Skip to main content

Advertisement

Log in

Voxel-based computational models of real human anatomy: a review

  • Review
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Computational models of human anatomy are mathematical representations of human anatomy designed to be used in dosimetry calculations. They have been used in dosimetry calculations for radiography, radiotherapy, nuclear medicine, radiation protection and to investigate the effects of low frequency electromagnetic fields. Tomographic medical imaging techniques have allowed the construction of digital three-dimensional computational models based on the actual anatomy of individual humans. These are called voxel models, tomographic models or phantoms. Their usefulness lies in their faithful representation of human anatomy and the flexibility they afford by being able to be scaled in size to match the required human dimensions. Segmenting medical images in order to make voxel models is very time-consuming so semi-automatic segmentation techniques are being developed. Some 21 whole or partial body models currently exist and more are being prepared. These models are listed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ICRU (1989) Tissue substitutes in radiation dosimetry and measurement. International Commission on Radiation Units and Measurements. Report 44. International Commission on Radiation Units and Measurements, Bethesda MD, USA

  2. ICRU (1992) Report 46. Photon, electron, proton and neutron interaction data for body tissues. International Commission on Radiation Units and Measurements, Bethesda, MD, USA

  3. ICRP (2002) Publication 89. Basic anatomical and physiological data for use in radiological protection: reference values. Annals of the ICRP 32. International Commission on Radiological Protection. Pergamon, Oxford

    Google Scholar 

  4. Zankl M (1993) Computational models employed for dose assessment in diagnostic radiology. Radiat Prot Dosim 49:339–344

    Google Scholar 

  5. Fisher HL, Snyder WS (1966) Annual progress report for period ending July 31 1966, Health Physics Division. Oak Ridge National Laboratory, Oak Ridge TN, USA

  6. Hwang JML, Shoup RL, Poston JW (1976) Mathematical description of a one- and five-year-old child for use in dosimetry calculations. Oak Ridge National Laboratory, Oak Ridge TN, USA

  7. Chen W-L, Poston JW, Warner GG (1978) An evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical X rays. Oak Ridge National Laboratory. Oak Ridge TN, USA

  8. Cristy M (1980) Mathematical phantoms representing children of various ages for use in estimates of internal dose. Oak Ridge National Laboratory, Oak Ridge TN, USA

  9. Snyder WS, Ford MR, Warner GG, Fisher HL (1969) Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. Medical Internal Radiation Dose Committee (MIRD) Pamphlet No. 5. J Nucl Med 10

  10. Snyder WS, Ford MR, Warner GG (1974) Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom; revision of Medical Internal Radiation Dose Committee (MIRD) Pamphlet No. 5. Society of Nuclear Medicine, New York

  11. Valentin J (ed) (1975) Reference man: anatomical, physiological and metabolic characteristics. ICRP publication 23. Pergamon, Oxford

    Google Scholar 

  12. ICRP (1994) Publication 66. Human respiratory tract model for radiological protection. Annals of the ICRP 24. International Commission on Radiological Protection. Pergamon, Oxford

  13. Veit R, Zankl M, Petoussi N, Mannweiler E, Williams G, Drexler G (1989) Tomographic anthropomorphic models. Part I. Construction technique and description of models of an 8 week old baby and a 7 year old child. Report. GSF-National Research Center for Environment and Health, Neuherberg

  14. Jones DG (1997) A realistic anthropomorphic phantom for calculating organ doses arising from external photon irradiation. Radiat Prot Dosim 72:21–29

    Google Scholar 

  15. ICRU (1992) Report 48. Phantoms and computational models in therapy, diagnosis and protection. International Commission on Radiation Units and Measurements, Bethesda, MD, USA

  16. Gibbs SJ, Pujol A, Chen T, Malcolm AW, James AE (1984) Patient risk from interproximal radiography. Oral Surg Oral Med Oral Pathol 58:347–354

    CAS  PubMed  Google Scholar 

  17. Fill U, Zankl M, Petoussi-Henss N, Siebert M, Regulla D (2003) Adult female voxel models of different stature and photon conversion coefficients for radiation protection. Health Phys (in press)

  18. Zankl M, Veit R, Williams G, Schneider K, Fendel H, Petoussi N, Drexler G (1988) The construction of computer tomographic phantoms and their application in radiology and radiation protection. Radiat Environ Biophys 27:153–164

