Skip to main content

Interactions Between Harmful Algae and Algicidal and Growth-Inhibiting Bacteria Associated with Seaweeds and Seagrasses

  • Chapter
Marine Protists

Abstract

Phytoplankton and bacteria are the main components of marine ecosystems and hence comprise abundant numbers and biomass in the sea. There exist close and diverse interactions between phytoplankton and bacteria in marine ecosystems. Among these relationships, bacteria possessing algicidal and growth-inhibiting activities against phytoplankton have been increasingly gathering attention and are expected to control phytoplankton dynamics especially harmful algal blooms in coastal environments. Algicidal activities are divided into two types, i.e., the direct attack type, needing direct attachment to host algal cells, and the indirect attack type, producing algicidal matter. Some bacteria kill part of algal populations, and they are growth-inhibiting bacteria. In harmful algal blooms (HABs) of such as the raphidophytes Heterosigma akashiwo and Chattonella spp., bacteria play an important role in the bloom terminations. Most algicidal bacteria are particle-associated forms in coastal seas. A new finding is that huge numbers of algicidal bacteria against HAB species (dinoflagellates and raphidophytes) were attached to the surface of seaweeds such as the green alga Ulva pertusa, the red alga Gelidium spp. and the brown algae Sargassum muticum and S. thunbergii. The densities of these algicidal bacteria reached as many as 106 g−1 wet weight. Further, algicidal bacteria were found in the biofilm of the seagrass Zostera marina with high densities of 107 g−1 wet blade or more. In the case of the toxic dinoflagellate Alexandrium tamarense, growth-inhibiting bacteria with strong activities were isolated from the blade of Z. marina. In developed countries, seagrass- and seaweed beds have been lost by reclamation for increasing land of commercial uses. We here propose restoration of seagrass- and seaweed beds, not only for increasing the nursery grounds of various marine lives but also for creating preventative strategies for HAB occurrences. This is a kind of activity in conformity with the Sato-Umi concept recently proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AB:

Algicidal bacteria

FLB:

Free-living bacteria

GIB:

Growth-inhibiting bacteria

HA:

Harmful algae

HAB:

Harmful algal bloom

MPN:

Most probable number

PAB:

Particle-associated bacteria

References

  • Abdenadher M, Hamza A, Fekih W, Hannachi I, Bellaaj AZ, Bradai MN, Aleya L (2012) Factors determining the dynamics of toxic blooms of Alexandrium minutum during a 10-year study along the shallow southwestern Mediterranean coasts. Estuar Coast Shelf Sci 106:102–111

    Article  CAS  Google Scholar 

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  CAS  PubMed  Google Scholar 

  • Bai SJ, Huang LP, Su JQ, Tian Y, Zheng TL (2011) Algicidal effects of a novel marine actinomycete on the toxic dinoflagellate Alexandrium tamarense. Curr Microbiol 62:1774–1781

    Article  CAS  PubMed  Google Scholar 

  • Baker KH, Herson D (1978) Interactions between the diatom Thalassiosira pseudonana and an associated Pseudomonad in a mariculture system. Appl Environ Microbiol 35:791–796

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13:291–314

    Article  Google Scholar 

  • Daft MJ, McCord SB, Stewart WDP (1975) Ecological studies on algal-lysing bacteria in fresh waters. Freshw Biol 5:577–596

    Article  Google Scholar 

  • Doucette GJ, Kodama M, Franca S, Gallacher S (1998) Bacterial interactions with harmful algal bloom species: bloom ecology, toxigenesis, and cytology. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. Springer, Berlin/Heidelberg, pp 619–647

    Google Scholar 

  • Fukami K, Yuzawa A, Nishijima T, Hata Y (1992) Isolation and properties of a bacterium inhibiting the growth of Gymnodinium nagasakiense. Nippon Suisan Gakkaishi 58:1073–1077

    Article  Google Scholar 

  • Furuki M, Kobayashi M (1991) Interaction between Chattonella and bacteria and prevention of this red tide. Mar Pollut Bull 23:189–193

    Article  Google Scholar 

  • Haga H, Ohtsuka T (2008) Can the catastrophic-shift model explain the sudden expansion in the distribution range of submerged macrophytes in the southern basin of Lake Biwa. Jpn J Limnol 69:133–141

