Oceanic fronts and jets around Japan: a review

  • Shinichiro KidaEmail author
  • Humio Mitsudera
  • Shigeru Aoki
  • Xinyu Guo
  • Shin-ichi Ito
  • Fumiaki Kobashi
  • Nobumasa Komori
  • Atsushi Kubokawa
  • Toru Miyama
  • Ryosuke Morie
  • Hisashi Nakamura
  • Tomohiro Nakamura
  • Hideyuki Nakano
  • Hajime Nishigaki
  • Masami Nonaka
  • Hideharu Sasaki
  • Yoshi N. Sasaki
  • Toshio Suga
  • Shusaku Sugimoto
  • Bunmei Taguchi
  • Koutarou Takaya
  • Tomoki Tozuka
  • Hiroyuki Tsujino
  • Norihisa Usui


This article reviews progress in our understanding of oceanic fronts around Japan and their roles in air–sea interaction. Fronts associated with the Kuroshio and its extension, fronts within the area of the Kuroshio-Oyashio confluence, and the subtropical fronts are described with particular emphasis on their structure, variability, and role in air–sea interaction. The discussion also extends to the fronts in the coastal and marginal seas, the Seto Inland Sea and Japan Sea. Studies on oceanic fronts have progressed significantly during the past decade, but many of these studies focus on processes at individual fronts and do not provide a comprehensive view. Hence, one of the goals of this article is to review the oceanic fronts around Japan by describing the processes based on common metrics. These metrics focus primarily on surface properties to obtain insights into air–sea interactions that occur along oceanic fronts. The basic characteristics derived for each front (i.e., metrics) are then presented as a table. We envision that many of the coupled ocean-atmosphere global circulation models in the coming decade will represent oceanic fronts reasonably well, and it is hoped that this review along with the table of metrics will provide a useful benchmark for evaluating these models.


Oceanic fronts Western North Pacific Air–sea interaction Kuroshio Extension Kuroshio-Oyashio confluence region Subtropical fronts 



We thank the editor, Dr. Shoshiro Minobe, and three anonymous reviewers for their constructive comments on the manuscript. The altimeter products are produced by Ssalto/Duacs and distributed by AVISO with support from CNES ( APDRC at the University of Hawaii at Manoa ( was also used to obtain some of the data sets. This work is supported by the Japan Society for Promotion of Science through a Grant-in-Aid for Scientific Research on Innovative Areas 2205.


  1. Abe H, Hanawa K, Ebuchi N (2013) Interannual variations in the Hawaiian Lee Countercurrent. J Oceanogr 69(2):191–202CrossRefGoogle Scholar
  2. Ambe D, Imawaki S, Uchida H, Ichikawa K (2004) Estimating the Kuroshio axis south of Japan using combination of satellite altimetry and drifting buoys. J Oceanogr 60:375–382CrossRefGoogle Scholar
  3. Andres M, Park J-H, Wimbush M, Zhu X-H, Chang K-I, Ichikawa H (2008) Study of the Kuroshio/Ryukyu Current system based on satellite-altimeter and in situ data measurements. J Oceanogr 64:937–950. doi: 10.1007/s10872-008-0077-2 CrossRefGoogle Scholar
  4. Antonov JI, Locarnini RA, Boyer TP, Mishonov AV, Garcia HE (2006) World Ocean Atlas 2005. In: Levitus S (ed) NOAA Atlas NESDIS 62. Salinity, vol 2. U.S. Government Printing Office, Washington, DCGoogle Scholar
  5. Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009. In: Levitus S (ed) NOAA Atlas NESDIS 69. Salinity, vol 2. U.S. Government Printing Office, Washington, DCGoogle Scholar
  6. Aoki Y, Suga T, Hanawa K (2002) Subsurface subtropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline. J Phys Oceanogr 32:2299–2311CrossRefGoogle Scholar
  7. Beal L, de Ruijter WPM, Biastoch A, Zahn R, SCOR/WCRP/IAPSO Working Group 136 (2011) On the role of the Agulhas system in ocean circulation and climate. Nature 472:429–436CrossRefGoogle Scholar
  8. Belkin I, Krishfield R, Honjo S (2002) Decadal variability of the North Pacific polar front: subsurface warming versus surface cooling. Geophys Res Lett 29:1351. doi: 10.1029/2001GL013806 CrossRefGoogle Scholar
  9. Bernstein RL, White WB (1981) Stationary and traveling mesoscale perturbations in Kuroshio Extension current. J Phys Oceanogr 11:692–704CrossRefGoogle Scholar
  10. Bingham FM (1992) Formation and spreading of subtropical mode water in the North Pacific. J Geophys Res 97(C7):11177–11189. doi: 10.1029/92JC01001 CrossRefGoogle Scholar
  11. Book JW, Wimbush M, Imawaki S, Ichikawa H, Uchida H, Kinoshita H (2002) Kuroshio temporal and spatial variations south of Japan determined from inverted echo sounder measurements. J Geophys Res 107(C9):3121. doi: 10.1029/2001JC000795 CrossRefGoogle Scholar
  12. Bryden HL, Beal LM, Duncan LM (2005) Structure and transport of the Agulhas Current and its temporal variability. J Oceanogr 61:479–492CrossRefGoogle Scholar
  13. Chang Y-L, Oey L-Y (2014) Instability of the North Pacific Subtropical Countercurrent. J Phys Oceanogr 44. doi: 10.1175/JPO-D-13-0162.1 Google Scholar
  14. Chang P-H, Guo X, Takeoka H (2009) A numerical study on the seasonal circulation in the Seto Inland Sea, Japan. J Oceanogr 65:721–736CrossRefGoogle Scholar
  15. Chelton DB, Schlax MG, Freilich MH, Milliff RF (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science 303(5660):978–983CrossRefGoogle Scholar
  16. Chen CTA (2009) Chemical and physical fronts in the Bohai, Yellow and East China Seas. J Mar Syst 78:394–410CrossRefGoogle Scholar
  17. Chu PC, Lan J, Fan C (2001) Japan Sea thermohaline structure and circulation. Part I: climatology. J Phys Oceanogr 31:244–271. doi: 10.1175/1520-0485(2001)031<0244:JSTSAC>2.0.CO;2 CrossRefGoogle Scholar
  18. Conkright ME, Antonov JI, Baranova O, Boyer TP, Garcia HE, Gelfeld R, Johnson D, Locarnini RA, Murphy PP, O’Brien TD, Smolyar I, Stephens C (2002) World Ocean Database 2001. In: Levitus S (ed) NOAA Atlas NESDIS 42. Introduction, vol 1. U.S. Government Printing Office, Washington, DCGoogle Scholar
  19. Cromwell T, Reid JL (1956) A study of oceanic fronts. Tellus 8:94–101. doi: 10.1111/j.2153-3490.1956.tb01198.x CrossRefGoogle Scholar
  20. Cunningham SA et al (2003) Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J Geophys Res 108:8084. doi: 10.1029/2001JC001147 CrossRefGoogle Scholar
  21. Dinniman MS, Rienecker MM (1999) Frontogenesis in the North Pacific oceanic frontal zones: a numerical simulation. J Phys Oceanogr 29:537–559CrossRefGoogle Scholar
  22. Favorite F, Dodimead AJ, Nasu K (1976) Oceanography of the subarctic Pacific region, 1960-71. International North Pacific Fisheries Commission, Bulletin Number 33, 187 ppGoogle Scholar
  23. Flament P, Kennan S, Lumpkin R et al (1998) The ocean. In: Juvik SP, Juvik JO (eds) Atlas of Hawaii. University of Hawaii Press, Honolulu, pp 82–86Google Scholar
  24. Frankignoul C, Sennéchael N, Kwon YO, Alexander MA (2011) Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J Clim 24:762–777. doi: 10.1175/2010JCLI3731.1 CrossRefGoogle Scholar
  25. Fujiwara I (1981) Oceanic features at the East China Sea: mean values of temperature, salinity and dissolved oxygen from 1951–1980. Mar Sci 13(4):264–270 (in Japanese)Google Scholar
  26. Gentemann CL, Meissner T, Wentz FJ (2010) Accuracy of satellite sea surface temperatures at 7 and 11 GHz. IEEE Trans Geosci Remote Sens 48(3):1009–1018CrossRefGoogle Scholar
  27. Gordon AL (1985) Indian-Atlantic transfer of thermocline water at the Agulhas retroflection. Science 227:1030–1033CrossRefGoogle Scholar
  28. Gouretski V, Koltermann KP (2004) WOCE global hydrographic climatology. Berichte des BSH 35:1–52Google Scholar
  29. Hayes SP, McPhaden MJ, Wallace JM (1989) The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: weekly to monthly variability. J Clim 2:1500–1506. doi: 10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2 CrossRefGoogle Scholar
  30. Hickox R, Belkin I, Cornillon P, Shan Z (2000) Climatology and seasonal variability of ocean fronts in the East China, Yellow and Bohai Seas from Satellite SST data. Geophys Res Lett 27:2945–2948CrossRefGoogle Scholar
  31. Hinata T (1996) Seasonal variation and long-term trends of the oceanographic conditions along a fixed hydrographic line crossing the Kuroshio in the East China Sea. Oceanogr Mag 45:9–32Google Scholar
  32. Hofmann EE (1985) The large-scale horizontal structure of the Antarctic Circumpolar Current from FGGE drifters. J Geophys Res Oceans 90:7087–7097CrossRefGoogle Scholar
  33. Hogg NG (1992) On the transport of the Gulf Stream between Cape Hatteras and the Great Banks. Deep Sea Res 39:1231–1246CrossRefGoogle Scholar
  34. Hoskins B (2012) The potential for skill across the range of the seamless weather–climate prediction problem: a stimulus for our science. Q J R Meteorol Soc 139:573–584CrossRefGoogle Scholar
  35. Hotta D, Nakamura H (2011) On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J Clim 24:3377–3401. doi: 10.1175/2010JCLI3910.1 CrossRefGoogle Scholar
  36. Howe PJ, Donohue KA, Watts DR (2009) Stream-coordinate structure and variability of the Kuroshio Extension. Deep Sea Res Part I Oceanogr Res Pap 56(7):1093–1116. doi: 10.1016/j.dsr.2009.03.007 CrossRefGoogle Scholar
  37. Hurlburt HE, Metzger EJ (1998) Bifurcation of the Kuroshio Extension at the Shatsky Rise. J Geophys Res 103:7549–7566CrossRefGoogle Scholar
  38. Hurlburt HE, Wallcraft AJ, Schmitz WJ, Hogan PJ, Metzger EJ (1996) Dynamics of the Kuroshio/Oyashio current system using an eddy resolving model of the North Pacific Ocean. J Geophys Res 101:951–976CrossRefGoogle Scholar
  39. Ichikawa H, Beardsley RC (1993) Temporal and spatial variability of volume transport of the Kuroshio in the East China Sea. Deep Sea Res I 40(3):583–605CrossRefGoogle Scholar
  40. Iizuka S (2010) Simulations of wintertime precipitation in the vicinity of Japan: sensitivity to fine-scale distributions of sea surface temperature. J Geophys Res 115:D10107. doi: 10.1029/2009JD012576 CrossRefGoogle Scholar
  41. Iizuka S, Shiota M, Kawamura R, Hatsushika H (2013) Influence of the monsoon variability and sea surface temperature front on the explosive cyclone activity in the vicinity of Japan during northern winter. SOLA 9:1–4. doi: 10.2151/sola.2013-001 CrossRefGoogle Scholar
  42. Imasato N, Qiu B (1987) An event in water exchange between continental shelf and the Kuroshio off southern Japan—Lagrangian tracking of a low-salinity water mass. J Phys Oceanogr 17:953–968CrossRefGoogle Scholar
  43. Imawaki S, Uchida H, Ichikawa H, Fukasawa M, Umatani S, The ASUKA Groups (2001) Satellite altimeter monitoring the Kuroshio Transport south of Japan. Geophys Res Lett 28:17–20CrossRefGoogle Scholar
  44. Imawaki S, Bower AS, Beal L, Qiu B (2013) Western Boundary Currents. In: Siedler G, Griffies S, Gould J, Church J (eds) Ocean circulation and climate: a 21st century perspective, Chapter 13, 2nd edn. Academic PressGoogle Scholar
  45. Isobe A, Imawaki S (2002) Annual variation of the Kuroshio transport in a two-layer numerical model with a ridge. J Phys Oceanogr 32:994–1009CrossRefGoogle Scholar