    CAS  PubMed  Google Scholar 

  19. Caon M, Bibbo G, Pattison J (2000) Monte Carlo calculated effective dose to teenage girls from CT examinations. Radiat Prot Dosim 90:445–448

    Google Scholar 

  20. Saito K, Wittmann A, Koga S, Ida Y, Kamei T, Funabiki J, Zankl M (2001) Construction of a computed tomographic phantom for a Japanese male adult and dose calculation system. Radiat Environ Biophys 40:69–76

    Article  CAS  PubMed  Google Scholar 

  21. Stanton R, Pazik F, Nipper J, Williams J, Bolch WE (2003) A comparison of newborn stylized and tomographic models for dose assessment in pediatric radiology. Phys Med Biol 48:805–820

    Article  PubMed  Google Scholar 

  22. Chao TC, Bozkurt A, Xu XG (2001) Conversion coefficients based on the VIP-man anatomical model and EGS4-VLSI code for external monoenergetic photons from 10 keV to 10 MeV. Health Phys 81:163–183

    Article  CAS  PubMed  Google Scholar 

  23. Zankl M, Fill U, Petoussi-Henss N, Regulla D (2002) Organ dose conversion coefficients for external photon irradiation of male and female voxel models. Phys Med Biol 47:2367–2385

    Article  PubMed  Google Scholar 

  24. Kramer R, Vieira JW, Khoury HJ, Lima FRA, Fuelle D (2003) All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry. Phys Med Biol 48:1239–1262

    CAS  PubMed  Google Scholar 

  25. Jones DG (1998) A realistic anthropomorphic phantom for calculating specific absorbed fractions of energy deposited from internal gamma emitters. Radiat Prot Dosim 79:411–414

    Google Scholar 

  26. Petoussi-Henss N, Zankl M (1998) Voxel anthropomorphic models as a tool for internal dosimetry. Radiat Prot Dosim 79:415–418

    Google Scholar 

  27. Chao TC, Xu XG (2001) The calculation of specific absorbed fractions from the image-based VIP-man body model and EGS4-VLSI Monte Carlo code for internal electron emitters. Phys Med Biol 46:901–929

    Article  CAS  PubMed  Google Scholar 

  28. Stabin MG, Yoriyaz H (2002) Photon specific absorbed fractions calculated in the trunk of an adult male voxel-based phantom. Health Phys 82:21–44

    Article  CAS  PubMed  Google Scholar 

  29. Zankl M, Petoussi-Henss N, Fill U, Regulla D (2003) The application of voxel phantoms to the internal dosimetry of radionuclides. Radiat Prot Dosim 105:539–548

    CAS  Google Scholar 

  30. Dimbylow PJ (1997) FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz. Phys Med Biol 42:479–490

    Article  CAS  PubMed  Google Scholar 

  31. Dimbylow PJ (2002) Fine resolution calculations of SAR in the human body for frequencies up to 3 GHz. Phys Med Biol 47:2835–2846

    Article  CAS  PubMed  Google Scholar 

  32. Nagaoka T, Watanabe S, Sakurai K, Kuneida E, Watanabe S, Taki M, Yamanka Y (2004) Development of realistic high resolution whole-body voxel models of Japanese adult male and female of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry. Phys Med Biol 49:1–15

    Article  Google Scholar 

  33. Dimbylow PJ (1998) Induced current densities from low-frequency magnetic fields in a 2 mm resolution, anatomically realistic model of the body. Phys Med Biol 43:221–230

    Article  CAS  PubMed  Google Scholar 

  34. Neal AJ, Sivewright G, Bentley R (1994) Evaluation of a region growing algorithm for segmenting pelvic computed tomography images during radiotherapy planning. Br J Radiother 67:392–395

    CAS  Google Scholar 

  35. Xu XG, Chao TC, Bozkurt A (2000) VIP-MAN: an image based whole-body adult male model constructed from color photographs of the Visible Human Project for multi-particle Monte Carlo calculations. Health Phys 78:476–485

    CAS  PubMed  Google Scholar 

  36. Park JS, Chung MS, Kim JY, Park HS (2002) Visible Korean human: another trial for making serially sectioned images. Published electronically, accessed September 2003http://vkh.ajou.ac.kr/articles/IEEE%20transcation%20on%20med%20img.pdf

