Skip to main content

Tumor Angiogenesis: Fishing for Screening Models

  • Chapter
  • First Online:
Angiogenesis and Vascularisation

Abstract

The process of de novo vessel formation, called angiogenesis, is essential for tumor progression and metastasis. The identification and targeting of the molecular pathways involved in this process are becoming critical issues for anti-angiogenic cancer therapies. To pursue these molecular and pharmacological approaches, researchers need to develop better preclinical models to study tumor angiogenesis and then test anti-angiogenic therapies. As a vertebrate, the zebrafish model system is equipped with easy and powerful transgenesis and imaging tools to investigate not only angiogenesis but also tumor development and its progression. In this chapter we will illustrate how a small tropical fish can help to better understand the tumor angiogenesis process and identify new pharmacological therapies for tumor angiogenesis. Lastly, we describe in what way this model can act as a preclinical model for screening new chemical compounds which are able to selectively block tumors but not the normal healthy angiogenesis in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18

    Article  CAS  PubMed  Google Scholar 

  2. Naumov GN, Akslen LA, Folkman J (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5:1779–1787

    Article  CAS  PubMed  Google Scholar 

  3. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  CAS  PubMed  Google Scholar 

  4. Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, Watnick RS, Straume O, Akslen LA, Folkman J et al (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98:316–325

    Article  PubMed  Google Scholar 

  5. Baeriswyl V, Christofori G (2009) The angiogenic switch in carcinogenesis. Semin Cancer Biol 19:329–337

    Article  CAS  PubMed  Google Scholar 

  6. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  CAS  PubMed  Google Scholar 

  7. Jain RK, Carmeliet P (2012) SnapShot: tumor angiogenesis. Cell 149:1408–1408e1401

    Article  CAS  PubMed  Google Scholar 

  8. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  9. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427

    Article  CAS  PubMed  Google Scholar 

  10. Abadie J, Abbott BP, Abbott R, Abernathy M, Accadia T, Acernese F, Adams C, Adhikari R, Ajith P, Allen B et al (2011) Directional limits on persistent gravitational waves using LIGO S5 science data. Phys Rev Lett 107:271102

    Article  CAS  PubMed  Google Scholar 

  11. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  12. Wesche J, Haglund K, Haugsten EM (2011) Fibroblast growth factors and their receptors in cancer. Biochem J 437:199–213

    Article  CAS  PubMed  Google Scholar 

  13. Rey S, Semenza GL (2010) Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 86:236–242

    Article  CAS  PubMed  Google Scholar 

  14. Singh S, Sadanandam A, Singh RK (2007) Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis Rev 26:453–467

    Article  CAS  PubMed  Google Scholar 

  15. Wang S, Olson EN (2009) AngiomiRs–key regulators of angiogenesis. Curr Opin Genet Dev 19:205–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fish JE, Srivastava D (2009) MicroRNAs: opening a new vein in angiogenesis research. Sci Signal 2(52):1

    Google Scholar 

  17. Suarez Y, Fernandez-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, Iruela-Arispe ML, Merkenschlager M, Sessa WC (2008) Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A 105:14082–14087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Chen Z, Lai TC, Jan YH, Lin FM, Wang WC, Xiao H, Wang YT, Sun W, Cui X, Li YS et al (2013) Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis. J Clin Invest 123:1057–1067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Pulkkinen K, Malm T, Turunen M, Koistinaho J, Yla-Herttuala S (2008) Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett 582:2397–2401

    Article  CAS  PubMed  Google Scholar 

  20. Zhou B, Ma R, Si W, Li S, Xu Y, Tu X, Wang Q (2013) MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett 333:159–169

    Article  CAS  PubMed  Google Scholar 

  21. Zou C, Xu Q, Mao F, Li D, Bian C, Liu LZ, Jiang Y, Chen X, Qi Y, Zhang X et al (2012) MiR-145 inhibits tumor angiogenesis and growth by N-RAS and VEGF. Cell Cycle 11:2137–2145

    Article  CAS  PubMed  Google Scholar 

  22. Isogai S, Horiguchi M, Weinstein BM (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230:278–301

    Article  CAS  PubMed  Google Scholar 

  23. Lawson ND, Weinstein BM (2002) Arteries and veins: making a difference with zebrafish. Nat Rev Genet 3:674–682

    Article  CAS  PubMed  Google Scholar 

  24. Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12:551–564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Santoro MM, Pesce G, Stainier DY (2009) Characterization of vascular mural cells during zebrafish development. Mech Dev 126:638–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Alexander MR, Owens GK (2012) Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol 74:13–40