  46. Isobe A, Isoda Y (1997) Circulation in the Japan Basin, the northern part of the Japan Sea. J Oceanogr 53:373–381Google Scholar
  47. Isoda Y (1994) Interannual SST variations to the north and south of the polar front in the Japan Sea. La Mer 32:285–294Google Scholar
  48. Isoda Y, Saitoh S, Mihara M (1991) SST structure of the polar front in the Japan Sea. In: Takano K (ed) Oceanography of Asian Marginal Seas. Elsevier Science Publisher, Amsterdam, pp 103–112CrossRefGoogle Scholar
  49. Isoguchi O, Kawamura H, Oka E (2006) Quasi-stationary jets transporting surface warm waters across the transition zone between the subtropical and the subarctic gyres in the North Pacific. J Geophys Res 111:C10003. doi: 10.1029/2005JC003402 CrossRefGoogle Scholar
  50. Itoh S, Yasuda I (2010) Characteristics of mesoscale eddies in the Kuroshio–Oyashio Extension region detected from the distribution of the sea surface height anomaly. J Phys Oceanogr 40:1018–1034CrossRefGoogle Scholar
  51. Jacobs GA, Hogan PJ, Whitmer KR (1999) Effects of eddy variability on the circulation of the Japan/East Sea. J Oceanogr 55(2):247–256CrossRefGoogle Scholar
  52. Johns WE, Shay TJ, Bane JM, Watts DR (1995) Gulf Stream structure, transport, and recirculation near 68°W. J Geophys Res 100:817–838CrossRefGoogle Scholar
  53. Joyce TM, Jenkins WJ (1993) Spatial variability of subducting water in the North Atlantic: a pilot study. J Geophys Res 98(C6):10111–10124. doi: 10.1029/93JC00572 CrossRefGoogle Scholar
  54. Joyce TM, Kwon YO, Yu L (2009) On the relationship between synoptic wintertime atmospheric variability and path shifts in the Gulf Stream and the Kuroshio Extension. J Clim 22:3177–3192CrossRefGoogle Scholar
  55. Kagimoto T, Yamagata T (1997) Seasonal transport variations of the Kuroshio: an OGCM simulation. J Phys Oceanogr 27:403–418CrossRefGoogle Scholar
  56. Kagimoto T, Miyazawa Y, Guo X, Kawajiri H (2008) High resolution Kuroshio forecast system—description and its applications. In: Ohfuchi W, Hamilton K (eds) High resolution numerical modeling of the atmosphere and ocean. Springer, New York, pp 209–234CrossRefGoogle Scholar
  57. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  58. Kasamo K, Isobe A, Minobe S, Manda A, Nakamura H, Ogata K, Nishikawa H, Tachibana Y, Kako S (2014) Transient and local weakening of surface winds observed above the Kuroshio front in the winter East China Sea. J Geophys Res Atmos 119:1277–1291. doi: 10.1002/2013JD020610 CrossRefGoogle Scholar
  59. Kawabe M (1987) Spectral properties of sea level and time scale of Kuroshio path variations. J Oceanogr Soc Jpn 43:111–123CrossRefGoogle Scholar
  60. Kawabe M (1988) Variability of Kuroshio velocity assessed from the sea-level difference between Naze and Nishinoomote. J Oceanogr Soc Jpn 44:293–304CrossRefGoogle Scholar
  61. Kawabe M (1995) Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J Phys Oceanogr 25:3103–3117CrossRefGoogle Scholar
  62. Kawai H (1969) Statistical estimation of isotherms indicative of the Kuroshio axis. Deep Sea Res 16(Suppl):109–115Google Scholar
  63. Kawai H (1972) Hydrography of the Kuroshio Extension. In: Stommel H, Yoshida K (eds) Kuroshio, its physical aspects. University of Tokyo Press, Tokyo, pp 235–352Google Scholar
  64. Kawai Y, Miyama T, Iizuka S, Manda A, Yoshioka M K, Katagiri S, Tachibana Y, Nakamura H (2014) Marine atmospheric boundary layer and low-level cloud responses to the Kuroshio Extension front in the early summer of 2012: three-vessel simultaneous observations and numerical simulations. J Oceanogr 70. doi: 10.1007/s10872-014-0266-0 Google Scholar
  65. Kazmin AS, Rienecker MM (1996) Variability and frontogenesis in the large-scale oceanic frontal zones. J Geophys Res 101:907–921CrossRefGoogle Scholar
  66. Kelly KA, Small RJ, Samelson RM, Qiu B, Joyce TM, Kwon YO, Cronin MF (2010) Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J Clim 23:5644–5667. doi: 10.1175/2010JCLI3346.1 CrossRefGoogle Scholar
  67. Kimura K (1949) Maps of fishing grounds of skipjack. Kuroshio Shobou, Tokyo (in Japanese)Google Scholar
  68. Kitahara T (1921) Collision of ocean currents. In: Kitahara T (ed) Ocean study: night fable of fishery village. Dai-Nihon-Suisan-Kai, Tokyo, pp 303–310 (in Japanese)Google Scholar
  69. Kobashi F, Kawamura H (2002) Seasonal variation and instability nature of the North Pacific Subtropical Countercurrent and the Hawaiian Lee Countercurrent. J Geophys Res 107:3185. doi: 10.1029/2001JC001225 CrossRefGoogle Scholar
  70. Kobashi F, Kubokawa A (2012) Review on North Pacific Subtropical Countercurrents and subtropical fronts: Role of mode waters in ocean circulation and climate. J Oceanogr 68:21–43. doi: 10.1007/s10872-011-0083-7 CrossRefGoogle Scholar
  71. Kobashi F, Mitsudera H, Xie S-P (2006) Three subtropical fronts in the North Pacific: observational evidence for mode water-induced subsurface frontogenesis. J Geophys Res 111:C09033. doi: 10.1029/2006JC003479 CrossRefGoogle Scholar
  72. Kobashi F, Xie S-P, Iwasaka N, Sakamoto TT (2008) Deep atmospheric response to the North Pacific oceanic subtropical front in spring. J Clim 21:5960–5975CrossRefGoogle Scholar
  73. Kubokawa A (1999) Ventilated thermocline strongly affected by a deep mixed layer: a theory for subtropical countercurrent. J Phys Oceanogr 29:1314–1333CrossRefGoogle Scholar