  37. Lee C, Lee J (2003) The Korean reference adult male voxel model “KRman” segmented from whole-body MR data and dose conversion coefficients (abstract only). Health Phys 84 [Suppl]:S163

  38. Nipper JC, Williams JL, Bolch WE (2002) Creation of two tomographic voxel models of paediatric patients in the first year of life. Phys Med Biol 47:3143–3164

    Article  CAS  PubMed  Google Scholar 

  39. Funabiki J, Terabe M, Zankl M, Koga S, Saito K (2000) An EGS4 user code with voxel geometry and a voxel phantom generating system. In: Hirayama, H, Namito Y, Ban S (eds) Proceedings of Second International Workshop on EGS, 8–12 August 2000, High Energy Accelerator Research Organisation (KEK), Tsukuba, Japan, pp 59–63

  40. Hohne KH, Hanson WA (1992) Interactive 3D segmentation of MRI and CT volumes using morphological operations. J Comput Assist Tomogr 16:285–294

    CAS  PubMed  Google Scholar 

  41. Caon M, Mohyla J (2001) Automating the segmentation of medical images for the production of voxel tomographic computational models. Australas Phys Eng Sci Med 24:166–172

    PubMed  Google Scholar 

  42. Zankl M, Wittmann A (2001) The adult male voxel model “Golem” segmented from whole-body CT patient data. Radiat Environ Biophys 40:153–162

    Article  CAS  PubMed  Google Scholar 

  43. Huh C, Bolch WE (2003) A review of US anthropometric reference data (1971–2000) with comparisons to both stylized and tomographic anatomic models. Phys Med Biol 48:3411–3429

    CAS  PubMed  Google Scholar 

  44. Veit R, Zankl M (1992) Influence of patient size on organ doses in diagnostic radiology. Radiat Prot Dosim 43:241–243

    CAS  Google Scholar 

  45. Zankl M, Panzer W, Herrmann C (2000) Calculation of patient doses using a human voxel phantom of variable diameter. Radiat Prot Dosim 90:155–158

    Google Scholar 

  46. ICRP (1991) Publication 60. The 1990 recommendations of the International Commission on Radiological Protection. Annals of the ICRP 21. International Commission on Radiological Protection. Pergamon, Oxford

  47. Rajon DA, Patton PW, Shah AP, Watchman CJ, Bolch WE (2002) Surface area overestimation within 3D digital images and its consequences for skeletal dosimetry. Med Phys 29:682–693

    Article  CAS  PubMed  Google Scholar 

  48. Veit R, Panzer W, Zankl M, Scheurer C (1992) Vergleich berechneter und gemessener Dosen an einem anthropomorphen Phantom. Z Med Phys 2:123–126

    Google Scholar 

  49. Zubal G, Harrell C, Smith E, Ratner Z, Gindi G, Hoffer P (1994) Computerised three-dimensional segmented human anatomy. Med Phys 21:299–302

    CAS  PubMed  Google Scholar 

  50. Zubal G, Harrel C (1992) Voxel based Monte Carlo calculations of nuclear medicine images and applied variance reduction techniques. Image Vision Comput 10:342–360

    Article  Google Scholar 

  51. Caon M, Bibbo G, Pattison J (1999) An EGS4-ready tomographic computational model of a fourteen year-old female torso for calculating organ doses from CT examinations. Phys Med Biol 44:2213–2225

    Article  CAS  PubMed  Google Scholar 

  52. Petoussi-Henss N, Zankl M, Fill U, Regulla D (2002) The GSF family of voxel phantoms. Phys Med Biol 47:89–106

    Article  PubMed  Google Scholar 

  53. Lee C, Bolch WE (2003) Construction of a tomographic computational model of a 9-mo-old and its Monte Carlo calculation time comparison between the MCNP4C and MCNPX codes (abstract). Health Phys 84 [Suppl]:S259

  54. Shi CY, Xu XG, Kim CH, Ogden KM, Huda W, Stabin W (2003) Development of a pregnant woman model from CT data. Health Phys 84 [Suppl]:S177

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Caon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caon, M. Voxel-based computational models of real human anatomy: a review. Radiat Environ Biophys 42, 229–235 (2004). https://doi.org/10.1007/s00411-003-0221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-003-0221-8

Keywords

Navigation