    Article  CAS  PubMed  Google Scholar 

  27. Hasan J, Shnyder SD, Bibby M, Double JA, Bicknel R, Jayson GC (2004) Quantitative angiogenesis assays in vivo–a review. Angiogenesis 7:1–16

    Article  CAS  PubMed  Google Scholar 

  28. Weinstein BM, Stemple DL, Driever W, Fishman MC (1995) Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nat Med 1:1143–1147

    Article  CAS  PubMed  Google Scholar 

  29. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318

    Article  CAS  PubMed  Google Scholar 

  30. Kamei M, Isogai S, Weinstein BM (2004) Imaging blood vessels in the zebrafish. Methods Cell Biol 76:51–74

    Article  PubMed  Google Scholar 

  31. Torres-Vazquez J, Gitler AD, Fraser SD, Berk JD, Van NP, Fishman MC, Childs S, Epstein JA, Weinstein BM (2004) Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev Cell 7:117–123

    Article  CAS  PubMed  Google Scholar 

  32. Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445:781–784

    Article  CAS  PubMed  Google Scholar 

  33. Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM, Meiler SE, Mohideen MA, Neuhauss SC, Solnica-Krezel L, Schier AF et al (1996) Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123:285–292

    CAS  PubMed  Google Scholar 

  34. Jin SW, Herzog W, Santoro MM, Mitchell TS, Frantsve J, Jungblut B, Beis D, Scott IC, D’Amico LA, Ober EA et al (2007) A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Dev Biol 307:29–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Gore AV, Monzo K, Cha YR, Pan W, Weinstein BM (2012) Vascular development in the zebrafish. Cold Spring Harb Perspect Med 2:a006684

    Article  PubMed  Google Scholar 

  36. Seitz H (2009) Redefining microRNA targets. Curr Biol 19:870–873

    Article  CAS  PubMed  Google Scholar 

  37. Didiano D, Hobert O (2008) Molecular architecture of a miRNA-regulated 3' UTR. RNA 14:1297–1317

    Article  CAS  PubMed  Google Scholar 

  38. Plasterk RH (2006) Micro RNAs in animal development. Cell 124:877–881

    Article  CAS  PubMed  Google Scholar 

  39. Bushati N, Cohen SM (2008) MicroRNAs in neurodegeneration. Curr Opin Neurobiol 18:292–296

    Article  CAS  PubMed  Google Scholar 

  40. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838

    Article  CAS  PubMed  Google Scholar 

  41. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79

    Article  CAS  PubMed  Google Scholar 

  42. Albinsson S, Suarez Y, Skoura A, Offermanns S, Miano JM, Sessa WC (2010) MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function. Arterioscler Thromb Vasc Biol 30:1118–1126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lagendijk AK, Goumans MJ, Burkhard SB, Bakkers J (2011) MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production. Circ Res 109:649–657

    Article  CAS  PubMed  Google Scholar 

  44. Follo C, Ozzano M, Mugoni V, Castino R, Santoro M, Isidoro C (2011) Knock-down of cathepsin D affects the retinal pigment epithelium, impairs swim-bladder ontogenesis and causes premature death in zebrafish. PLoS One 6:e21908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks DS, Gaidatzis D et al (2005) The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev 19:1288–1293

    Article  CAS  PubMed  Google Scholar 

  46. Kloosterman WP, Steiner FA, Berezikov E, de Bruijn E, van de Belt J, Verheul M, Cuppen E, Plasterk RH (2006) Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Res 34:2558–2569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Thatcher EJ, Bond J, Paydar I, Patton JG (2008) Genomic organization of zebrafish microRNAs. BMC Genomics 9:253

    Article  PubMed Central  PubMed  Google Scholar 

  48. Gays D, Santoro MM (2013) The admiR-able advances in cardiovascular biology through the zebrafish model system. Cell Mol Life Sci 70:2489–2503

    Article  CAS  PubMed  Google Scholar 

  49. Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, Galuppo P, Kneitz S, Pena JT, Sohn-Lee C et al (2011) MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124:720–730