    Article  Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99

    Article  Google Scholar 

  • Hare CE, Demir E, Coyne KJ, Cary SC, Kirchman DL, Hutchins DA (2005) A bacterium that inhibits the growth of Pfiesteria piscicida and other other dinoflagellates. Harmful Algae 4:221–234

    Article  Google Scholar 

  • Harrison PG, Chan AT (1980) Inhibition of the growth of microalgae and bacteria by extracts of eelgrass (Zostera marina) leaves. Mar Biol 61:21–26

    Article  Google Scholar 

  • Imai I (1989) Microbial ecology in coastal systems. Bull Coast Oceanogr 27:85–101

    Google Scholar 

  • Imai I (2011) Biology and ecology of harmful algal blooms (13): bacteria that kill red tide phytoplankton. Aquabiol 33:97–103

    Google Scholar 

  • Imai I, Kimura S (2008) Resistance of the fish-killing dinoflagellate Cochlodinium polykrikoides against algicidal bacteria isolated from the coastal sea of Japan. Harmful Algae 7:360–367

    Article  Google Scholar 

  • Imai I, Yamaguchi M (2012) Life cycle, physiology and red tide occurrences of the fish-killing raphidophyte Chattonella. Harmful Algae 14:46–70

    Article  Google Scholar 

  • Imai I, Ishida Y, Sawayama S, Hata Y (1991) Isolation of a marine gliding bacterium that kills Chattonella antiqua (Raphidophyceae). Nippon Suisan Gakkaishi 57:1309

    Google Scholar 

  • Imai I, Ishida Y, Hata Y (1993) Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan. Mar Biol 116:527–532

    Article  Google Scholar 

  • Imai I, Ishida Y, Sakaguchi K, Hata Y (1995) Algicidal marine bacteria isolated from northern Horoshima Bay, Japan. Fish Sci 1:628–636

    Google Scholar 

  • Imai I, Kim MC, Nagasaki K, Itakura S, Ishida Y (1998a) Relationships between dynamics of red tide-causing raphidophycean flagellates and algicidal micro-organisms in the coastal sea of Japan. Phycol Res 46:139–146

    Article  Google Scholar 

  • Imai I, Kim MC, Nagasaki K, Itakura S, Ishida Y (1998b) Detection and enumeration of microorganisms that are lethal to harmful phytoplankton in coastal waters. Plankton Biol Ecol 45:15–25

    Google Scholar 

  • Imai I, Nakagiri S, Maki T (1999) Relationships between the harmful dinoflagellate Heterocapsa circularisquama and marine bacteria. Bull Plankton Soc Jpn 46:172–177

    Google Scholar 

  • Imai I, Sunahara T, Nishikawa T, Hori Y, Kondo R, Hiroishi S (2001) Fluctuations of the red tide flagellates Chattonella spp. (Raphidophyceae) and the algicidal bacterium Cytophaga sp. in the Seto Inland sea, Japan. Mar Biol 138:1043–1049

    Article  CAS  Google Scholar 

  • Imai I, Fujimaru D, Nishigaki T (2002) Co-culture of fish with macroalgae and associated bacteria: a possible mitigation strategy for noxious red tides in enclosed coastal sea. Fish Sci 68(Supp):493–496

    Google Scholar 

  • Imai I, Fujimaru D, Nishigaki T, Kurosaki M, Sugita H (2006a) Algicidal bacteria isolated from the surface of seaweeds from the coast of Osaka Bay in the Seto Inland Sea, Japan. Afr J Mar Sci 28:319–323

    Article  Google Scholar 

  • Imai I, Yamaguchi M, Hori Y (2006b) Eutrophication and occurrences of harmful algal blooms in the Seto Inland Sea. Plankton Benthos Res 1:71–84

    Article  Google Scholar 

  • Imai I, Kimura S, Yamamoto T, Tomaru Y, Nagasaki K, Sakurada K, Murata K (2009a) Possible prevention strategies for red tides of the fish-killer dinoflagellate Cochlodinium polykrikoides using microorganisms. Bull Plankton Soc Jpn 56:64–68

