Skip to main content

Creation of Novel Technologies for Extracellular Protein Production Toward the Development of Bacillus subtilis Genome Factories

  • Chapter
  • First Online:
Microbial Production

Abstract

Bacillus subtilis has been widely used for the industrial production of useful proteins because of its high protein secretion ability and safety. We focused on genome reduction as a new concept for enhancing production of recombinant enzymes in B. subtilis cells based on detailed analysis of the genome mechanism. First, we reported that a novel B. subtilis strain, MGB874, depleted 20.7 % of the genomic sequence of the wild type by rationally designed deletions to create simplified cells for protein production. When compared with wild-type cells, the productivity of cellulase and protease from transformed plasmids harboring the corresponding genes was markedly enhanced. These results indicate that a bacterial factory specializing in the production of substances can be constructed by deleting the genomic regions unimportant for growth and substance production from B. subtilis. Second, deletion of the rocDEF-rocR region, which is involved in arginine degradation, was found to contribute to the improvement of enzyme production in strain MGB874. The present study indicated that our results demonstrated the effectiveness of a synthetic genomic approach with reduction of genome size to generate novel and useful bacteria for industrial uses. Furthermore, the design of the changes in the transcriptional regulatory network of the nitrogen metabolic pathway in B. subtilis cells could facilitate the generation of improved industrial protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ara K et al (2007) Bacillus minimum genome factory: effective utilization of microbial genome information. Biotechnol Appl Biochem 46:169–178

    Article  CAS  PubMed  Google Scholar 

  • Bohannon DE et al (1989) Positive regulation of glutamate biosynthesis in Bacillus subtilis. J Bacteriol 171:4718–4727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Commichau F et al (2007) A regulatory protein–protein interaction governs glutamate biosynthesis in Bacillus subtilis: the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC. Mol Microbiol 65:642–654

    Article  CAS  PubMed  Google Scholar 

  • Fabret C et al (2002) A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 46:25–36

    Article  CAS  PubMed  Google Scholar 

  • Hakamada Y et al (2000) Deduced amino acid sequence and possible catalytic residues of a thermostable, alkaline cellulase from an alkaliphilic Bacillus strain. Biosci Biotechnol Biochem 64:2281–2289

    Article  CAS  PubMed  Google Scholar 

  • Kageyama Y et al (2009) Genome reduction in Bacillus subtilis and enhanced productivities of recombinant proteins. In: Knudsen WD, Bruns SS (eds) Bacterial DNA, DNA polymerase and DNA helicases. Nova Science, New York

    Google Scholar 

  • Kakeshita H et al (2010) Enhanced extracellular production of heterologous proteins in Bacillus subtilis by deleting the C-terminal region of the SecA secretory machinery. Mol Biotechnol 46:250–257

    Article  CAS  PubMed  Google Scholar 

  • Kakeshita H et al (2011a) Improvement of heterologous protein secretion by Bacillus subtilis. In: Petre M (ed) Advances in applied biotechnology. In Tech (Open access publisher)

    Google Scholar 

  • Kakeshita H et al (2011b) Propeptide of Bacillus subtilis amylase enhances extracellular production of human interferon-α in Bacillus subtilis. Appl Microbiol Biotechnol 89:1509–1517

    Article  CAS  PubMed  Google Scholar 

  • Kakeshita H et al (2011c) Secretion of biologically active human interferon-β by Bacillus subtilis. Biotechnol Lett 33:1847–1852

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T et al (1995) Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43:473–481

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100(8):4678–4683

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T et al (2012) Identification and characterization of a novel polysaccharide deacetylase C(PdaC) from B. subtilis. J Biol Chem 287:9765–9776

    Article  CAS  PubMed  Google Scholar 

  • Kodama T et al (2007a) Effect of the Bacillus subtilis spo0A mutation on cell wall lytic enzymes and extracellular proteases, and prevention of cell lysis. J Biosci Bioeng 103:13–21

    Article  CAS  PubMed  Google Scholar 

  • Kodama T et al (2007b) Bacillus subtilis AprX involved in degradation a heterologous protein during the late stationary growth phase. J Biosci Bioeng 104:135–143

    Article  CAS  PubMed  Google Scholar 

  • Kodama T et al (2011) Approaches for improving protein production in multiple protease-deficient Bacillus subtilis host strains. In: Petre M (ed) Advances in applied biotechnology. In Tech (Open access publisher)

