Skip to main content

Abstract

This chapter presents the background and purpose of the computational anatomy research field from medical (needs) and technical (seeds) perspectives. We begin with a historical overview of the emergence of the discipline of computational anatomy (Sect. 1.1). Then, overviews of existing fields and the potential impact of computational anatomy on them are described (Sect. 1.2). To clarify the value of computational anatomy from the clinical viewpoint, medical education, diagnostic imaging, surgery, and radiation therapy are discussed, including situations that motivated the emergence of computational anatomy (Sect. 1.2.1). Similarly, from the technical (computer science) viewpoint, important technological developments providing the theoretical and algorithmic basis of computational anatomy are explored (Sect. 1.2.2). This book mainly addresses the development of whole-body computational anatomy, which is supported by the rapid progress of whole-body 3D imaging technologies. Thus, the impact of whole-body imaging (Sect. 1.3.1) and its utilization (Sect. 1.3.2) are discussed. Finally, the structure of this book is outlined (Sect. 1.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson DAW (1917) On Shape and Growth. Cambridge University Press, Cambridge

    Google Scholar 

  2. Fukunaga K (1972) Introduction to statistical pattern recognition. Academic press, New York

    MATH  Google Scholar 

  3. Szeliski R (2010) Computer vision: algorithms and applications. Springer, New York

    MATH  Google Scholar 

  4. Russell S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Prentice-Hall

    Google Scholar 

  5. Höhne KH et al (1995) A new representation of knowledge concerning human anatomy and function. Nat Med 1(6):506–511

    Article  Google Scholar 

  6. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  MATH  Google Scholar 

  7. Cootes TF, Edwards GJ, Taylor GJ (1999) Comparing active shape models with active appearance models. In BMVC

    Google Scholar 

  8. Pennec X (2009) Statistical computing on manifolds: from Riemannian geometry to computational anatomy. In: Emerging trends in visual computing. Springer, Berlin, pp 347–386

    Chapter  Google Scholar 

  9. Suzuki K (2012) Machine learning in computer-aided diagnosis: medical imaging intelligence. Medical Information Science Reference, Hershey

    Book  Google Scholar 

  10. SPM. Available from: http://www.fil.ion.ucl.ac.uk/spm/software/

  11. Computational anatomy for computer-aided diagnosis and therapy: frontiers of medical image sciences. Available from: http://www.comp-anatomy.org/wiki/index.php?Computational%20Anatomy

  12. The Human Connectome Project. Available from: http://www.humanconnectomeproject.org/

  13. Physiome Project. Available from: http://physiomeproject.org

  14. Winkelmann A (2007) Anatomical dissection as a teaching method in medical school: a review of the evidence. Med Educ 41(1):15–22

    Article  MathSciNet  Google Scholar 

  15. Turney B (2007) Anatomy in a modern medical curriculum. Ann R Coll Surg Engl 89(2):104

    Article  Google Scholar 

  16. Purkayastha S, Paraskevas P, Darzi A (2007) Anatomy crisis: make surgeons more active in teaching anatomy at all levels. Br Med J 334(7585):110

    Article  Google Scholar 

  17. Tanaka M et al (2013) IT system and network required for operation of Ai. INNERVISION 28(1):69–71

    Google Scholar 

  18. Noriki S et al (2012) Positioning of Ai as a tool of the lifelong education which used IT as the base. INNERVISION 27(1):30–33

    Google Scholar 

  19. Ai center of University of Fukui. Available from: http://ai.labos.ac/

  20. Iino S (2014) Present condition of anatomy practice and image education in the university of Fukui. INNERVISION 29(1):46–48

    Google Scholar 

  21. Porter R (1999) The greatest benefit to mankind: a medical history of humanity (The Norton history of science). WW Norton & Company, New York

    Google Scholar 

  22. Duckworth W (1962) Galen: on anatomical procedures: the later books. Cambridge University Press, Cambridge

    Google Scholar 

  23. Mason SF (1962) A history of the sciences. Collier Books, New York

    Google Scholar 

  24. Thali MJ et al (2003) Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)–a feasibility study. J Forensic Sci 48(2):386–403

    Article  Google Scholar 

  25. Korf H-W et al (2008) The dissection course–necessary and indispensable for teaching anatomy to medical students. Ann Anat Anat Anz 190(1):16–22