    Google Scholar 

  • Imai I, Yamamoto T, Ishii KI, Yamamoto K (2009b) Promising prevention strategies for harmful red tides by seagrass beds as enormous sources of algicidal bacteria. In: Proceedings of 5th World Fisheries Congress, 6C_0995_133

    Google Scholar 

  • Imai I, Okamoto S, Nishigaki T, Yoshinaga I, Takeuchi T (2012a) Distribution of algicidal bacteria against red tide phytoplankton in seawater and on the surface of the green alga Ulva pertusa in Shimo-Haya Bay, Wakayama Prefecture. Bull Fish Sci Hokkaido Univ 62:21–28

    Google Scholar 

  • Imai I, Kido T, Yoshinaga I, Ohgi K, Nagai S (2012b) Isolation of Microcystis-killer bacterium Agrobacterium vitis frm the biofilm on the surface of the water plant Egeria densa. In: Pagou KA, Hallegraeff GM (eds) Proceedings of the 14th international conference on Harmful Algae. ISSHA and IOC-UNESCO, Hersonissos-Crete, pp 164–166

    Google Scholar 

  • Inaba N, Watanabe T, Sakami T, Nishi H, Tahara Y, Imai I (2014) Temporal and spatial distribution of algicidal and growth-inhibiting bacteria in the coastal sea of southwest Japan. J Plankton Res 36:388–397

    Article  Google Scholar 

  • Ishida Y (1994) Microbial control of red tide microalgae and its prospect. In: Ishida Y, Sugahara I (eds) Prevention and control of red tide microalgae by microorganisms. Koseisha-Koseikaku, Tokyo, pp 9–21

    Google Scholar 

  • Ishio S, Mangindaan RE, Kuwahara M, Nakagawa H (1989) A bacterium hostile to flagellates: identification of species and characters. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science, and toxicology. Elsevier, New York, pp 205–208

    Google Scholar 

  • Kamiyama T, Itakura S, Nagasaki K (2000) Changes in microbial loop components: effects of a harmful algal bloom formation and its decay. Aquat Microb Ecol 21:21–30

    Article  Google Scholar 

  • Kim MC, Yoshinaga I, Imai I, Nagasaki K, Itakura S, Ishida Y (1998) A close relationship between algicidal bacteria and termination of Heterosigma akashiwo (Raphidophyceae) blooms in Hiroshima bay, Japan. Mar Ecol Prog Ser 170:25–32

    Article  Google Scholar 

  • Kim BH, Sang M, Hwang SJ, Han MS (2008a) In situ bacterial mitigation of the toxic cyanobacterium Microcystis aeruginosa: implications for biological bloom control. Limnol Oceanogr Methods 6:513–522

    Article  CAS  Google Scholar 

  • Kim D, Kim JF, Yim JH, Kwon SK, Lee CH, Lee HK (2008b) Red to red – the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. J Microbiol Biotechnol 18:1621–1629

    CAS  PubMed  Google Scholar 

  • Kim YS, Lee DS, Jeong SY, Lee WJ, Lee MS (2009) Isolation and characterization of a marine algicidal bacterium against the harmful Raphidophyceae Chattonella marina. J Microbiol 47:9–18

    Article  CAS  PubMed  Google Scholar 

  • Kondo R, Imai I (2001) Polymerase chain reaction primers for highly selective detection of algicidal Protreobacteria. Fish Sci 67:364–366

    Article  CAS  Google Scholar 

  • Kondo R, Imai I, Fukami K, Minami A, Hiroishi S (1999) Phylogenetic analysis of algicidal bacteria (Family Flavobacteriaceae) and selective detection by PCR using a specific primer set. Fish Sci 65:432–435

    CAS  Google Scholar 

  • Lee KS, Park JI, Kim YK, Park SR, Kim JH (2007) Recolonization of Zostera marina following destruction caused by a red tide algal bloom: the role of new shoot recruitment from seed banks. Mar Ecol Prog Ser 342:105–115

    Article  CAS  Google Scholar 

  • Liu J, Lewitus AJ, Kempton JW, Wilde SB (2008) The association of algicidal bacteria and raphidophyte blooms in South Carolina brackish detention pond. Harmful Algae 7:184–193