    Google Scholar 

  • Kunst F et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature (Lond) 90:249–256

    Article  Google Scholar 

  • Liu S et al (2007) The accurate replacement of long genome region more than several hundred kilobases in Bacillus subtilis. Genes Genet Syst 82:9

    Article  CAS  PubMed  Google Scholar 

  • Liu S et al (2008) Introduction of marker-free deletions in Bacillus subtilis using the AraR repressor and the ara promoter. Microbiology 154:2562–2570

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS et al (2001) Conservation of the binding site for the arginine repressor in all bacterial lineages. Genome Biol 2:RESEARCH0013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manabe K et al (2011) Combined effect of improved cell yield and increased specific productivity enhances recombinant enzyme production in genome-reduced Bacillus subtilis strain MGB874. Appl Environ Microbiol 77:8370–8381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manabe K et al (2012) High external pH enables more efficient secretion of alkaline α-amylase AmyK38 by Bacillus subtilis. Microb Cell Fact 11:74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizoguchi H et al (2007) Escherichia coli minimum genome factory. Biotechnol Appl Biochem 46:157–167

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi H et al (2008) Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome. DNA Res 15:277–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morimoto T et al (2008) Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res 4:1–9

    Google Scholar 

  • Morimoto T et al (2009) A new simple method to introduce marker-free deletions in the Bacillus subtilis genome. Genes Genet Syst 84:315–318

    Article  CAS  PubMed  Google Scholar 

  • Morimoto T et al (2011a) A new simple method to introduce marker-free deletions in the Bacillus subtilis genome. Methods Mol Biol 765:345–358

    Article  CAS  PubMed  Google Scholar 

  • Morimoto T et al (2011b) Simple method for introducing marker-free deletions in the Bacillus subtilis genome. In: Williams JA (ed) Strain engineering: methods and protocols. Humana Press, Totowa

    Google Scholar 

  • Picossi S et al (2007) Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC. J Mol Biol 365:1298–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Posfai G et al (2006) Emergent properties of reduced-genome Escherichia coli. Science 312:1044–1046

    Article  CAS  PubMed  Google Scholar 

  • Schumann W, Ehrlich SD, Ogasawara N (2000) Functional analysis of bacterial genes: a practice manual. Wiley, Chichester

    Google Scholar 

  • Sekowska A et al (2001) Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis. Genome Biol 2:RESEARCH0019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simonen M, Palva I (1993) Protein secretion in Bacillus species. Microbiol Rev 57:109–137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tagami K et al (2012) Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp(0) mutant of Bacillus subtilis triggers YvyD-dependent dimerization of ribosome. Microbiology Open 1:115–134

    Article  CAS  PubMed  Google Scholar 

  • Westers H et al (2003) Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol 20(12):2076–2090

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research and development of Bacillus subtilis RGF was conducted as part of a subproject, “Development of a Technology for the Creation of a Host Cell” included within the industrial technology project, “Development of Generic Technology for Production Process Starting Productive Function,” of the Ministry of Economy, Trade and Industry, entrusted by the New Energy and Industrial Technology Development Organization (NEDO), Japan. We are grateful to Dr. Shu Ishikawa and Dr. Taku Oshima (Nara Institute of Science and Technology) for help in transcriptome analysis, and Mr. Naoki Kondo and Ms. Eri Shimizu (Kao Corporation) for help in metaborome analysis. We also thank Dr. Tatsuro Fujio, Dr. Hideaki Nanamiya (Tokyo University), Dr. Hiroki Yamamoto (Shinshu University), Dr. Masayuki Hashimoto (Shinshu University), Dr. Tatsuya Fukushima (Shinshu University), Dr. Ken Kurokawa (Tokyo Institute of Technology), Dr. Mitsuhiro Itaya (Keio University), Dr. Hironori Niki (National Institute of Genetics), Dr. Hirofumi Yoshikawa (Tokyo University of Agriculture), Dr. Kei Asai (Saitama University), Dr. Hiroki Takahashi (Nara Institute of Science and Technology), Dr. Shigeo Inoue (Kao Corporation), and Dr. Toshiharu Numata (Kao Corporation) for valuable advice in conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsutoshi Ara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Ara, K. et al. (2014). Creation of Novel Technologies for Extracellular Protein Production Toward the Development of Bacillus subtilis Genome Factories. In: Anazawa, H., Shimizu, S. (eds) Microbial Production. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54607-8_1

Download citation

Publish with us

Policies and ethics