  74. Kubota M, Iwasaka N, Kizu S, Konda M, Kutsuwada K (2002) Japanese ocean flux datasets with use of remote sensing observations (J-OFURO). J Oceanogr 58:213–225CrossRefGoogle Scholar
  75. Kurihara Y, Sakurai T, Kuragano T (2000) Global daily sea surface temperature analysis using data from satellite microwave radiometer, satellite infrared radiometer and in situ observations. Weather Bull 73:s1–s18 (in Japanese)Google Scholar
  76. Kuwano-Yoshida A, Enomoto T, Ohfuchi W (2010) An improved PDF cloud scheme for climate simulations. Q J R Meteorol Soc 136(651):1583–1597CrossRefGoogle Scholar
  77. Kwon Y, Alexander MA, Bond NA, Frankignoul C, Nakamura H, Qiu B, Thompson L (2010) Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: a review. J Clim 23:3249–3281. doi: 10.1175/2010JCLI3343.1 CrossRefGoogle Scholar
  78. Lee CM, Thomas LN, Yoshikawa Y (2006) Intermediate water formation. Oceanography 19(3):110CrossRefGoogle Scholar
  79. Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436. doi: 10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2 CrossRefGoogle Scholar
  80. Liu WT, Xie X, Niiler PP (2007) Ocean–atmosphere interaction over Agulhas extension meanders. J Clim 20:5784–5797. doi: 10.1175/2007JCLI1732.1 CrossRefGoogle Scholar
  81. Lumpkin R, Flament PJ (2013) Extent and energetics of the Hawaiian Lee Countercurrent. Oceanography 26(1):58–65. doi: 10.5670/oceanog.2013.05 CrossRefGoogle Scholar
  82. Lutjeharms JRE, Ansorge IJ (2001) The Agulhas Return Current. J Mar Syst 30:115–138CrossRefGoogle Scholar
  83. Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T (2004) A fifty-year eddy-resolving simulation of the world ocean—preliminary outcomes of OFES (OGCM for the Earth Simulator). J Earth Simul 1:35–56Google Scholar
  84. Masunaga R, Nakamura H, Miyasaka T, Nishii K, Tanimoto Y (2014) Separation of climatological imprints of the Kuroshio Extension and Oyashio fronts on the wintertime atmospheric boundary layer: their sensitivity to SST resolution prescribed for atmospheric reanalysis. J Clim 28:1764–1787. doi: 10.1175/JCLI-D-14-00314.1 CrossRefGoogle Scholar
  85. Mellor GL, Hakkinen S, Ezer T, Patchen R (2002) A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids. In: Pinardi N, Woods JD (eds) Ocean forecasting: conceptual basis and applications. Springer, New York, pp 55–72CrossRefGoogle Scholar
  86. Minobe S, Sako A, Nakamura M (2004) Interannual to interdecadal variability in the Japan Sea based on a new gridded upper water temperature dataset. J Phys Oceanogr 34:2382–2397. doi: 10.1175/JPO2627.1 CrossRefGoogle Scholar
  87. Minobe S, Kuwano-Yoshida A, Komori N, Xie SP, Small RJ (2008) Influence of the Gulf Stream on the troposphere. Nature 452:206–209CrossRefGoogle Scholar
  88. Minobe S, Miyashita M, Kuwano-Yoshida A, Tokinaga H, Xie SP (2010) Atmospheric response to the Gulf Stream: seasonal variations. J Clim 23:3699–3719. doi: 10.1175/2010JCLI3359.1 CrossRefGoogle Scholar
  89. Miyama T, Nonaka M, Nakamura H, Kuwano-Yoshida A (2012) A striking early-summer event of a convective rainband persistent along the warm Kuroshio in the East China Sea. Tellus-A 64:18962. doi: 10.3402/tellusa.v64i0.18962 CrossRefGoogle Scholar
  90. Miyasaka T, Nakamura H (2010) Structure and mechanism of the Southern Hemisphere summertime subtropical anticyclones. J Clim 23:2115–2130CrossRefGoogle Scholar
  91. Miyazawa Y, Guo X, Yamagata T (2004) Roles of mesoscale eddies in the Kuroshio paths. J Phys Oceanogr 34:2203–2222. doi: 10.1175/1520-0485(2004)034<2203:ROMEIT>2.0.CO;2 CrossRefGoogle Scholar
  92. Miyazawa Y, Zhang R, Guo X, Tamura H, Ambe D, Lee JS, Okuno A, Yoshinari H, Setou T, Komatsu K (2009) Water mass variability in the western North Pacific detected in a 15-year eddy resolving ocean reanalysis. J Oceanogr 65(6):737–756CrossRefGoogle Scholar
  93. Mizuno K, White WB (1983) Annual and interannual variability in the Kuroshio Current system. J Phys Oceanogr 13:1848–1869CrossRefGoogle Scholar
  94. Murakami M (1993) On the 100 meter depth temperature indicative of the Kuroshio Extension axis in Tohoku area. Umi no Kenkyu 2:343–349 (in Japanese with English abstract)Google Scholar
  95. Nakamura H (2012) A latest development in extratropical climate research: warm western boundary currents and associated oceanic fronts as “hotspots in the climate system” (in Japanese). Japan Geosci Lett 8(4):1–4 (see also
  96. Nakamura H, Kazmin A (2003) Decadal changes in the North Pacific frontal zones as revealed in ship and satellite observations. J Geophys Res 108:C33078Google Scholar
  97. Nakamura H, Shimpo A (2004) Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J Clim 17:1828–1844. doi: 10.1175/1520-0442(2004)017<1828:SVITSH>2.0.CO;2 CrossRefGoogle Scholar
  98. Nakamura H, Yamagata T (1999) Recent decadal variability in the northwestern Pacific and associated atmospheric anomaly. In: Navvara A (ed) Beyond El Nino: decadal and interdecadal climate variability. Springer, New York, pp 49–72CrossRefGoogle Scholar
  99. Nakamura H, Lin G, Yamagata T (1997) Decadal climate variability in the North Pacific during the recent decades. Bull Am Meteorol Soc 78:2215–2225. doi: 10.1175/1520-0477(1997)078<2215:DCVITN>2.0.CO;2 CrossRefGoogle Scholar
  100. Nakamura H, Sampe T, Tanimoto Y, Shimpo A (2004) Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. In: Wang C, Xie S-P, Carton JA (eds) Earth’s climate: the ocean–atmosphere interaction. Geophys Monogr 147, AGU, pp 329‒345Google Scholar