    Article  Google Scholar 

  26. McLachlan JC (2004) New path for teaching anatomy: living anatomy and medical imaging vs. dissection. Anat Rec B New Anat 281(1):4–5

    Article  Google Scholar 

  27. Slavin K (1997) The visible human project. Surg Neurol 48(6):638

    Article  Google Scholar 

  28. Ackerman M et al (1994) The visible human data set: an image resource for anatomical visualization. Medinfo MEDINFO 8:1195–1198

    Google Scholar 

  29. Ackerman MJ (1991) The visible human project. J Biocommun 18(2):14

    Google Scholar 

  30. Nobuoka D et al (2014) Surgical education using a multi-viewpoint and multi-layer three-dimensional atlas of surgical anatomy (with video). J Hepatobiliary Pancreat Sci 21(8):556–561

    Article  Google Scholar 

  31. Matsuo T, Takeda Y, Ohtsuka A (2013) Stereoscopic three-dimensional images of an anatomical dissection of the eyeball and orbit for educational purposes. Acta Med Okayama 67:87–91

    Google Scholar 

  32. Tainaka K et al (2014) Whole-body imaging with single-cell resolution by tissue decolorization. Cell 159(4):911–924

    Article  Google Scholar 

  33. Moniz E, de Carvalho L, Lima A (1931) Angiopneumographie. Presse Med 39:996–999

    Google Scholar 

  34. Ichikawa H (1967) X-Ray diagnosis of early gastric cancer. J Gastroenterol 2(4):277–281

    Google Scholar 

  35. Takahashi S (1949) A new device to get a radiological section figure of body. Tohoku J Exp Med 51(1–2):70–70

    Article  Google Scholar 

  36. Hounsfield GN (1973) Computerized transverse axial scanning (tomography): Part 1. Description of system. Br J Radiol 46(552):1016–1022

    Article  Google Scholar 

  37. Todo G et al (1982) [High resolution CT (HR-CT) for the evaluation of pulmonary peripheral disorders]. Rinsho hoshasen. Clin Radiogr 27(12):1319–1326

    Google Scholar 

  38. Kalender W et al (1990) Spiral CT: an innovative method of volumetric recording. Pt. 1. Roentgenpraxis 43:323330

    Google Scholar 

  39. Hohne K, Riemer M, Tiede U (1988) Volume rendering of 3D–tomographic imagery. In: Information processing in medical imaging. Springer, New York

    Google Scholar 

  40. Sosna J et al (2003) CT colonography of colorectal polyps: a metaanalysis. Am J Roentgenol 181(6):1593–1598

    Article  Google Scholar 

  41. Yoshida H, Nappi J (2001) Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans Med Imaging 20(12):1261–1274

    Article  Google Scholar 

  42. Vinning D, Shitrin R, Haponik E (1994) Virtual bronchoscopy. Radiology 193(P):261

    Google Scholar 

  43. Meyers PH et al (1964) Automated computer analysis of radiographic images 1. Radiology 83(6):1029–1034

    Article  Google Scholar 

  44. Winsberg F et al (1967) Detection of radiographic abnormalities in mammograms by means of optical scanning and computer analysis 1. Radiology 89(2):211–215

    Article  Google Scholar 

  45. The QIBA website. Available from: https://www.rsna.org/QIBA.aspx

  46. Shimizu A et al (2007) Segmentation of multiple organs in non-contrast 3D abdominal CT images. Int J Comput Assist Radiol Surg 2(3–4):135–142

    Article  Google Scholar 

  47. Kobatake H (2007) Future cad in multi-dimensional medical images:–project on multi-organ, multi-disease cad system. Comput Med Imaging Graph 31(4):258–266

    Article  Google Scholar 

  48. Shimizu A, Sato Y (2006) Construction of statistical atlas of abdominal organs and its application to multi-organ segmentation. Med Imaging Technol 24(3):153–160

