson JS, Payne J, Kim L (1992) Bacillus thuringiensis insects and beyond. Biotechnology 10:271–275. doi:10.1038/nbt0392-271

    Article  Google Scholar 

  • Giannakou IO, Karpouzas DG, Prophetou-Athanasiadou D (2004) A novel non-chemical nematicide for the control of root-knot nematodes. Appl Soil Ecol 26:69–79. doi:10.1016/j.apsoil.2003.09.002

    Article  Google Scholar 

  • Guerena M (2006) Nematodes: alternative controls. NCAT Agriculture. ATTRS- National Sustainable Agriculture Information Service, Fayetteville, USA

    Google Scholar 

  • Hashem M, Abo-Elyousr KA (2011) Management of the root-knot nematode Meloidogyne incognita on tomato with combinations of different biocontrol organisms. Crop Prot 30:285–292. http://dx.doi.org/10.1016/j.cropro.2010.12.009

    Article  Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC372730/

    PubMed Central  PubMed  Google Scholar 

  • Höss S, Arndtb M, Baumgartec S, Tebbec CC, Nguyend HT, Jehle JA (2008) Effects of transgenic corn and Cry1Ab protein on the nematode Caenorhabditis elegans. Ecotoxicol Environ Saf 70:334–340. http://dx.doi.org/10.1016/j.ecoenv.2007.10.017

    Article  PubMed  Google Scholar 

  • Huang Y, Xu C, Ma L, Zhang K, Duan C, Mo M (2010) Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126:417–422. doi:10.1007/s10658-009-9550-z

    Article  CAS  Google Scholar 

  • Jouzani GS, Seifinejad A, Saeedizadeh A, Nazarian A, Yousefloo M, Soheilivand S, Mousivand M, Jahangiri R, Yazdani M, Amiri RM, Akbari S (2008) Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes. Can J Microbiol 54:812–822. doi:10.1139/w08-074

    Article  Google Scholar 

  • Karssen G, Von Hoenselaar T (1998) Revision of the genus Meloidogyne Goldi, 1892 (Nematoda: Heteroderidae) in Europe. Nematologica 44:713–88. Doi: http://dx.doi.org/10.1163/005725998X00096

    Article  Google Scholar 

  • Khalil MS, Kenawy A, Gohrab MA (2012) Impact of microbial agents on Meloidogyne incognita management and morphogenesis of tomato. J Biopest 5(1):28–35. doi:10.2478/v10045-012-0008-5

    Google Scholar 

  • Khan Z, Park SD, Shin SY, Bae SG, Yeon IK, Seo YJ (2005) Management of Meloidogyne incognita on tomato by root-dip treatment in culture filtrate of the blue-green alga, Microcoleus vaginatus. Bioresour Technol 96:1338–1341. http://dx.doi.org/10.1016/j.biortech.2004.11.012 doi:10.1016/j.biortech.2004.11.012#doilink

  • Khan MQ, Waseem MA, Zaki MJ, Khan SA (2010) Evaluation of Bacillus thuringiensis isolates against root-knot nematodes following seed application in okra and mungbean. Pak J Bot 42(4):2903–2910

    Google Scholar 

  • Khan MQ, Abbasi MW, Zaki MJ, Khan D (2011a) Control of root-knot nematodes and amelioration of eggplant growth by the combined use of Bacillus thuringiensis Berliner and nematicides. FUUAST J Biol 1(2):83–86

    Google Scholar 

  • Khan MJ, Majid S, Mohidin FA, Khan N (2011b) A new bioprocess to produce low cost powder formulations of biocontrol bacteria and fungi to control fusarial wilt and root-knot nematode of pulses. Biol Control 59:130–140. http://dx.doi.org/10.1016/j.biocontrol.2011.04.007

    Article  CAS  Google Scholar 

  • Khyami-Horani H, Al-Banna L (2006) Efficacy of Bacillus thuringiensis jordanica against Meloidogyne javanica infecting tomato. Phytopathol Mediterr 45:153–157

    Google Scholar 

  • Kudryashova EB, Vinokurova NG, Ariskina EV (2005) Bacillus subtilis and phenotypically similar strains producing hexaene antibiotics. Appl Biochem Microbiol 41(5):486–489. doi:10.1007/s10438-005-0087-4

