Skip to main content
Log in

Image-guided laparoscopic surgery in an open MRI operating theater

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

The recent development of open magnetic resonance imaging (MRI) has provided an opportunity for the next stage of image-guided surgical and interventional procedures. The purpose of this study was to evaluate the feasibility of laparoscopic surgery under the pneumoperitoneum with the system of an open MRI operating theater.

Methods

Five patients underwent laparoscopic surgery with a real-time augmented reality navigation system that we previously developed in a horizontal-type 0.4-T open MRI operating theater.

Results

All procedures were performed in an open MRI operating theater. During the operations, the laparoscopic monitor clearly showed the augmented reality models of the intraperitoneal structures, such as the common bile ducts and the urinary bladder, as well as the proper positions of the prosthesis. The navigation frame rate was 8 frames per min. The mean fiducial registration error was 6.88 ± 6.18 mm in navigated cases. We were able to use magnetic resonance–incompatible surgical instruments out of the 5-Gs restriction area, as well as conventional laparoscopic surgery, and we developed a real-time augmented reality navigation system using open MRI.

Conclusions

Laparoscopic surgery with our real-time augmented reality navigation system in the open MRI operating theater is a feasible option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harrell AG, Heniford BT (2005) Minimally invasive abdominal surgery: lux et veritas past, present, and future. Am J Surg 190:239–243

    Article  PubMed  Google Scholar 

  2. Hashizume M, Yasunaga T, Tanoue K, Ieiri S, Konishi K, Kishi K, Nakamoto H, Ikeda D, Sakuma I, Fujie M, Dohi T (2008) New real-time MR image-guided surgical robotic system for minimally invasive precision surgery. Int J CARS 2:317–325

    Article  Google Scholar 

  3. Maeda T, Hong J, Konishi K, Nakatsuji T, Yasunaga T, Yamashita Y, Taketomi A, Kotoh K, Enjoji M, Nakashima H, Tanoue K, Maehara Y, Hashizume M (2009) Tumor ablation therapy of liver cancers with an open magnetic resonance imaging–based navigation system. Surg Endosc 23:1048–1053

    Article  PubMed  Google Scholar 

  4. Moche M, Trampel R, Kahn T, Busse H (2008) Navigation concepts for MR image-guided interventions. J Magn Reson Imaging 27:276–291

    Article  PubMed  Google Scholar 

  5. Tomikawa M, Hong J, Shiotani S, Tokunaga E, Konishi K, Ieiri S, Tanoue K, Akahoshi T, Maehara Y, Hashizume M (2010) Real-time 3-dimensional virtual reality navigation system with open MRI for breast-conserving surgery. J Am Coll Surg 210:927–933

    Article  PubMed  Google Scholar 

  6. Konishi K, Nakamoto M, Kakeji Y, Tanoue K, Kawanaka H, Yamaguchi S, Ieiri S, Sato Y, Maehara Y, Tamura S, Hashizume M (2007) A real-time navigation system for laparoscopic surgery based on three-dimensional ultrasound using magneto-optic hybrid tracking configuration. Int J CARS 2:1–10

    Article  Google Scholar 

  7. Nakamoto M, Nakada K, Sato Y, Konishi K, Hashizume M, Tamura S (2008) Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery. IEEE Trans Med Imaging 27:255–270

    Article  PubMed  Google Scholar 

  8. Hong J, Nakashima H, Konishi K, Ieiri S, Tanoue K, Nakamuta M, Hashizume M (2006) Interventional navigation for abdominal therapy based on simultaneous use of MRI and ultrasound. Med Bio Eng Comput 44:1127–1134

    Article  CAS  Google Scholar 

  9. Hong J, Hashizume M (2010) An effective point-based registration tool for surgical navigation. Surg Endosc 24:944–948

    Article  PubMed  Google Scholar 

  10. Ieiri S, Uemura M, Konishi K, Souzaki R, Nagao Y, Tsutsumi N, Akahoshi T, Ohuchida K, Ohdaira T, Tomikawa M, Tanoue K, Hashizume M, Taguchi T (2012) Augmented reality navigation system for laparoscopic splenectomy in children based on preoperative CT image using optical tracking device. Pediatr Surg Int 28:341–346

    Article  PubMed  Google Scholar 

  11. Blanco RT, Ojala R, Kariniemi J, Perälä J, Niinimäki J, Tervonen O (2005) Interventional and intraoperative MRI at low field scanner—a review. Eur J Radiol 56:130–142

    Article  PubMed  Google Scholar 

  12. Gering DT, Nabavi A, Kikinis R, Hata N, O’Donnell LJ, Grimson WE, Jolesz FA, Black PM, Wells WM 3rd (2001) An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 13:967–975

    Article  PubMed  CAS  Google Scholar 

  13. Samset E, Talsma A, Kintel M, Elle OJ, Aurdal L, Hirschberg H, Fosse E (2002) A virtual environment for surgical image guidance in intraoperative MRI. Comput Aided Surg 7:187–196

    Article  PubMed  Google Scholar 

  14. Silverman SG, Tuncali K, Adams DF, vanSonnenberg E, Zou KH, Kacher DF, Morrison PR, Jolesz FA (2000) MR imaging-guided percutaneous cryotherapy of liver tumors: initial experience. Radiology 217:657–664

    PubMed  CAS  Google Scholar 

  15. Martin RC, Husheck S, Scoggins Cr, McMasters KM (2006) Intraoperative magnetic resonance imaging for ablation of hepatic tumors. Surg Endosc 20:1536–1542

    Article  PubMed  CAS  Google Scholar 

  16. Kurumi Y, Tani T, Naka S, Shiomi H, Shimizu T, Abe H, Endo Y, Morikawa S (2007) MR-guided microwave ablation for malignancies. Int J Clin Oncol 12:85–93

    Article  PubMed  Google Scholar 

  17. Shimizu T, Endo Y, Mekata E, Tatsuta T, Yamaguchi T, Kurumi Y, Morikawa S, Tani T (2010) Real-time magnetic resonance-guided microwave coagulation therapy for pelvic recurrence of rectal cancer: initial clinical experience using a 0.5 T open magnetic resonance system. Dis Colon Rectum 53:1555–1562

    Article  PubMed  Google Scholar 

  18. Kenngott HG, Neuhaus J, Müller-Stich BP, Wolf I, Vetter M, Meinzer HP, Köninger J, Büchler MW, Gutt CN (2008) Development of a navigation system for minimally invasive esophagectomy. Surg Endosc 22:1858–1865

    Article  PubMed  CAS  Google Scholar 

  19. Ishizaki Y, Bandai Y, Shimomura K, Abe H, Ohtomo Y, Idezuki Y (1993) Safe intraabdominal pressure of carbon dioxide pneumoperitoneum during laparoscopic surgery. Surgery 114:549–554

    PubMed  CAS  Google Scholar 

  20. Windberger UB, Auer R, Keplinger F, Längle F, Heinze G, Schindl M, Losert UM (1999) The role of intra-abdominal pressure on splanchnic and pulmonary hemodynamic and metabolic changes during carbon dioxide pneumoperitoneum. Gastrointest Endosc 49:84–91

    Article  PubMed  CAS  Google Scholar 

  21. Lafon Y, Smith FW, Beillas P (2010) Combination of a model-deformation method and a positional MRI to quantify the effects of posture on the anatomical structures of the trunk. J Biomech 43:1269–1278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by Grants-in-Aid from the Japanese Ministry of Education, Culture, Sports, Science and Technology (17200035, 19500422, 24650298).

Disclosures

Norifumi Tsutsumi, Morimasa Tomikawa, Munenori Uemura, Tomohiko Akahoshi, Yoshihiro Nagao, Kozo Konishi, Satoshi Ieiri, Jaesung Hong, Yoshihiko Maehara, and Makoto Hashizume have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norifumi Tsutsumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsutsumi, N., Tomikawa, M., Uemura, M. et al. Image-guided laparoscopic surgery in an open MRI operating theater. Surg Endosc 27, 2178–2184 (2013). https://doi.org/10.1007/s00464-012-2737-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-012-2737-y

Keywords

Navigation