    Google Scholar 

  49. The SPM website. Available from: http://www.fil.ion.ucl.ac.uk/spm/

  50. Kobatake H (2011) Aims of the research project “computational anatomy”. Med Imaging Technol 29(3):99–103

    Google Scholar 

  51. MacKee GM (1921) X-rays and radium in the treatment of diseases of the skin. Lea & Febiger, Philadelphia

    Google Scholar 

  52. Takahashi S (1965) Conformation radiotherapy. Rotation techniques as applied to radiography and radiotherapy of cancer. Acta Radiol Diagn Suppl 242: 1+−1+

    Google Scholar 

  53. Webb S (2001) Intensity-modulated radiation therapy. CRC Press, Chapman Hall

    Book  Google Scholar 

  54. Shirato H et al (2000) Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int J Rad Oncol Biol Phys 48(2):435–442

    Article  Google Scholar 

  55. Dawson LA, Sharpe MB (2006) Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol 7(10):848–858

    Article  Google Scholar 

  56. Evans PM (2008) Anatomical imaging for radiotherapy. Phys Med Biol 53(12):R151

    Article  Google Scholar 

  57. Ministry of Internal Affairs and Communications (MIC). 2011; Available from: http://www.stat.go.jp/data/jinsui/pdf/201102.pdf

  58. Wambersie A, Landber T (1999) ICRU report 62: prescribing, recording and reporting photon beam therapy. Supplement to ICRU report, 50

    Google Scholar 

  59. Onishi H et al (2011) Stereotactic body radiotherapy (SBRT) for operable stage I non–small-cell lung cancer: can SBRT be comparable to surgery? Int J Rad Oncol Biol Phys 81(5):1352–1358

    Article  Google Scholar 

  60. Van de Steene J et al (2002) Definition of gross tumor volume in lung cancer: inter-observer variability. Radiother Oncol 62(1):37–49

    Article  Google Scholar 

  61. El Naqa I et al (2007) Concurrent multimodality image segmentation by active contours for radiotherapy treatment planninga. Med Phys 34(12):4738–4749

    Article  Google Scholar 

  62. Nakamura K et al (2008) Variation of clinical target volume definition among Japanese radiation oncologists in external beam radiotherapy for prostate cancer. Jpn J Clin Oncol 38(4):275–280

    Article  Google Scholar 

  63. Geets X et al (2007) A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 34(9):1427–1438

    Article  Google Scholar 

  64. Day E et al (2009) A region growing method for tumor volume segmentation on PET images for rectal and anal cancer patients. Med Phys 36(10):4349–4358

    Article  Google Scholar 

  65. Hatt M et al (2011) PET functional volume delineation: a robustness and repeatability study. Eur J Nucl Med Mol Imaging 38(4):663–672

    Article  Google Scholar 

  66. Ploquin N, Rangel A, Dunscombe P (2008) Phantom evaluation of a commercially available three modality image guided radiation therapy system. Med Phys 35(12):5303–5311

    Article  Google Scholar 

  67. Wang Z et al (2009) Refinement of treatment setup and target localization accuracy using three-dimensional cone-beam computed tomography for stereotactic body radiotherapy. Int J Rad Oncol Biol Phys 73(2):571–577

    Article  Google Scholar 

  68. Hong J, Hashizume M (2010) An effective point-based registration tool for surgical navigation. Surg Endosc 24(4):944–948

    Article  Google Scholar 

  69. Souzaki R et al (2013) An augmented reality navigation system for pediatric oncologic surgery based on preoperative CT and MRI images. J Pediatr Surg 48(12):2479–2483

    Article  Google Scholar 

  70. Maeda T et al (2009) Tumor ablation therapy of liver cancers with an open magnetic resonance imaging-based navigation system. Surg Endosc 23(5):1048–1053

    Article  Google Scholar 

  71. Tomikawa M et al (2010) Real-time 3-dimensional virtual reality navigation system with open MRI for breast-conserving surgery. J Am Coll Surg 210(6):927–933

    Article  Google Scholar 

  72. Tsutsumi N et al (2013) Image-guided laparoscopic surgery in an open MRI operating theater. Surg Endosc 27(6):2178–2184

    Article  Google Scholar 

  73. Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 31(4):198–211

    Article  Google Scholar 

  74. Ayache N (1995) Medical computer vision, virtual reality and robotics. Image Vis Comput 13(4):295–313

    Article  Google Scholar 

  75. Rangayyan RM, Ayres FJ, Desautels JL (2007) A review of computer-aided diagnosis of breast cancer: toward the detection of subtle signs. J Frankl Inst 344(3):312–348