    Article  Google Scholar 

  • Manage PM, Kawabata Z, Nakano S (2000) Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp. Aquat Microb Ecol 22:111–117

    Article  Google Scholar 

  • Mayali X (2007) Bacterial influence on the bloom dynamics of the dinoflagellate Lingulodinium polyedrum. Scripps Institution of Oceanography technical report. Sxripps Institution of Oceanography, University of Californis, Sandiego, 154p

    Google Scholar 

  • Mayali X, Azam F (2004) Algicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 51:139–144

    Article  PubMed  Google Scholar 

  • Mayali X, Franks PJS, Tanaka Y, Azam F (2008) Bacteria-induced motility reduction in Lingulodinium polyedrum (Dinophyceae). J Phycol 44:923–928

    Article  Google Scholar 

  • Mitsutani A, Yamasaki I, Kitaguchi H, Kato J, Ueno S, Ishida Y (2001) Analysis of algicidal proteins of a diatom-lytic marine bacterium Pseudoalteromonas sp. strain A25 by two-dimensional electrophoresis. Phycologia 40:286–291

    Article  Google Scholar 

  • Nakaoka M, Aioi K (2001) Ecology of seagrasses Zostera spp. (Zosteraceae) in Japanese waters: a review. Otsuchi Mar Sci 26:7–22

    Google Scholar 

  • Nakashima T, Miyazaki Y, Matsuyama Y, Muraoka W, Yamaguchi K, Oda T (2006) Producing mechanism f an algicidal compound against red tide phytoplankton in a marine bacterium γ-proteobacterium. Appl Microbiol Biotechnol 73:684–690

    Article  CAS  PubMed  Google Scholar 

  • Onishi Y, Mohri Y, Tuji A, Ohgi K, Yamaguchi A, Imai I (2014) The seagrass Zostera marina harbors growth-inhibiting bacteria against the toxic dinoflagellate Alexandrium tamarense. Fish Sci 80:353–362

    Article  CAS  Google Scholar 

  • Park JH, Yoshinaga I, Nishikawa T, Imai I (2010) Algicidal bacteria in particle-associated form and in free-living form during a diatom bloom in the Seto Inland Sea, Japan. Aquat Microb Ecol 60:151–161

    Article  Google Scholar 

  • Riquelme CE, Ishida Y (1989) Interaction between microalgae and bacteria in coastal seawater. Mem Coll Agr Kyoto Univ 134:1–60

    Google Scholar 

  • Roth PB, Twiner MJ, Mikulski CM, Barnhorst AB, Doucette GJ (2008) Comparative analysis of two algicidal bacteria active against the red tide dinoflagellate Karenia brevis. Harmful Algae 7:682–691

    Article  Google Scholar 

  • Safferman RS, Morris ME (1963) Algal virus: isolation. Science 140:679–680

    Article  CAS  PubMed  Google Scholar 

  • Sakata T (1990) Occurrence of marine Saprospira sp. possessing algicidal activity for diatoms. Nippon Suisan Gakkaishi 56:1165

    Google Scholar 

  • Sakata T, Fujita Y, Yasumoto H (1991) Plaque formation by algicidal Saprospira sp. on a lawn of Chaetoceros ceratosporum. Nippon Suisan Gakkaishi 57:1147–1152

    Article  Google Scholar 

  • Sakata T, Yoshikawa T, Nishitarumizu S (2011) Algicidal activity and identification of an algicidal substance produced by marine Pseudomonas sp. C55a-2. Fish Sci 77:397–402

    Article  CAS  Google Scholar 

  • Salomon PS, Imai I (2006) Pathogens of harmful microalgae. In: Graneli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin/Heidelberg, pp 271–282

    Chapter  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  PubMed  Google Scholar 

  • Simon M, Crossart HP, Schweizer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–211

    Article  Google Scholar 

  • Skerratt JH, Bowman JP, Hallegraeff GM, James S, Nichols PD (2002) Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar Ecol Prog Ser 244:1–15

    Article  Google Scholar 

  • Sohn JH, Lee JH, Yi H, Chun J, Bae KS, Ahn TY, Kim SJ (2004) Kordia algicidal gen. nov., sp. nov., an algicidal bacterium isolated from red tide. Int J Syst Evol Microbiol 54:675–680

