Skip to main content
Log in

Influences of Tidal Fronts on Coastal Winds Over an Inland Sea

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A regional numerical model of the atmosphere was applied to an inland sea, the Seto Inland Sea in Japan, to study the influence of sea-surface temperature (SST) variations, accompanied by a tidal front, on the coastal winds in summer when tidal fronts fully develop. After confirmation of the model performance, two sensitivity simulations, which used spatially uniform SST with the highest and lowest values over the study area, were performed. The control and sensitivity simulations show that the mean wind speeds were apparently reduced by the low SST and the SST gradient accompanying the tidal front. The comparison of the terms in the momentum equations in control and sensitivity simulations indicates that the change of the perturbation pressure gradient force with the SST gradient is the most important factor in the modification of near-surface winds with SST variations. When the air flows across a tidal front, the air cools over the low SST area and warms over the high SST area. Consequently, the surface perturbation pressure increases over the low SST area and decreases over the high SST area. This adjustment in surface perturbation pressure produces an additional pressure gradient force with direction from the low SST area to the high SST area that decelerates the surface wind in the area upwind of the tidal front and accelerates the surface wind downwind of the tidal front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chelton DB, Esbensen SK, Schlax MG, Thum N, Freilich MH, Wentz FJ, Gentemann CL, McPhaden MJ, Schopf PS (2001) Observations of coupling between surface wind stress and sea surface temperature in the Eastern Tropical Pacific. J Clim 14(7): 1479–1498

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Freilich MH, Milliff RF (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science 303: 978–983

    Article  Google Scholar 

  • Chelton DB (2005) The impact of SST specification on ECMWF surface wind stress fields in the Eastern Tropical Pacific. J Clim 18(4): 530–550

    Article  Google Scholar 

  • Chen CS, Beardsley RC, Hu S, Xu Q, Lin HC (2005) Using MM5 to hindcast the ocean surface forcing fields over the Gulf of Marine and Georges Bank region. J Atmos Ocean Technol 22(2): 131–145

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling and advanced land surface-hydrology model with the Penn State–NCAR MM5 modelling system, Part I: model implementation and sensitivity. Mon Weather Rev 129(4): 569–585

    Article  Google Scholar 

  • Dudhia J (1993) A nonhydrostatic version of the Penn State–NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon Weather Rev 121(5): 1493–1513

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parametreisations. Mon Weather Rev 121(3): 764–787

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Tech Note, NCAR/TN-398+STR, 122 pp. http://nldr.library.ucar.edu/collections/technotes/asset-000-000-000-214.pdf

  • Hayes SP, McPhaden MJ, Wallace JM (1989) The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: weekly to monthly variability. J Clim 2(12): 1500–1506

    Article  Google Scholar 

  • Hong SY, Pan HL (1996) Non-local boundary layer vertical diffusion in a medium range forecast model. Mon Weather Rev 124(10): 2322–2339

    Article  Google Scholar 

  • Lindzen R, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44(17): 2418–2436

    Article  Google Scholar 

  • Lo JCF, Lau AKH, Chen FJ, Fung CH, Leung KKM (2007) Urban modification in a mesoscale model and the effects on the local circulation in the Pearl River Delta region. J Appl Meteorol Climatol 46(4): 457–476

    Article  Google Scholar 

  • Mahrt L, Vickers D, Moore E (2004) Flow adjustments across sea-surface temperature changes. Boundary-Layer Meteorol 111(3): 553–564

    Article  Google Scholar 

  • Minobe S, Kuwano-Yoshida A, Komori N, Xie SP, Small RJ (2008) Influence of the Gulf Stream on the troposphere. Nature 452: 206–209

    Article  Google Scholar 

  • Mizuma M (1995) General aspects of land and sea breezes in Osaka Bay and surrounding area. J Meteorol Soc Jpn 73(6): 1029–1040

    Google Scholar 

  • Mizuma M (1998) General aspects of land and sea breezes in western Seto Inland Sea and surrounding areas. J Meteorol Soc Jpn 76(3): 403–418

    Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14): 16663–16682

    Article  Google Scholar 

  • Nonaka M, Xie SP (2003) Covariations of sea surface temperature and wind over the Kuroshio and its extension: evidence for ocean-to-atmosphere feedback. J Clim 16(9): 1404–1413

    Article  Google Scholar 

  • Saito K, Fujita T, Yamada Y, Ishida JI, Kumagai Y, Aranami K, Ohmori S, Nagasawa R, Kumagai S, Muroi C, Kato T, Eito H, Yamazaki Y (2006) The operational JMA nonhydrostatic mesoscale model. Mon Weather Rev 134(4): 1266–1298

    Article  Google Scholar 

  • Simpson JE (1994) Sea breeze and local wind. Cambridge University Press, New York, 234 pp

    Google Scholar 

  • Simpson JH, Hunter JR (1974) Fronts in the Irish Sea. Nature 250: 404–406

    Article  Google Scholar 

  • Skyllingstad E, Vickers D, Mahrt L (2007) Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer. Boundary-Layer Meteorol 123(2): 219–317

    Article  Google Scholar 

  • Small RJ, DeSzoeke SP, Xie SP, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air-sea interaction over ocean fronts and eddies. Dyn Atmos Ocean 45(3–4): 274–319

    Article  Google Scholar 

  • Song Q, Hara T, Cornillon P, Friehe CA (2004) A comparison between observations and MM5 simulations of the marine atmospheric boundary layer across a temperature front. J Atmos Ocean Technol 21(2): 170–178

    Article  Google Scholar 

  • Song Q, Cornillon P, Hara T (2006) Surface wind response to oceanic fronts. J Geophys Res 111(C12): C12006

    Article  Google Scholar 

  • Stark JD, Donlon CJ, Martin MJ, McCulloch ME (2007) OSTIA: an operational, high resolution, real time, global sea surface temperature analysis system. In Proceedings of the Oceans 2007. Marine challenges: coastline to deep sea, Aberdeen, Scotland, IEEE/OES, 4 pp. http://ghrsst-pp.metoffice.com/pages/latest_analysis/docs/Stark_et_al_OSTIA_description_Oceans07.pdf

  • Takeoka H (2002) Progress in Seto Inland Sea research. J Oceanogr 58(1): 93–107

    Article  Google Scholar 

  • Troen I, Mahrt L (1986) A simple model of the atmospheric boundary layer: sensitivity to surface evaporation. Boundary-Layer Meteorol 37(1–2): 129–148

    Article  Google Scholar 

  • Wallace JM, Mitchell TP, Deser C (1989) The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: seasonal and interannual variability. J Clim 2(12): 1492–1499

    Article  Google Scholar 

  • Xie SP (2004) Satellite observations of cool ocean-atmosphere interaction. Bull Am Meteorol Soc 85(2): 195–208

    Article  Google Scholar 

  • Yanagi T, Koike T (1987) Seasonal variation in thermohaline and tidal fronts, Seto Inland Sea, Japan. Cont Shelf Res 7(2): 149–160

    Article  Google Scholar 

  • Yanagi T, Okada S (1993) Tidal fronts in the Seto Inland Sea. Mem Fac Eng Ehime Univ 12: 61–67 (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, R., Guo, X. & Takeoka, H. Influences of Tidal Fronts on Coastal Winds Over an Inland Sea. Boundary-Layer Meteorol 138, 299–319 (2011). https://doi.org/10.1007/s10546-010-9555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-010-9555-3

Keywords

Navigation