    Article  MATH  Google Scholar 

  76. Shiraishi J et al (2007) Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans. Med Phys 34(1):25–36

    Article  MathSciNet  Google Scholar 

  77. Marr D (1976) Early processing of visual information. Philos Trans R Soc Lond B Biol Sci 275(942):483–519

    Article  Google Scholar 

  78. Poggio T, Torre V, Koch C (1989) Computational vision and regularization theory. Image Underst 3(1–18):111

    Google Scholar 

  79. Roberts LG (1963) Machine perception of three-dimensional soups. Massachusetts Institute of Technology

    Google Scholar 

  80. Slaney J, Thiébaux S (2001) Blocks world revisited. Artif Intell 125(1):119–153

    Article  MathSciNet  MATH  Google Scholar 

  81. Binford TO (1971) Visual perception by computer. In: IEEE conference on systems and control

    Google Scholar 

  82. Ponce J, Chelberg D, Mann WB (1989) Invariant properties of straight homogeneous generalized cylinders and their contours. IEEE Trans Pattern Anal Mach Intell 11(9):951–966

    Article  Google Scholar 

  83. Marroquin J, Mitter S, Poggio T (1987) Probabilistic solution of ill-posed problems in computational vision. J Am Stat Assoc 82(397):76–89

    Article  MATH  Google Scholar 

  84. Fischler MA, Elschlager RA (1973) The representation and matching of pictorial structures. IEEE Trans Comput 22(1):67–92

    Article  Google Scholar 

  85. Felzenszwalb PF, Huttenlocher DP (2005) Pictorial structures for object recognition. Int J Comput Vis 61(1):55–79

    Article  Google Scholar 

  86. Terzopoulos D (1986) Regularization of inverse visual problems involving discontinuities. IEEE Trans Pattern Anal Mach Intell PAMI-8(4):413–424

    Article  Google Scholar 

  87. Cootes TF et al (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  88. Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond Ser B 207(1167):187–217

    Article  Google Scholar 

  89. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  Google Scholar 

  90. Kimmel R, Bruckstein AM (2003) Regularized Laplacian zero crossings as optimal edge integrators. Int J Comput Vis 53(3):225–243

    Article  Google Scholar 

  91. Cootes TF et al (1993) The use of active shape models for locating structures in medical images. In: Information processing in medical imaging. Springer, Berlin

    Google Scholar 

  92. Audette MA, Ferrie FP, Peters TM (2000) An algorithmic overview of surface registration techniques for medical imaging. Med Image Anal 4(3):201–217

    Article  Google Scholar 

  93. Heimann T, Meinzer H-P (2009) Statistical shape models for 3D medical image segmentation: a review. Med Image Anal 13(4):543–563

    Article  Google Scholar 

  94. Hontani H, Tsunekawa Y, Sawada Y (2013) Accurate and robust registration of nonrigid surface using hierarchical statistical shape model. In: Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on. 2013. IEEE

    Google Scholar 

  95. Davies RH et al (2010) Building 3-d statistical shape models by direct optimization. IEEE Trans Med Imaging 29(4):961–981

    Article  Google Scholar 

  96. Cross GR, Jain AK (1983) Markov random field texture models. IEEE Trans Pattern Anal Mach Intell 5(1):25–39

    Article  Google Scholar 

  97. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741

    Article  MATH  Google Scholar 

  98. Derin H, Elliott H (1987) Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Trans Pattern Anal Mach Intell 9(1):39–55

    Article  Google Scholar 

  99. Adelson EH, Bergen JR (1991) The plenoptic function and the elements of early vision. Comput Model Vis Process 1(2):3–20

    Google Scholar 

  100. Felzenszwalb PF, Huttenlocher DP (2006) Efficient belief propagation for early vision. Int J Comput Vis 70(1):41–54

    Article  Google Scholar 

  101. Szeliski R et al (2008) A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans Pattern Anal Mach Intell 30(6):1068–1080