    Article  CAS  PubMed  Google Scholar 

  • Su JQ, Yang XR, Zheng TL, Tian Y, Jiao NZ, Cai LZ, Hong HS (2007) Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 6:799–810

    Article  CAS  Google Scholar 

  • van Es FB, Meyer-Reil LA (1982) Biomass and metabolic activity of heterotrophic marine bacteria. In: Marshall KC (ed) Advances in microbial ecology, vol 6. Plenum Press, New York, pp 111–170

    Google Scholar 

  • Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calldine A, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrass across the globe threatens coastal ecosystems. Proc Natl Acad Sci U S A 106:12377–12381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams SL, Heck KL (2001) Seagrass community ecology. In: Bertness M et al (eds) Marine community ecology. Sinauer, Sunderland, pp 317–337

    Google Scholar 

  • Wit R, Troussellier M, Courties C, Buffan-Dubau E, Lemaire E (2012) Short-term interactions between phytoplankton and intertidal seagrass vegetation in a coastal lagoon (Bassin d’Arcachon, SW France). Hydrobiologia 699:55–68

    Article  CAS  Google Scholar 

  • Yamamoto Y (1978) Cyanobacteria-lysing agents and their distribution patterns of lakes and river in Japan. Bull Jpn Soc Microb Ecol 2:77–88

    Article  Google Scholar 

  • Yanagi T (2008) “Sato-Umi” – a new concept for sustainable fisheries. In: Tsukamoto K, Kawamura T, Takeuchi T, Beard TD Jr, Kaiser MJ (eds) Fisheries for global welfare and environment, 5th World Fisheries Congress 2008. TERRAPUB, Tokyo, pp 351–358

    Google Scholar 

  • Yang F, Wei HY, Li XQ, Li YH, Li XB, Yin LH, Pu YP (2013) Isolation and characterization of an algicidal bacterium indigenous to Lake Taihu with a red pigment able to lyse Microcystis aeruginosa. Biomed Environ Sci 26:148–154

    CAS  PubMed  Google Scholar 

  • Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, Johnson J, Montgomery R, Ferriera S, Beeson K, Williamson SJ, Tovchigreehko A, Allen AE, Zeigler LA, Sutton G, Eisenstadt E, Rogers YH, Friedman R, Frazier M, Venter JC (2010) Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468:60–67

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga I, Kawai T, Ishida Y (1995) Lysis of Gymnodinium nagasakiense by marine bacteria. In: Lassus P, Arzul G, Le Denn EE, Gentien P, Marcaillou C (eds) Harmful marine algal blooms. Lavoisier Intercept, Paris, pp 687–692

    Google Scholar 

  • Yoshinaga I, Kim MC, Katanozaka N, Imai I, Uchida A, Ishida Y (1998) Population structure of algicidal marine bacteria targeting the red tide forming alga Heterosigma akashiwo (Raphidophyceae), determined by restriction fragmental length polymorphism analysis of the bacterial 16S ribosomal RNA genes. Mar Ecol Prog Ser 170:33–44

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to Professor Shin-ichi Nakano of Kyoto University (Center for Ecological Research) for warm and helpful comments on the manuscript. The main parts of the field studies in the Seto Inland Sea were achieved during the periods the author worked for the Nansei National Fisheries Research Institute (currently the National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Center), Kyoto University and Hokkaido University. I very much appreciate the helpful advice and cooperation of the scientists and students, and the government bureaucrats involved at that time, especially Drs. M. Yamaguchi, S. Itakura, and K. Nagasaki; Professors T. Honjo, I. Yoshinaga, Y. Ishida, and Y. Hata; and Mr. S. Kikuchi. The studies were supported by grants from the Fisheries Agency, Ministry of Science and Culture, Japan (research nos. 08660228 and 16380131), and the project of Hakodate Green Innovation of UMI (Universal Marine Industry).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Imai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Imai, I. (2015). Interactions Between Harmful Algae and Algicidal and Growth-Inhibiting Bacteria Associated with Seaweeds and Seagrasses. In: Ohtsuka, S., Suzaki, T., Horiguchi, T., Suzuki, N., Not, F. (eds) Marine Protists. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55130-0_25

Download citation

Publish with us

Policies and ethics