    Article  CAS  PubMed  Google Scholar 

  50. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:1710–1713

    Article  CAS  PubMed  Google Scholar 

  51. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND (2010) MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464:1196–1200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Nicoli S, Knyphausen CP, Zhu LJ, Lakshmanan A, Lawson ND (2012) miR-221 is required for endothelial tip cell behaviors during vascular development. Dev Cell 22:418–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Voz ML, Coppieters W, Manfroid I, Baudhuin A, Von Berg V, Charlier C, Meyer D, Driever W, Martial JA, Peers B (2012) Fast homozygosity mapping and identification of a zebrafish ENU-induced mutation by whole-genome sequencing. PLoS One 7:e34671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220

    Article  CAS  PubMed  Google Scholar 

  56. Wienholds E, Schulte-Merker S, Walderich B, Plasterk RH (2002) Target-selected inactivation of the zebrafish rag1 gene. Science 297:99–102

    Article  CAS  PubMed  Google Scholar 

  57. Zhu C, Smith T, McNulty J, Rayla AL, Lakshmanan A, Siekmann AF, Buffardi M, Meng X, Shin J, Padmanabhan A et al (2011) Evaluation and application of modularly assembled zinc-finger nucleases in zebrafish. Development 138:4555–4564

    Article  CAS  PubMed  Google Scholar 

  58. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG 2nd, Tan W, Penheiter SG, Ma AC, Leung AY et al (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong JW, Xi JJ (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23:465–472

    Article  CAS  PubMed  Google Scholar 

  60. Hans S, Freudenreich D, Geffarth M, Kaslin J, Machate A, Brand M (2011) Generation of a non-leaky heat shock-inducible Cre line for conditional Cre/lox strategies in zebrafish. Dev Dyn 240:108–115

    Article  CAS  PubMed  Google Scholar 

  61. Mosimann C, Zon LI (2011) Advanced zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments. Methods Cell Biol 104:173–194

    Article  PubMed  Google Scholar 

  62. Ramachandran R, Reifler A, Wan J, Goldman D (2012) Application of Cre-loxP recombination for lineage tracing of adult zebrafish retinal stem cells. Methods Mol Biol 884:129–140

    Article  CAS  PubMed  Google Scholar 

  63. Goessling W, North TE, Zon LI (2007) New waves of discovery: modeling cancer in zebrafish. J Clin Oncol 25:2473–2479

    Article  CAS  PubMed  Google Scholar 

  64. Patton EE, Zon LI (2001) The art and design of genetic screens: zebrafish. Nat Rev Genet 2:956–966

    Article  CAS  PubMed  Google Scholar 

  65. Amsterdam A, Hopkins N (2006) Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet 22:473–478

    Article  CAS  PubMed  Google Scholar 

  66. Amatruda JF, Patton EE (2008) Genetic models of cancer in zebrafish. Int Rev Cell Mol Biol 271:1–34

    Article  CAS  PubMed  Google Scholar 

  67. Berghmans S, Murphey RD, Wienholds E, Neuberg D, Kutok JL, Fletcher CD, Morris JP, Liu TX, Schulte-Merker S, Kanki JP et al (2005) tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A 102:407–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Pliss GB, Khudoley VV (1975) Tumor induction by carcinogenic agents in aquarium fish. J Natl Cancer Inst 55:129–136

    CAS  PubMed  Google Scholar 

  69. Spitsbergen JM, Tsai HW, Reddy A, Miller T, Arbogast D, Hendricks JD, Bailey GS (2000) Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N′-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. Toxicol Pathol 28:716–725

    Article  CAS  PubMed  Google Scholar 

  70. Topczewska JM, Postovit LM, Margaryan NV, Sam A, Hess AR, Wheaton WW, Nickoloff BJ, Topczewski J, Hendrix MJ (2006) Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 12:925–932

    Article  CAS  PubMed  Google Scholar 

  71. Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn 233:1560–1570

    Article  CAS  PubMed  Google Scholar 

  72. Nicoli S, Presta M (2007) The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc 2:2918–2923

    Article  CAS  PubMed  Google Scholar 

  73. Haldi M, Ton C, Seng WL, McGrath P (2006) Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9:139–151

    Article  PubMed  Google Scholar 

  74. Marques IJ, Weiss FU, Vlecken DH, Nitsche C, Bakkers J, Lagendijk AK, Partecke LI, Heidecke CD, Lerch MM, Bagowski CP (2009) Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9:128