    Article  Google Scholar 

  102. Blake A, Zisserman A (1987) Visual reconstruction, vol 2. MIT press, Cambridge

    Google Scholar 

  103. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685

    Article  MathSciNet  MATH  Google Scholar 

  104. Prince SJ (2012) Computer vision: models, learning, and inference. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  105. Hinton G, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MathSciNet  MATH  Google Scholar 

  106. Bengio Y (2009) Learning deep architectures for AI. Found Trends® Mach Learn 2(1):1–127

    Article  MathSciNet  MATH  Google Scholar 

  107. Müller H et al (2004) A review of content-based image retrieval systems in medical applications—clinical benefits and future directions. Int J Med Inform 73(1):1–23

    Article  Google Scholar 

  108. Sagerer G, Niemann H (2013) Semantic networks for understanding scenes. Springer, New York

    Google Scholar 

  109. Tenenbaum JM, Witkin A (1983) On the role of structure in vision. In: Human and machine vision. Academic, New York, pp 481–543

    Google Scholar 

  110. Spitzer V et al (1996) The visible human male: a technical report. J Am Med Inform Assoc 3(2):118–130

    Article  Google Scholar 

  111. Pommert A et al (2001) Creating a high-resolution spatial/symbolic model of the inner organs based on the Visible Human. Med Image Anal 5(3):221–228

    Article  Google Scholar 

  112. Beinfeld MT, Wittenberg E, Gazelle GS (2005) Cost-effectiveness of Whole-Body CT Screening 1. Radiology 234(2):415–422

    Article  Google Scholar 

  113. Antoch G et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290(24):3199–3206

    Article  Google Scholar 

  114. Huber-Wagner S et al (2009) Effect of whole-body CT during trauma resuscitation on survival: a retrospective, multicentre study. Lancet 373(9673):1455–1461

    Article  Google Scholar 

  115. Takahara T et al (2003) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22(4):275–282

    Google Scholar 

  116. Yamashita T, Kwee TC, Takahara T (2009) Whole-body magnetic resonance neurography. N Engl J Med 361(5):538–539

    Article  Google Scholar 

  117. Silva AC et al (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. Am J Roentgenol 194(1):191–199

    Article  Google Scholar 

  118. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  119. Blanz V,Vetter T (1999) A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., New York

    Google Scholar 

  120. Hisley KC et al (2008) Coupled physical and digital cadaver dissection followed by a visual test protocol provides insights into the nature of anatomical knowledge and its evaluation. Anat Sci Educ 1(1):27–40

    Article  Google Scholar 

  121. Jacobson S et al (2009) Creation of virtual patients from CT images of cadavers to enhance integration of clinical and basic science student learning in anatomy. Med Teach 31(8):749–751

    Article  Google Scholar 

  122. Hunter PJ, Borg TK (2003) Integration from proteins to organs: the Physiome Project. Nat Rev Mol Cell Biol 4(3):237–243

    Article  Google Scholar 

  123. Delp SL et al (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–1950

    Article  Google Scholar 

  124. Xiao N, Humphrey JD, Figueroa CA (2013) Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network. J Comput Phys 244:22–40

    Article  MathSciNet  Google Scholar 

  125. Nagaoka T et al (2004) Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry. Phys Med Biol 49(1):1

    Article  Google Scholar 

  126. Caon M (2004) Voxel-based computational models of real human anatomy: a review. Radiat Environ Biophys 42(4):229–235

    Article  Google Scholar 

  127. Christ A et al (2010) The virtual family—development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 55(2):N23

    Article  Google Scholar 

  128. Lee SL et al (2011) A whole body statistical shape model for radio frequency simulation. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. 2011. IEEE

    Google Scholar 

  129. Couinaud C (1957) Le foie: études anatomiques et chirurgicales. Masson & Cie, Paris

    Google Scholar 

  130. Bismuth H (1982) Surgical anatomy and anatomical surgery of the liver. World J Surg 6(1):3–9

    Article  Google Scholar 

  131. Castiglione F et al (2013) The onset of type 2 diabetes: proposal for a multi-scale model. JMIR Res Protoc 2(2):e44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinobu Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Masutani, Y. et al. (2017). Introduction. In: Kobatake, H., Masutani, Y. (eds) Computational Anatomy Based on Whole Body Imaging. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55976-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55976-4_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55974-0

  • Online ISBN: 978-4-431-55976-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics