Skip to main content
Log in

Structure and Transport of the Agulhas Current and Its Temporal Variability

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Using a year-long moored array of current meters and well-sampled synoptic sections, we define the variability and mean structure and transport of the Agulhas current. Nineteen current meter records indicate that time scales for the temporal variability in the alongshore and offshore velocities are 10.2 and 5.4 days, respectively. Good vertical correlation exists between the alongshore or onshore velocity fluctuations, excluding the Agulhas Undercurrent. The lateral scale for the thermocline Agulhas current is about 60 km and the onshore velocity correlations are positive throughout the Agulhas Current system. Mean velocities from the array determine that the offshore edge of the Agulhas Current lies at 203 km and the penetration depth is 2200 m offshore of the Undercurrent. Hence, daily averaged velocity sections, determined by interpolation and extrapolation of current meter locations, for a 267-day period, from the surface to 2400 m depth and from the coast out to 203 km offshore encompass the main features of the Agulhas Current system. The Agulhas current is generally found close to the continental slope, within 31 km of the coast for 211 of 267 days. There are only five days when the core of the current is found offshore at 150 km. Total transport is always poleward, varying from −121 to −9 Sv, with maximum transport occurring when the core is 62 km from the coast. Average total transport for the 267 day period is −69.7 Sv; the standard deviation in daily transport values is 21.5 Sv; and the mean transport has an estimated standard error of 4.3 Sv. The Agulhas Undercurrent, which hugs the continental slope below the zero velocity isotach, has an average equatorward transport of 4.2 Sv, standard deviation of 2.9 Sv and an estimated standard error of 0.4 Sv. Transports from the moored array are in reasonable agreement with transport results from synoptic sections. Based on time series measurements at about 30° latitude in each ocean basin, the Agulhas Current is the largest western boundary current in the world ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beal, L. M. (1997): Observations of the velocity structure of the Agulhas Current. Ph.D. Thesis, Department of Ocea-nography, University of Southampton, 158 pp.

  • Beal, L. M. and H. L. Bryden (1997): Observations of an Agulhas Undercurrent. Deep-Sea Res. I, 44, 1715–1724.

    Article  Google Scholar 

  • Beal, L. M. and H. L. Bryden (1999): The velocity and vorticity structure of the Agulhas Current at 32°S. J. Geophys. Res., 104, 5151–5176.

    Article  Google Scholar 

  • Bingham, F. M. and L. D. Talley (1991): Estimates of Kuroshio transport using an inverse technique. Deep-Sea Res., 38(Suppl.), S21–S43.

    Article  Google Scholar 

  • Bryden, H. L. (1976): Horizontal advection of temperature for low-frequency motions. Deep-Sea Res., 23, 1165–1174.

    Google Scholar 

  • Bryden, H. L. and L. M. Beal (2001): Role of the Agulhas Current in Indian Ocean circulation and associated heat and freshwater fluxes. Deep-Sea Res. I, 48, 1821–1845.

    Article  Google Scholar 

  • Bryden, H. L. et al. (1995): RRS Discovery cruise 214, 26 Feb–09 Mar 1995: Agulhas Current Experiment. Cruise Report 249, Institute of Oceanographic Sciences, Wormley, 85 pp.

    Google Scholar 

  • de Ruijter, W. P. M., P. J. van Leeuwen and J. R. E. Lutjeharms (1999): Generation and evolution of Natal Pulses: Solitary meanders in the Agulhas Current. J. Phys. Oceanogr., 29, 3043–3055.

    Article  Google Scholar 

  • Donohue, K. A., E. Firing and L. Beal (2000): Comparison of three velocity sections of the Agulhas Current and Agulhas Undercurrent. J. Geophys. Res., 105, 28585–28593.

    Article  Google Scholar 

  • Gordon, A. L., R. D. Susanto and A. Ffield (1999): Throughflow within Makassar Strait. Geophys. Res. Lett., 26, 3325–3328.

    Article  Google Scholar 

  • Grindlingh, M. L. (1979): Observation of a large meander in the Agulhas Current. J. Geophys. Res., 84, 3776–3778.