    Article  PubMed Central  PubMed  Google Scholar 

  75. Pruvot B, Jacquel A, Droin N, Auberger P, Bouscary D, Tamburini J, Muller M, Fontenay M, Chluba J, Solary E (2011) Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica 96:612–616

    Article  CAS  PubMed  Google Scholar 

  76. Corkery DP, Dellaire G, Berman JN (2011) Leukaemia xenotransplantation in zebrafish–chemotherapy response assay in vivo. Br J Haematol 153:786–789

    Article  CAS  PubMed  Google Scholar 

  77. Konantz M, Balci TB, Hartwig UF, Dellaire G, Andre MC, Berman JN, Lengerke C (2012) Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 1266:124–137

    Article  PubMed  Google Scholar 

  78. Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci U S A 104:17406–17411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67:2927–2931

    Article  CAS  PubMed  Google Scholar 

  80. Nicoli S, De Sena G, Presta M (2009) Fibroblast growth factor 2-induced angiogenesis in zebrafish: the zebrafish yolk membrane (ZFYM) angiogenesis assay. J Cell Mol Med 13:2061–2068

    Article  PubMed  Google Scholar 

  81. Serbedzija GN, Flynn E, Willett CE (1999) Zebrafish angiogenesis: a new model for drug screening. Angiogenesis 3:353–359

    Article  CAS  PubMed  Google Scholar 

  82. Bayliss PE, Bellavance KL, Whitehead GG, Abrams JM, Aegerter S, Robbins HS, Cowan DB, Keating MT, O’Reilly T, Wood JM et al (2006) Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. Nat Chem Biol 2:265–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Cross LM, Cook MA, Lin S, Chen JN, Rubinstein AL (2003) Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay. Arterioscler Thromb Vasc Biol 23:911–912

    Article  CAS  PubMed  Google Scholar 

  84. Tran TC, Sneed B, Haider J, Blavo D, White A, Aiyejorun T, Baranowski TC, Rubinstein AL, Doan TN, Dingledine R et al (2007) Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res 67:11386–11392

    Article  CAS  PubMed  Google Scholar 

  85. Letamendia A, Quevedo C, Ibarbia I, Virto JM, Holgado O, Diez M, Izpisua Belmonte JC, Callol-Massot C (2012) Development and validation of an automated high-throughput system for zebrafish in vivo screenings. PLoS One 7:e36690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Lessman CA (2011) The developing zebrafish (Danio rerio): a vertebrate model for high-throughput screening of chemical libraries. Birth Defects Res C Embryo Today 93:268–280

    Article  CAS  PubMed  Google Scholar 

  87. Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4:35–44

    Article  CAS  PubMed  Google Scholar 

  88. Peterson RT, Link BA, Dowling JE, Schreiber SL (2000) Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci U S A 97:12965–12969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Ulrich R, Friend SH (2002) Toxicogenomics and drug discovery: will new technologies help us produce better drugs? Nat Rev Drug Discov 1:84–88

    Article  CAS  PubMed  Google Scholar 

  90. Borchers C, Boer R, Klemm K, Figala V, Denzinger T, Ulrich WR, Haas S, Ise W, Gekeler V, Przybylski M (2002) Characterization of the dexniguldipine binding site in the multidrug resistance-related transport protein P-glycoprotein by photoaffinity labeling and mass spectrometry. Mol Pharmacol 61:1366–1376

    Article  CAS  PubMed  Google Scholar 

  91. Peterson RT, Macrae CA (2012) Systematic approaches to toxicology in the zebrafish. Annu Rev Pharmacol Toxicol 52:433–453

    Article  CAS  PubMed  Google Scholar 

  92. McGrath P, Li CQ (2008) Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today 13:394–401

    Article  CAS  PubMed  Google Scholar 

  93. Davidson W, Ren Q, Kari G, Kashi O, Dicker AP, Rodeck U (2008) Inhibition of p73 function by Pifithrin-alpha as revealed by studies in zebrafish embryos. Cell Cycle 7:1224–1230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support in MMS lab come from HFSP, Marie Curie Action, Telethon, and AIRC. We thank Ellen Jane Corcoran for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo M. Santoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Gays, D., Mugoni, V., Santoro, M.M. (2013). Tumor Angiogenesis: Fishing for Screening Models. In: Dulak, J., Józkowicz, A., Łoboda, A. (eds) Angiogenesis and Vascularisation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1428-5_14

Download citation

Publish with us

Policies and ethics