  101. Nakamura H, Sampe T, Goto A, Ohfuchi W, Xie SP (2008) On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys Res Lett 35:L15709. doi: 10.1029/2008GL034010 CrossRefGoogle Scholar
  102. Nakamura H, Miyasaka T, Kosaka Y, Takaya K, Honda M (2010) Northern Hemisphere extratropical tropospheric planetary waves and their low-frequency variability: their vertical structure and interaction with transient eddies and surface thermal contrasts. In: Sun D, Bryan F (eds) Climate dynamics: why does climate vary? chap 6. Geophys Monogr 189, AGU, pp 149–179Google Scholar
  103. Nakamura H, Nishina A, Minobe S (2012) Response of storm tracks to bimodal Kuroshio path states south of Japan. J Clim 25:7772–7779CrossRefGoogle Scholar
  104. Nakano T, Takatsuki Y, Kaneko I (1994) The Kuroshio structure and transport estimated by the inverse method. J Phys Oceanogr 24:609–618CrossRefGoogle Scholar
  105. Nakano H, Tsujino H, Furue R (2008) The Kuroshio Current System as a jet and twin “relative” recirculation gyres embedded in the Sverdrup circulation. Dyn Atmos Ocean 45:135–164CrossRefGoogle Scholar
  106. Niiler PP, Maximenko NA, Panteleev GG, Yamagata T, Olson DB (2003a) Near-surface dynamical structure of the Kuroshio Extension. J Geophys Res 108(C6):3193. doi: 10.1029/2002JC001461 CrossRefGoogle Scholar
  107. Niiler PP, Maximenko NA, McWilliams JC (2003b) Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys Res Lett 30(22):2164. doi: 10.1029/2003GL018628 CrossRefGoogle Scholar
  108. Nonaka M, Nakamura H, Tanimoto Y, Kagimoto T, Sasaki H (2006) Decadal variability in the Kuroshio–Oyashio Extension simulated in an eddy-resolving OGCM. J Clim 19(10):1970–1989. doi: 10.1175/JCLI3793.1 CrossRefGoogle Scholar
  109. Nonaka M, Nakamura H, Taguchi B, Komori N, Kuwano-Yoshida A, Takaya K (2009) Air–sea heat exchanges characteristic of a prominent midlatitude oceanic front in the South Indian Ocean as simulated in a high-resolution coupled GCM. J Clim 22:6515–6535CrossRefGoogle Scholar
  110. O’Reilly CH, Czaja A (2014) The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Q J R Meteorol Soc. doi: 10.1002/qj.2334 Google Scholar
  111. Ogawa F, Nakamura H, Nishii K, Miyasaka T, Kuwano-Yoshida A (2012) Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophys Res Lett 39. doi: 10.1029/2011GL049922 Google Scholar
  112. Ohtani K (1970) Relative transport in the Alaskan Stream in winter. J Oceanogr Soc Jpn 26:271–282CrossRefGoogle Scholar
  113. Oka E, Kawabe M (1998) Characteristics of variations of water properties and density structure around the Kuroshio in the East China Sea. J Oceanogr 54:605–617CrossRefGoogle Scholar
  114. Oka E, Qiu B (2012) Progress of North Pacific mode water research in the past decade. J Oceanogr 68:5–20. doi: 10.1007/s10872-011-0032-5 CrossRefGoogle Scholar
  115. Oka E, Koketsu S, Toyama K, Uehara K, Kobayashi T, Hosoda S, Suga T (2011) Formation and subduction of central mode water based on profiling float data, 2003-08. J Phys Oceanogr 41:113–129. doi: 10.1175/2010JPO4419.1 CrossRefGoogle Scholar
  116. Okajima S, Nakamura H, Nishii K, Miyasaka T, Kuwano-Yoshida A (2014) Assessing the importance of prominent warm SST anomalies over the midlatitude north pacific in forcing large-scale atmospheric anomalies during 2011 summer and autumn. J Clim 27:3889–3903. doi: 10.1175/JCLI-D-13-00140.1 CrossRefGoogle Scholar
  117. Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res I 42:641–673CrossRefGoogle Scholar
  118. Park K-A, Chung JY, Kim K (2004) Sea surface temperature fronts in the East (Japan) Sea and temporal variations. Geophys Res Lett 31(L07304). doi: 10.1029/2004GL019424 Google Scholar
  119. Patterson SL (1985) Surface circulation and kinetic energy distributions in the Southern Hemisphere Oceans from FGGE drifting buoys. J Phys Oceanogr 15:865–884CrossRefGoogle Scholar
  120. Pollard RT, Regier LA (1992) Vorticity and vertical circulation at an ocean front. J Phys Oceanogr 22:609–625. doi: 10.1175/1520-0485(1992)022<0609:VAVCAA>2.0.CO;2 CrossRefGoogle Scholar
  121. Qiu B (1999) Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/Poseidon observations and theory. J Phys Oceanogr 29:2471–2486CrossRefGoogle Scholar
  122. Qiu B, Chen S (2005) Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time series. J Phys Oceanogr 35:2090–2103CrossRefGoogle Scholar
  123. Qiu B, Chen S (2010a) Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep Sea Res 57:1098–1110CrossRefGoogle Scholar
  124. Qiu B, Chen S (2010b) Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. J Phys Oceanogr 40:213–225CrossRefGoogle Scholar
  125. Qiu B, Chen S (2013) Concurrent decadal mesoscale eddy modulations in the western North Pacific subtropical gyre. J Phys Oceanogr 43:344–358CrossRefGoogle Scholar
  126. Qiu C, Kawamura H (2012) Study on SST front disappearance in the subtropical North Pacific using microwave SSTs. J Oceanogr 68:417–426. doi: 10.1007/s10872-012-0106-z CrossRefGoogle Scholar
  127. Qiu B, Toda T, Imasato N (1990) On Kuroshio front fluctuations in the East China Sea using satellite and in situ observational data. J Geophys Res 95:18191–18204CrossRefGoogle Scholar
  128. Qiu B, Kelly KA, Joyce TM (1991) Mean flow and variability in the Kuroshio Extension from Geosat altimetry data. J Geophys Res 96:18491–18507CrossRefGoogle Scholar