    Article  Google Scholar 

  • Grindlingh, M. L. (1980): On the volume transport of the Agulhas Current. Deep-Sea Res., 27A, 557–563.

    Article  Google Scholar 

  • Grindlingh, M. L. (1983): On the course of the Agulhas Current. South African Geographical Journal, 65, 49–57.

    Article  Google Scholar 

  • Hellerman, S. and M. Rosenstein (1983): Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr., 13, 1093–1104.

    Article  Google Scholar 

  • Imawaki, S., H. Uchida, H. Ichikawa, M. Fukasawa, S. Umatani and the ASUKA Group (2001): Satellite altimeter monitoring the Kuroshio transport south of Japan. Geophys. Res. Lett., 28, 17–20.

  • Johns, W. E., T. N. Lee, D. Zhang and R. Zantopp (2001): The Kuroshio east of Taiwan: Moored transport observations from the WOCE PCM-1 Array. J. Phys. Oceanogr., 31, 1031–1053.

    Article  Google Scholar 

  • Josey, S. A., E. C. Kent and P. K. Taylor (2002): Wind stress forcing of the ocean in the SOC climatology: Comparisons with the NCEP/NCAR. ECMWF, UWM/COADS and Hellerman and Rosenstein datasets. J. Phys. Oceanogr., 32, 1993–2019.

    Article  Google Scholar 

  • Leaman, K. D., E. Johns and T. Rossby (1989): The average distribution of volume transport and potential vorticity with temperature at three sections across the Gulf Stream. J. Phys. Oceanogr., 19, 36–51.

    Article  Google Scholar 

  • Lutjeharms, J. R. E., O. Boebel, P. C. F. van der Vaart, W. P. M. de Ruijter, T. Rossby and H. L. Bryden (2001): Evidence that the Natal Pulse involves the Agulhas Current to its full depth. Geophys. Res. Lett., 28(18), 3449–3452.

    Article  Google Scholar 

  • Mata, M. M., M. Tomczak, S. Wijffels and J. A. Church (2000): East Australian Current volume transports at 30°S: Estimates from the World Ocean Circulation Experiment hydrographic sections PR11/P6 and the PCM3 current meter array. J. Geophys. Res., 105, 28509–28526.

    Article  Google Scholar 

  • Muller, T. J., Y. Ikeda, N. Zangenberg and L. V. Nonato (1998): Direct measurements of western boundary currents off Brazil between 20°S and 28°S. J. Geophys. Res., 103, 5429–5437.

    Article  Google Scholar 

  • Saunders, P. M., A. C. Coward and B. A. de Cuevas (1999): Circulation of the Pacific Ocean seen in a global ocean model: Ocean Circulation and Climate Advance Modelling project (OCCAM). J. Geophys. Res., 104, 18281–18299.

    Article  Google Scholar 

  • Schouten, M. W., W. P. M. de Ruijter and P. J. van Leeuwen (2002): Upstream control of Agulhas Ring shedding. J. Geophys. Res., 107(C8), 10,1029/2001JC000804.

    Article  Google Scholar 

  • Toole, J. M. and M. E. Raymer (1985): Heat and fresh water budgets of the Indian Ocean-revisited. Deep-Sea Res., 32, 917–928.

    Article  Google Scholar 

  • Toole, J. M. and B. A. Warren (1993): A hydrographic section across the subtropical South Indian Ocean. Deep-Sea Res. I, 40, 1973–2019.

    Article  Google Scholar 

  • van der Vaart, P. C. F. and W. P. M. de Ruijter (2001): Stability of western boundary currents with an application to pulselike behavior of the Agulhas Current. J. Phys. Oceanogr., 31, 2625–2644.

    Article  Google Scholar 

  • van Leeuwen, P. J., W. P. M. de Ruijter and J. R. E. Lutjeharms (2000): Natal pulses and the formation of Agulhas rings. J. Geophys. Res., 105, 6425–6436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry L. Bryden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryden, H.L., Beal, L.M. & Duncan, L.M. Structure and Transport of the Agulhas Current and Its Temporal Variability. J Oceanogr 61, 479–492 (2005). https://doi.org/10.1007/s10872-005-0057-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-005-0057-8

Keywords

Navigation