    Article  CAS  Google Scholar 

  • Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton HAS, Harbour A (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol 78:97–108. doi:10.1111/j.1365-2672.1995.tb02829.x

    Article  CAS  PubMed  Google Scholar 

  • Li XQ, Wei JZ, Tan A, Aroian RV (2007) Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5:455–464. doi:10.5897/AJMR12.1328

    Article  CAS  PubMed  Google Scholar 

  • Li M, When F, Ying H, He MM, Qin XJ, Qing DY, Huang FD, Hui YS (2012) A strategy to discover potential nematicidal fumigants based on toxic volatiles from nematicidal bacteria. Afr J Microbiol Res 6(31):6106–6113. doi:10.5897/AJMR12.1328

    Google Scholar 

  • Liu YF, Chen ZY, Ng TB, Zhang J, Zhou MG, Song FP, Lu F, Liu YZ (2007) Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28:553–559

    Article  PubMed  Google Scholar 

  • Machado V, Berlitz DL, Matsumura ATS, Santin RCM, Guimarães A, Silva ME, Fiuza LM (2012) Bactérias como agentes de controle biológico de fitonematóides. Oecol Aust 16(2):165–182

    Article  Google Scholar 

  • Madani M, Subbotin SA, Moens M (2005) Quantitative detection of the potato cyst nematode, Globodera pallida, and the beet cyst nematode, Heterodera schachtii, using Real-Time PCR with SYBR green I dye. Mol Cell Probes 19:81–86

    Article  CAS  PubMed  Google Scholar 

  • Maleita CMN, Curtis RHC, Powers SJ, Abrantes I (2012) Host status of cultivated plants to Meloidogyne hispanica. Eur J Plant Pathol 133:449–460

    Article  Google Scholar 

  • Marroquin LD, Elyasnia D, Griffitts JS, Feitelson JS, Aroian RV (2000) Bacillus thuringiensis: toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155:1693–1699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mendoza AR, Kiewnick S, Sikora RA (2008) In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Sci Technol 18:377–389

    Article  Google Scholar 

  • Miranda GB, Souza RM, Gomes VM, Ferreira TF, Almeida AM (2012) Avaliação de acessos de Psidium spp. quanto à resistência a Meloidogyne enterolobii. Bragantia 71(1):52–58

    Article  Google Scholar 

  • Moens M, Perry RN (2009) Migratory plant endoparasitic nematodes: a group rich in contrasts and divergence. Annu Rev Phytopathol 47:313–332

    Article  CAS  PubMed  Google Scholar 

  • Mohammed SH, Anwer M, Saedy E, Mohamed R, Enan N, Ibrahim E, Ghareeb A, Salah AM (2008) Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. J Cell Mol Biol 7(1):57–66. doi:10.1146/annurev-phyto-080508-081846

    Google Scholar 

  • Neipp PW, Becker JO (1999) Evaluation of biocontrol activity of rhizobacteria from Beta vulgaris against Heterodera schachtii. J Nematol 31:54–61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments. Appl Soil Ecol 44:101–115. http://dx.doi.org/10.1016/j.apsoil.2009.11.003

    Article  Google Scholar 

  • Oka Y, Shuker S, Tkachi N (2009) Nematicidal efficacy of MCW-2, a new nematicide of the fluoroalkenyl group, against the root-knot nematode Meloidogyne javanica. Pest Manage Sci 65:1082–1089. doi:10.1002/ps.1796

    Article  CAS  Google Scholar 

  • Padgham JL, Sikora RA (2007) Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot 26:971–977. http://dx.doi.org/10.1016/j.cropro.2006.09.004

    Article  Google Scholar 

  • Pal-Bais H, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319. doi: http://dx.doi.org/10.1104/pp.103.028712

    Article  Google Scholar 

  • Pinto LMN, Azambuja AO, Dihel E, Fiuza, LM (2003) Pathogenicity of Bacillus thuringiensis isolates from two species of Acromyrmex (Hymenoptera: Formicidae). Braz J Biol 63(2):301–306. doi.org/10.1590/S1519-69842003000200015

  • Pionner (2012) Manejo de nematoides nas culturas da soja e do milho. Comunicado Técnico 09. Oggi/Graphik

    Google Scholar 

  • Qin L, Overmars H, Helder J, Popeijus H, Voort JRVD, Groenink W, Koert PV, Schots A, Bakker J, Smant G (2000) An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis. Mol Plant Microbe Interact 13(8):830–836

    Article  CAS  PubMed  Google Scholar 

  • Radwan MA, Farrag SAA, Abu-Elamayem MM, Ahmed NS (2012) Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Appl Soil Ecol 56:58–62. http://dx.doi.org/10.1016/j.apsoil.2012.02.008

    Article  Google Scholar 

  • Reitz M, Rudolph K, Schröder I, Hoffmann-Hergarten S, Hallmann J, Sikora RA (2000) Lipopolysaccharides of Rhizobium etli Strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl Environ Microbiol 66(8):3515–3518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rocha FS, Campos VP, Souza JT (2010) Variation in lipid reserves of second-stage juveniles of Meloidogyne exigua in a coffee field and its relationship with infectivity. Nematology 12(3):365–371

    Article  Google Scholar 

  • Sato K, Asano S (2004) Cloning and sequencing of the gene for a putatively nematode-toxic crystal protein, Cry21Ba1, from Bacillus thuringiensis serovar roskildiensis. Jpn J Nematol 34(2):79–88

    Google Scholar 

  • Schnepf E, Crickmore N, Vanrie J, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticide crystal proteins. Microbiol Mol Biol Rev 62:775–806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seo BJ, Kumar VJR, Ahmad RI, Kim BC, Park W, Park SD, Kim SE, Kim SD, Lim J, Park YH (2012) Bacterial mixture from greenhouse soil as a biocontrol agent against root-knot nematode, Meloidogyne incognita, on oriental melon. J Microbiol Biotechnol 22(1):114–117

    Article  PubMed  Google Scholar 

  • Shahina F, Firoza K, Mehreen G, Salma J, Bhatti MI (2012) Molecular characterization of root-knot nematodes with five new host records from Pakistan. Pak J Nematol 30(2):129–141

    Google Scholar 

  • Sharma RD, Gomes AC (1996) Controle biológico de Meloidogyne arenaria com Pausteria penetrans. Nematol Bras 23(1):47–52

    Google Scholar 

  • Terefe M, Tefera T, Sakhuja PK (2009) Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. J Invertebr Pathol 100:94–99. doi:10.1016/j.jip.2008.11.004

    Article  PubMed  Google Scholar 

  • Tian BY, Yang JK, Lian LH, Wang CY, Zhang KQ (2007) Role of neutral protease from Brevibacillus laterosporus in pathogenesis of nematode. Appl Microbiol Biotechnol 74:372–380. doi:10.1007/s00253-006-0690-1

    Article  CAS  PubMed  Google Scholar 

  • Vachon V, Laprade R, Schwartz JL (2012) Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 111:1–2

    Article  CAS  PubMed  Google Scholar 

  • Vary P (1992) Development of genetic engineering in Bacillus megaterium. Biotechnology 22:251–310

    CAS  PubMed  Google Scholar 

  • Vilas-Bôas GT, Alvarez RC, Santos CA, Vilas-Boas LA (2012) Fatores de Virulência de Bacillus thuringiensis Berliner: O Que Existe Além das Proteínas Cry? EntomoBrasilis 5(1):1–10

    Google Scholar 

  • Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci USA 100(4):2760–2765. doi:10.1073/pnas.0538072100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williamson VM, Gleason CA (2003) Plant-nematode interactions. Curr Opin Biotechnol 6:237–333. doi:10.1016/S1369-5266(03)00059-1

    Google Scholar 

  • Xia Y, Xie S, Ma X, Wu H, Wang X, Gao X (2011) The purL gene of Bacillus subtilis is associated with nematicidal activity. FEMS Microbiol Lett 322:99–107. doi:10.1111/j.1574-6968.2011.02336.x

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Wang B, Wang J, Chen Y, Zhou M (2009) Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biol Control 51:61–65. http://dx.doi.org/10.1016/j.biocontrol.2009.05.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diouneia Lisiane Berlitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Berlitz, D.L., Knaak, N., Cassal, M.C., Fiuza, L.M. (2014). Bacillus and Biopesticides in Control of Phytonematodes. In: Sahayaraj, K. (eds) Basic and Applied Aspects of Biopesticides. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1877-7_1

Download citation

Publish with us

Policies and ethics