  129. Qiu B, Koh DA, Lumpkin C, Flament P (1997) Existence and formation mechanism of the North Hawaiian Ridge Current. J Phys Oceanogr 27:431–444. doi: 10.1175/1520-0485(1997)027<0431:EAFMOT>2.0.CO;2 CrossRefGoogle Scholar
  130. Qiu B, Chen S, Hacker P, Hogg N, Jayne S, Sasaki H (2008) The Kuroshio Extension northern recirculation gyre: profiling float measurements and forcing mechanism. J Phys Oceanogr 38:1764–1779CrossRefGoogle Scholar
  131. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  132. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  133. Rintoul SR, Naveira Garabato AC (2013) Dynamics of the Southern Ocean circulation. In: Siedler G, Griffies SM, Gould J, Church JA (eds) Ocean circulation and climate. International geophysics series, vol 103. Academic Press Oxford, UK, pp 471–492Google Scholar
  134. Rintoul SR, Sokolov S (2001) Baroclinic transport variability of the Antarctic Circumpolar Current south of Australia (WOCE repeat section SR3). J Geophys Res 106:2815–2832CrossRefGoogle Scholar
  135. Rio M-H, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res 116:C07018. doi: 10.1029/2010JC006505 CrossRefGoogle Scholar
  136. Roden GI (1980) On the variability of surface temperature fronts in the western Pacific, as detected by satellite. J Geophys Res 85:2704–2710CrossRefGoogle Scholar
  137. Roden GI, Taft BA, Ebbesmeyer CC (1982) Oceanographic aspects of the Emperor Seamounts region. J Geophys Res 87:9537–9552CrossRefGoogle Scholar
  138. Sallee JB, Speer K, Morrow R (2008) Response of the Antarctic Circumpolar Current to atmospheric variability. J Clim 21:3020–3039CrossRefGoogle Scholar
  139. Sampe T, Nakamura H, Goto A, Ohfuchi W (2010) Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J Clim 23:1793–1814. doi: 10.1175/2009JCLI3163.1 CrossRefGoogle Scholar
  140. Sasaki YN, Schneider N (2011) Interannual to decadal Gulf Stream variability in an eddy-resolving ocean model. Ocean Model 39:209–219CrossRefGoogle Scholar
  141. Sasaki H, Nonaka M, Masumoto Y, Sasai Y, Uehara H, Sakuma H (2008) An eddy-resolving hindcast simulation of the quasi global ocean from 1950 to 2003 on the Earth Simulator. In: Hamilton K, Ohfuchi W (eds) High resolution numerical modelling of the atmosphere and ocean, chap 10. Springer, New York, pp 157–185Google Scholar
  142. Sasaki H, Xie S-P, Taguchi B, Nonaka M, Masumoto Y (2010) Seasonal variations of the Hawaiian Lee Countercurrent induced by the meridional migration of the Trade Winds. Ocean Dyn 60(3):705–715CrossRefGoogle Scholar
  143. Sasaki YN, Minobe S, Asai T, Inatsu M (2012a) Influence of the Kuroshio in the East China Sea on the Early Summer (Baiu) Rain. J Clim 25:6627–6645. doi: 10.1175/JCLI-D-11-00727.1 CrossRefGoogle Scholar
  144. Sasaki H, Xie S-P, Taguchi B, Nonaka M, Hosoda S, Masumoto Y (2012b) Interannual variations of the Hawaiian Lee Countercurrent induced by low potential vorticity water ventilation in the subsurface. J Oceanogr 68:93–111CrossRefGoogle Scholar
  145. Sasaki H, Taguchi B, Komori N, Masumoto Y (2013) Influence of local dynamical air–sea feedback process on the Hawaiian Lee Countercurrent. J Clim 26(18):7267–7279CrossRefGoogle Scholar
  146. Schneider N, Miller AJ, Pierce DW (2002) Anatomy of North Pacific decadal variability. J Clim 15:586–605CrossRefGoogle Scholar
  147. Seo Y, Sugimoto S, Hanawa K (2014a) Long-term variations of the Kuroshio Extension path in winter: meridional movement and path state change. J Clim 27:5929–5940. doi: 10.1175/JCLI-D-13-00641.1 CrossRefGoogle Scholar
  148. Seo H, Kwon Y-O, Park J-J (2014b) On the effect of the East/Japan Sea SST variability on the North Pacific atmospheric circulation in a regional climate model. J Geophys Res Atmos 119:418–444. doi: 10.1002/2013JD020523 CrossRefGoogle Scholar
  149. Shi R, Guo X, Takeoka H (2011) Influences of tidal fronts on coastal winds over an Inland Sea. Bound Layer Meteorol 138:299–319CrossRefGoogle Scholar
  150. Shimada T, Kawamura H (2006) Satellite observations of sea surface temperature and sea surface wind coupling in the Japan Sea. J Geophys Res 111:C08010. doi: 10.1029/2005JC003345 CrossRefGoogle Scholar
  151. Shimada T, Kawamura H (2008) Satellite evidence of wintertime atmospheric boundary layer responses to multiple SST fronts in the Japan Sea. Geophys Res Lett 35:L23602. doi: 10.1029/2008GL035810 CrossRefGoogle Scholar
  152. Shimada T, Minobe S (2011) Global analysis of the pressure adjustment mechanism over sea surface temperature fronts using AIRS/Aqua data. Geophys Res Lett 38:L06704. doi: 10.1029/2010GL046625 CrossRefGoogle Scholar
  153. Shimada T, Sakaida F, Kawamura H (2005) Application of an edge detection method to satellite images for distinguishing sea surface temperature fronts near the Japanese coast. Remote Sens Environ 98:21–34CrossRefGoogle Scholar
  154. Simpson JH, Hunter JR (1974) Fronts in the Irish Sea. Nature 250:404–406CrossRefGoogle Scholar
  155. Small RJ, DeSzoeke SP, Xie SP, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45(3):274–319. doi: 10.1016/j.dynatmoce.2008.01.001 CrossRefGoogle Scholar
  156. Smirnov D, Newman M, Alexander MA, Kwon Y-O, Frankignoul C (2015) Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J Clim 28:1126–1147Google Scholar
  157. Sokolov S, Rintoul SR (2007) Multiple jets of the Antarctic Circumpolar Current South of Australia. J Phys Oceanogr 37:1394–1412. doi: 10.1175/JPO3111.1 CrossRefGoogle Scholar
  158. Spall MA (1995) Frontogenesis, subduction, and cross-front exchange at upper ocean fronts. J Geophys Res 100(C2):2543–2557. doi: 10.1029/94JC02860 CrossRefGoogle Scholar
  159. Suga T, Takei Y, Hanawa K (1997) Thermostat distribution in the North Pacific subtropical gyre: the central mode water and the subtropical mode water. J Phys Oceanogr 27:140–152CrossRefGoogle Scholar
  160. Suga T, Motoki K, Aoki Y, MacDonald AM (2004) The North Pacific climatology of winter mixed layer and mode waters. J Phys Oceanogr 34:3–22CrossRefGoogle Scholar
  161. Suga T, Aoki Y, Saito H, Hanawa K (2008) Ventilation of the North Pacific subtropical pycnocline and mode water formation. Prog Oceanogr 77:285–297. doi: 10.1016/j.pocean.2006.12.005 CrossRefGoogle Scholar
  162. Sugimoto S, Hanawa K (2011) Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio–Oyashio confluence region: influences of warm eddies detached from the Kuroshio Extension. J Clim 24:6551–6561CrossRefGoogle Scholar
  163. Sugimoto S, Hanawa K (2012) Relationship between the path of the Kuroshio in the south of Japan and the path of the Kuroshio Extension in the east. J Oceanogr 68:219–225CrossRefGoogle Scholar
  164. Sun Y-J, Isobe A (2006) Numerical study of tidal front with varying sharpness in spring and neap tidal cycle. J Oceanogr 62:801–810CrossRefGoogle Scholar
  165. Taguchi B, Nakamura H, Nonaka M, Xie SP (2009) Influences of the Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm-track activity as revealed in regional as revealed in regional atmospheric model simulations for the 2003/04 cold season. J Clim 22:6536–6560CrossRefGoogle Scholar
  166. Taguchi B, Nakamura H, Nonaka M, Komori N, Kuwano-Yoshida A, Takaya K, Goto A (2012) Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific Subarctic Frontal Zone: observations and a coupled model simulation. J Clim 25:111–139. doi: 10.1175/JCLI-D-11-00046.1 CrossRefGoogle Scholar
  167. Takeoka H (2002) Progress in Seto Inland Sea research. J Oceanogr 58:93–107CrossRefGoogle Scholar
  168. Talley LD, Nagata Y, Fujimura M, Iwao T, Kono T, Inagake D, Hirai M, Okuda K (1995) North Pacific intermediate water in the Kuroshio/Oyashio mixed water region. J Phys Oceanogr 25:475–501CrossRefGoogle Scholar
  169. Talley LD, Min D-H, Lobonov VB, Luchin VA, Ponomarev VI, Salyuk AN, Shcherbina AY, Tishcenko PY, Zhabin I (2006) Japan/East Sea water masses and their relation to the sea’s circulation. Oceanography 19:32–49CrossRefGoogle Scholar
  170. Talley LD, Pickard GL, Emery WJ, Swift JH (2011) Descriptive physical oceanography: an introduction. Academic Press, New YorkGoogle Scholar
  171. Tanimoto Y, Nakamura H, Kagimoto T, Yamane S (2003) An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. J Geophys Res 108:3304. doi: 10.1029/2002JC001750 CrossRefGoogle Scholar
  172. Tanimoto Y, Xie SP, Kai K, Okajima H, Tokinaga H, Murayama T, Nonaka M, Nakamura H (2009) Observations of marine atmospheric boundary layer transitions across the summer Kuroshio Extension. J Clim 22:1360–1374CrossRefGoogle Scholar
  173. Tanimoto Y, Kanenari T, Tokinaga H, Xie SP (2011) Sea level pressure minimum along the Kuroshio and its extension. J Clim 24:4419–4434. doi: 10.1175/2011JCLI4062.1 CrossRefGoogle Scholar
  174. Tatebe H, Yasuda I (2001) Seasonal axis migration of the upstream Kuroshio Extension associated with standing oscillations. J Geophys Res 106(C8):16685–16692CrossRefGoogle Scholar
  175. Thomas LN, Lee CM (2005) Intensification of ocean fronts by down-front winds. J Phys Oceanogr 35:1086–1102CrossRefGoogle Scholar
  176. Tokinaga H, Tanimoto Y, Xie SP, Sampe T, Tomita H, Ichikawa H (2009) Ocean frontal effects on the vertical development of clouds over the Western North Pacific: in situ and satellite observations. J Clim 22:4241–4260. doi: 10.1175/2009JCLI2763.1 CrossRefGoogle Scholar
  177. Tomczak M, Godfrey JS (2003) Regional oceanography: an introduction, 2nd edn.
  178. Tomita H, Kubota M, Cronin MF, Iwasaki S, Konda M, Ichikawa H (2010) An assessment of surface heat fluxes from J-OFURO2 at the KEO and JKEO sites. J Geophys Res 115:C03018. doi: 10.1029/2009JC005545 Google Scholar
  179. Tomita H, Kouketsu S, Oka E, Kubota M (2011) Locally enhanced wintertime air–sea interaction and deep oceanic mixed layer formation associated with the subarctic front in the North Pacific. Geophys Res Lett 38:L24607. doi: 10.1029/2011GL049902 CrossRefGoogle Scholar
  180. Tozuka T, Cronin MF (2014) Role of mixed layer depth in relaxation of the Agulhas Return Current surface front. Geophys Res Lett 41:2447–2453. doi: 10.1002/2014GL059624 CrossRefGoogle Scholar
  181. Tsujino H, Nishikawa S, Sakamoto K, Usui N, Nakano H, Yamanaka G (2013) Effects of large-scale wind on the Kuroshio path south of Japan in a 60-year historical OGCM simulation. Clim Dyn 41:2287–2318. doi: 10.1007/s00382-012-1641-4 CrossRefGoogle Scholar
  182. Uda M (1938) Researches on ‘Siome’ or current rip in the seas and oceans. Geophys Mag 11(4):307–372Google Scholar
  183. Uda M, Hasunuma K (1969) The eastward subtropical countercurrent in the western North Pacific Ocean. J Oceanogr Soc Jpn 25:201–210Google Scholar
  184. Ueno H, Yasuda I (2000) Distribution and formation of the mesothermal structure (temperature inversions) in the North Pacific subarctic region. J Geophys Res 105:16885–16897CrossRefGoogle Scholar
  185. Usui N, Tsujino H, Nakano H, Matsumoto S (2013) Long-term variability of the Kuroshio path south of Japan. J Oceanogr 69(6):647–670CrossRefGoogle Scholar
  186. Wagawa T, Ito S, Shimizu Y, Kakehi S, Ambe D (2014) Currents associated with the quasi-stationary jet separated from the Kuroshio Extension. J Phys Oceanogr 44:1636–1653. doi: 10.1175/JPO-D-12-0192.1 CrossRefGoogle Scholar
  187. Wallace JM, Mitchell TP, Deser C (1989) The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: seasonal and interannual variability. J Clim 2:1492–1499. doi: 10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2 CrossRefGoogle Scholar
  188. Waterman S, Hogg N, Jayne S (2011) Eddy-mean flow interaction in the Kuroshio Extension region. J Phys Oceanogr 41:1182–1208CrossRefGoogle Scholar
  189. Xie SP (2004) Satellite observations of cool ocean–atmosphere interaction. Bull Am Meteorol Soc 85:195–208. doi: 10.1175/BAMS-85-2-195 CrossRefGoogle Scholar
  190. Xie S-P, Liu WT, Liu Q, Nonaka M (2001) Far-reaching effects of the Hawaiian Islands on the Pacific ocean–atmosphere system. Science 292:2057–2060CrossRefGoogle Scholar
  191. Xie SP, Hafner J, Tanimoto Y, Liu WT, Tokinaga H, Xu H (2002) Bathymetric effect on the winter sea surface temperature and climate of the Yellow and East China Seas. Geophys Res Lett 29(24):2228. doi: 10.1029/2002GL015884 CrossRefGoogle Scholar
  192. Xie S-P, Xu L-X, Liu Q, Kobashi F (2011) Dynamical role of mode-water ventilation in decadal variability in the central subtropical gyre of the North Pacific. J Clim 24:1212–1225CrossRefGoogle Scholar
  193. Yamamoto M, Hirose N (2011) Possible modification of atmospheric circulation over the northwestern Pacific induced by a small semi-enclosed ocean. Geophys Res Lett 38:L03804. doi: 10.1029/2010GL046214 CrossRefGoogle Scholar
  194. Yanagi T (1987) Classification of “siome”, streaks and fronts. J Oceanogr Soc Jpn 43(3):149–158CrossRefGoogle Scholar
  195. Yanagi T, Koike T (1987) Seasonal variation in thermohaline and tidal fronts, Seto Inland Sea, Japan. Cont Shelf Res 7:149–160CrossRefGoogle Scholar
  196. Yasuda I (2003) Hydrographic structure and variability in the Kuroshio–Oyashio transition area. J Oceanogr 59:389–402CrossRefGoogle Scholar
  197. Yasuda I, Okuda K, Shimizu Y (1996) Distribution and modification of North Pacific intermediate water in the Kuroshio–Oyashio interfrontal zone. J Phys Oceanogr 26:448–465CrossRefGoogle Scholar
  198. Yoshida S, Qiu B, Hacker P (2011) Low-frequency eddy modulations in the Hawaiian Lee Countercurrent: observations and connection to the Pacific Decadal Oscillation. J Geophys Res 116:C12009. doi: 10.1029/2011JC007286 CrossRefGoogle Scholar
  199. Yoshikawa Y, Akitomo K, Awaji T (2001) Formation process of intermediate water in baroclinic current under cooling. J Geophys Res 106:1033–1051CrossRefGoogle Scholar
  200. Yu L, Weller RA (2007) Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteorol Soc 88:527–539. doi: 10.1175/BAMS-88-4-527 CrossRefGoogle Scholar
  201. Yu Z, Maximenko N, Xie S-P, Nonaka M (2003) On the termination of the Hawaiian Lee Countercurrent. Geophys Res Lett 30(5):1215. doi: 10.1029/2002GL016710 CrossRefGoogle Scholar
  202. Yuan X, Talley LD (1996) The subarctic frontal zone in the North Pacific: characteristics of frontal structure from climatological data and synoptic surveys. J Geophys Res 101:16491–16508CrossRefGoogle Scholar
  203. Zhang R-C, Hanawa K (1993) Features of the water-mass front in the northwestern North Pacific. J Geophys Res 98:967–975CrossRefGoogle Scholar
  204. Zweng MM, Reagan JR, Antonov JI, Locarnini RA, Mishonov AV, Boyer TP, Garcia HE, Baranova OK, Johnson DR, Seidov D, Biddle MM (2013) World Ocean Atlas 2013. In: Levitus S (ed), Mishonov A (Technical ed) Salinity, vol 2. NOAA Atlas NESDIS 74Google Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Shinichiro Kida
    • 1
    Email author
  • Humio Mitsudera
    • 2
  • Shigeru Aoki
    • 2
  • Xinyu Guo
    • 3
  • Shin-ichi Ito
    • 4
  • Fumiaki Kobashi
    • 5
  • Nobumasa Komori
    • 1
  • Atsushi Kubokawa
    • 6
  • Toru Miyama
    • 1
  • Ryosuke Morie
    • 7
  • Hisashi Nakamura
    • 1
    • 8
  • Tomohiro Nakamura
    • 2
  • Hideyuki Nakano
    • 9
  • Hajime Nishigaki
    • 10
  • Masami Nonaka
    • 1
  • Hideharu Sasaki
    • 1
  • Yoshi N. Sasaki
    • 11
  • Toshio Suga
    • 12
  • Shusaku Sugimoto
    • 12
  • Bunmei Taguchi
    • 1
  • Koutarou Takaya
    • 13
  • Tomoki Tozuka
    • 14
  • Hiroyuki Tsujino
    • 9
  • Norihisa Usui
    • 9
  1. 1.Application LaboratoryJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  2. 2.Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan
  3. 3.Center for Marine Environmental StudiesEhime UniversityMatsuyamaJapan
  4. 4.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan
  5. 5.Graduate School of Marine Science and TechnologyTokyo University of Marine Science and TechnologyTokyoJapan
  6. 6.Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  7. 7.Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan
  8. 8.Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
  9. 9.Meteorological Research InstituteTsukubaJapan
  10. 10.Faculty of Education and Welfare ScienceOita UniversityOitaJapan
  11. 11.Graduate School of ScienceHokkaido UniversitySapporoJapan
  12. 12.Department of Geophysics, Graduate School of ScienceTohoku UniversitySendaiJapan
  13. 13.Faculty of ScienceKyoto Sangyo UniversityKyotoJapan
  14. 14.Department of Earth and Planetary Science, Graduate School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations