Meiosis: Recombination and the Control of Cell Division

  • Eric Jenczewski
  • Raphael Mercier
  • Nicolas Macaisne
  • Christine Mézard
Chapter

Abstract

Meiosis is a key step in sexual reproduction.. It is required for the production of gametes, consequently fertility, and generates diversity by scrambling parental genotypes. Thus, it is central to plant genome evolution The last ten years have provided a huge step forward in our understanding of chromosome recombination and segregation in plants, with more than 50 genes identified and the deciphering of molecular mechanisms Here we review all these findings on plant meiotic recombination and chromosome dynamics, including both diploid and polyploid species. We discuss their similarities and differences compared to other model species. It appears that there is now an integrated framework to better evaluate how meiosis and recombination have driven plant genome evolution and how genome structure reciprocally impacts meiotic processes.

References

  1. Able JA, Langridge P (2006) Wild sex in the grasses. Trends Plant Sci 11:261–263PubMedCrossRefGoogle Scholar
  2. Able JA, Crismani W, Boden SA (2009) Understanding meiosis and the implications for crop improvement. Funct Plant Biol 36:575–588CrossRefGoogle Scholar
  3. Al-Kaff N, Knight E, Bertin I, Foote T, Hart N, Griffiths S, Moore G (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot 101:863–872PubMedCrossRefGoogle Scholar
  4. Armstrong SJ, Jones GH (2001) Female meiosis in wild-type Arabidopsis thaliana and in two meiotic mutants. Sex Plant Reprod 13:177–183CrossRefGoogle Scholar
  5. Armstrong SJ, Franklin FCH, Jones GH (2003) A meiotic time-course for Arabidopsis thaliana. Sex Plant Reprod 16:141–149CrossRefGoogle Scholar
  6. Azumi Y, Liu D, Zhao D, Li W, Wang G, Hu Y, Ma H (2002) Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein. EMBO J 21:3081–3095PubMedCrossRefGoogle Scholar
  7. Backström N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E, Webster MT, Ost T, Schneider M, Kempenaers B, Ellegren H (2010) The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res 20:485–495PubMedCrossRefGoogle Scholar
  8. Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327:836–840PubMedCrossRefGoogle Scholar
  9. Bennett MD (1971) The duration of meiosis. Proc Roy Soc Lond B Bio 178:277–299CrossRefGoogle Scholar
  10. Beye M, Gattermeier I, Hasselmann M, Gempe T, Schioett M, Baines JF, Schlipalius D, Mougel F, Emore C, Rueppell O, Sirvio A, Guzman-Novoa E, Hunt G, Solignac M, Page RE (2006) Exceptionally high levels of recombination across the honey bee genome. Genome Res 16:1339–1344PubMedCrossRefGoogle Scholar
  11. Bleuyard JY, Gallego ME, White CI (2004) Meiotic defects in the Arabidopsis rad50 mutant point to conservation of the MRX complex function in early stages of meiotic recombination. Chromosoma 113:197–203PubMedCrossRefGoogle Scholar
  12. Boden SA, Shadiac N, Tucker EJ, Langridge P, Able JA (2007) Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum). BMC Mol Biol 8:65PubMedCrossRefGoogle Scholar
  13. Boden SA, Langridge P, Spangenberg G, Able JA (2009) TaASY1 promotes homologous chromosome interactions and is affected by deletion of Ph1. Plant J 57:487–497PubMedCrossRefGoogle Scholar
  14. Borde V, Robine N, Lin W, Bonfils S, Geli V, Nicolas A (2009) Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 28:99–111PubMedCrossRefGoogle Scholar
  15. Bovill WD, Deveshwar P, Kapoor S, Able JA (2009) Whole genome approaches to identify early meiotic gene candidates in cereals. Funct Integr Genomics 9:219–229PubMedCrossRefGoogle Scholar
  16. Broman KW, Rowe LB, Churchill GA, Paigen K (2002) Crossover interference in the mouse. Genetics 160:1123–1131PubMedGoogle Scholar
  17. Brubaker CL, Paterson AH, Wendel JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203CrossRefGoogle Scholar
  18. Buard J, Barthes P, Grey C, de Massy B (2009) Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J 28:2616–2624PubMedCrossRefGoogle Scholar
  19. Bulankova P, Riehs-Kearnan N, Nowack MK, Schnittger A, Riha K (2010) Meiotic progression in Arabidopsis is governed by complex regulatory interactions between SMG7, TDM1, and the meiosis I-specific cyclin TAM. Plant Cell 22:3791–3803PubMedCrossRefGoogle Scholar
  20. Chang Y, Gong L, Yuan W, Li X, Chen G, Zhang Q, Wu C (2009) Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice. Plant Physiol 151:2162–2173PubMedCrossRefGoogle Scholar
  21. Chelysheva L, Vezon D, Belcram K, Gendrot G, Grelon M (2008) The Arabidopsis BLAP75/Rmi1 homologue plays crucial roles in meiotic double-strand break repair. PLoS Genet 4:e1000309PubMedCrossRefGoogle Scholar
  22. Chen YK, Leng CH, Olivares H, Lee MH, Chang YC, Kung WM, Ti SC, Lo YH, Wang AH, Chang CS, Bishop DK, Hsueh YP, Wang TF (2004) Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation. Proc Natl Acad Sci USA 101:10572–10577PubMedCrossRefGoogle Scholar
  23. Cifuentes M, Eber F, Lucas MO, Lode M, Chevre AM, Jenczewski E (2010a) Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. Plant Cell 22:2265–2276PubMedCrossRefGoogle Scholar
  24. Cifuentes M, Grandont L, Moore G, Chevre AM, Jenczewski E (2010b) Genetic regulation of meiosis in polyploid species: new insights into an old question. New Phytol 186:29–36PubMedCrossRefGoogle Scholar
  25. Colas I, Shaw P, Prieto P, Wanous M, Spielmeyer W, Mago R, Moore G (2008) Effective chromosome pairing requires chromatin remodeling at the onset of meiosis. Proc Natl Acad Sci USA 105:6075–6080PubMedCrossRefGoogle Scholar
  26. Copenhaver GP, Housworth EA, Stahl FW (2002) Crossover interference in Arabidopsis. Genetics 160:1631–1639PubMedGoogle Scholar
  27. Couteau F, Belzile F, Horlow C, Grandjean O, Vezon D, Doutriaux MP (1999) Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis. Plant Cell 11:1623–1634PubMedGoogle Scholar
  28. Crismani W, Baumann U, Sutton T, Shirley N, Webster T, Spangenberg G, Langridge P, Able JA (2006) Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics 7:267PubMedCrossRefGoogle Scholar
  29. Croft JA, Jones GH (1989) Chromosome pairing and chiasma formation inspermatocytes and oocytes of Dendrocoelum lacteum (Turbellaria, Tricladida): a cytogenetical and ultrastructural study. Heredity 63:97–106CrossRefGoogle Scholar
  30. d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Simon M, Jenczewski E, Mercier R (2008) Mutations in AtPS1 (Arabidopsis thaliana parallel spindle 1) lead to the production of diploid pollen grains. PLoS Genet 4:e1000274PubMedCrossRefGoogle Scholar
  31. d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol 7:e1000124PubMedCrossRefGoogle Scholar
  32. d’Erfurth I, Cromer L, Jolivet S, Girard C, Horlow C, Sun Y, To JP, Berchowitz LE, Copenhaver GP, Mercier R (2010) The cyclin-A CYCA1;2/TAM is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. PLoS Genet 6:e1000989PubMedCrossRefGoogle Scholar
  33. de Bustos A, Perez R, Jouve N (2007) Characterization of the gene Mre11 and evidence of silencing after polyploidization in Triticum. Theor Appl Genet 114:985–999PubMedCrossRefGoogle Scholar
  34. De Muyt A, Vezon D, Gendrot G, Gallois JL, Stevens R, Grelon M (2007) AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. EMBO J 26:4126–4137PubMedCrossRefGoogle Scholar
  35. De Muyt AD, Mercier R, Mezard C, Grelon M (2009a) Meiotic recombination and crossovers in plants. Genome Dyn 5:14–25PubMedCrossRefGoogle Scholar
  36. De Muyt A, Pereira L, Vezon D, Chelysheva L, Gendrot G, Chambon A, Laine-Choinard S, Pelletier G, Mercier R, Nogue F, Grelon M (2009b) A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana. PLoS Genet 5:e1000654PubMedCrossRefGoogle Scholar
  37. Dean PJ, Siwiec T, Waterworth WM, Schlögelhofer P, Armstrong SJ, West CE (2009) A novel ATM dependant X-ray inducible gene is essential for both plant meiosis and gametogenesis. Plant J 58:791–802PubMedCrossRefGoogle Scholar
  38. Ding D-Q, Hiraoka Y (2007) Nuclear movement enforcing chromosome alignment in fission yeast meiosis without homolog synapsis. In: Egel R, Lankenau DH (eds) Recombination and meiosis. Springer, Berlin/Heidelberg/New York, pp 231–247Google Scholar
  39. Drouaud J, Camilleri C, Bourguignon PY, Canaguier A, Berard A, Vezon D, Giancola S, Brunel D, Colot V, Prum B, Quesneville H, Mezard C (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination “hot spots”. Genome Res 16:106–114PubMedCrossRefGoogle Scholar
  40. Drouaud J, Mercier R, Chelysheva L, Berard A, Falque M, Martin O, Zanni V, Brunel D, Mezard C (2007) Sex-specific crossover distributions and variations in interference level along Arabidopsis thaliana chromosome 4. PLoS Genet 3:e106PubMedCrossRefGoogle Scholar
  41. Duret L, Arndt PF (2008) The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet 4:e1000071PubMedCrossRefGoogle Scholar
  42. Dvorak J, Deal KR, Luo MC (2006) Discovery and mapping of wheat Ph1 suppressors. Genetics 174:17–27PubMedCrossRefGoogle Scholar
  43. Erilova A, Brownfield L, Exner V, Rosa M, Twell D, Mittelsten Scheid O, Hennig L, Köhler C (2009) Imprinting of the polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLoS Genet 5:e1000663PubMedCrossRefGoogle Scholar
  44. Falque M, Anderson LK, Stack SM, Gauthier F, Martin OC (2009) Two types of meiotic crossovers coexist in maize. Plant Cell 21:3915–3925PubMedCrossRefGoogle Scholar
  45. Fawcett JA, Van de Peer Y, Maere S (2013) Significance and biological consequences of polyploidization in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 277–293Google Scholar
  46. Fox DP (1973) The control of chiasma distribution in the locust, Schistocerca gregaria (Forskål). Chromosoma 43:289–328PubMedCrossRefGoogle Scholar
  47. Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK (2007) Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8:77–84PubMedCrossRefGoogle Scholar
  48. Geuting V, Kobbe D, Hartung F, Durr J, Focke M, Puchta H (2009) Two distinct MUS81-EME1 complexes from Arabidopsis process Holliday junctions. Plant Physiol 150:1062–1071PubMedCrossRefGoogle Scholar
  49. Glover J, Grelon M, Craig S, Chaudhury A, Dennis E (1998) Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J 15:345–356PubMedCrossRefGoogle Scholar
  50. Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 20:1115–1117CrossRefGoogle Scholar
  51. Grelon M, Gendrot G, Vezon D, Pelletier G (2003) The Arabidopsis MEI1 gene encodes a protein with five BRCT domains that is involved in meiosis-specific DNA repair events independent of SPO11-induced DSBs. Plant J 83:465–475Google Scholar
  52. Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752PubMedCrossRefGoogle Scholar
  53. Guillon H, Baudat F, Grey C, Liskay RM, de Massy B (2005) Crossover and noncrossover pathways in mouse meiosis. Mol Cell 20:563–573PubMedCrossRefGoogle Scholar
  54. Haldane JBS (1922) Sex ratio and unisexual sterility in hybrid animals. J Genet 12:101–109CrossRefGoogle Scholar
  55. Hamant O, Ma H, Cande WZ (2006) Genetics of meiotic prophase I in plants. Annu Rev Plant Biol 57:267–302PubMedCrossRefGoogle Scholar
  56. Harrison C, Alvey E, Henderson I (2010) Meiosis in flowering plants and other green organisms. J Exp Bot 61:2863–2875PubMedCrossRefGoogle Scholar
  57. Hartung F, Suer S, Knoll A, Wurz-Wildersinn R, Puchta H (2008) Topoisomerase 3alpha and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in Arabidopsis thaliana. PLoS Genet 4:e1000285PubMedCrossRefGoogle Scholar
  58. Hedrick PW (2007) Sex: differences in mutation, recombination, selection, gene flow and genetic drift. Evolution 61:2750–2771PubMedCrossRefGoogle Scholar
  59. Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FC (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500PubMedCrossRefGoogle Scholar
  60. Holm PB, Wang X (1988) The effect of chromosome 5B on synapsis and chiasma formation in wheat, Triticum aestivum cv. Chinese Spring. Carlsberg Res Commum 5:191–208CrossRefGoogle Scholar
  61. Hunter N (2007) Meiotic recombination. In: Aguilera A, Rothstein R (eds) Molecular genetics of recombination. Springer, Berlin/New York, pp 381–442CrossRefGoogle Scholar
  62. Jenczewski E, Alix K (2004) From diploids to allopolyploids: the emergence of pairing control genes. Crit Rev Plant Sci 23:21–45CrossRefGoogle Scholar
  63. Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chèvre AM (2003) PrBn, a major gene controlling homoeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653PubMedGoogle Scholar
  64. Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, Thomas MA, Haussler D, Jacob HJ (2004) Comparative recombination rates in the rat, mouse, and human genomes. Genome Res 14:528–538PubMedCrossRefGoogle Scholar
  65. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100PubMedCrossRefGoogle Scholar
  66. Jolivet S, Vezon D, Froger N, Mercier R (2006) Non conservation of the meiotic function of the Ski8/Rec103 homolog in Arabidopsis. Genes Cells 11:615–622PubMedCrossRefGoogle Scholar
  67. Kearsey MJ, Ramsay LD, Jennings DE, Lydiate DJ, Bohuon EJR, Marshall DF (1995) Higher recombination frequencies in female compared to male meisoses in Brassica oleracea. Theor Appl Genet 92:363–367CrossRefGoogle Scholar
  68. Keeney S (2007) Spo11 and the formation of DNA double-strand breaks in meiosis. In: Egel R, Lankenau D-H (eds) Genome dynamics and stability, vol 2, Recombination and meiosis: crossing-over and disjunction. Springer, Berlin/New York, pp 81–123Google Scholar
  69. Kejnovsky E, Leitch IJ, Leitch AR (2009) Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 24:572–582PubMedCrossRefGoogle Scholar
  70. Khoo KHP, Jolly HR, Able JA (2008) The RAD51 gene family in bread wheat is highly conserved across eukaryotes, with RAD51A upregulated during early meiosis. Funct Plant Biol 35:1267–1277CrossRefGoogle Scholar
  71. Kimber G (1961) Basis of the diploid-like meiotic behaviour of polyploid cotton. Nature 191:98–100CrossRefGoogle Scholar
  72. Kleckner N, Storlazzi A, Zickler D (2003) Coordinate variation in meiotic pachytene SC length and total crossover/chiasma frequency under conditions of constant DNA length. Trends Genet 19:623–628PubMedCrossRefGoogle Scholar
  73. Knight R, Greer E, Draeger T, Thole V, Reader S, Shaw P, Moore G (2010) Inducing chromosome pairing through premature condensation: analysis of wheat interspecific hybrids. Funct Integr Genomics 10:603–608PubMedCrossRefGoogle Scholar
  74. Koszul R, Kim KP, Prentiss M, Kleckner N, Kameoka S (2008) Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 133:1188–1201PubMedCrossRefGoogle Scholar
  75. Kumar R, Bourbon H, de Massy B (2010) Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice. Genes Dev 24:1266–1280PubMedCrossRefGoogle Scholar
  76. Leflon M, Grandont L, Eber F, Huteau V, Coriton O, Chelysheva L, Jenczewski E, Chevre AM (2010) Crossovers get a boost in Brassica allotriploid and allotetraploid hybrids. Plant Cell 22:2253–2264PubMedCrossRefGoogle Scholar
  77. Lhuissier FG, Offenberg HH, Wittich PE, Vischer NO, Heyting C (2007) The mismatch repair protein MLH1 marks a subset of strongly interfering crossovers in tomato. Plant Cell 19:862–876PubMedCrossRefGoogle Scholar
  78. Liu Z, Adamczyk K, Manzanares-Dauleux M, Eber F, Lucas MO, Delourme R, Chevre AM, Jenczewski E (2006) Mapping PrBn and other quantitative trait loci responsible for the control of homeologous chromosome pairing in oilseed rape (Brassica napus L.) haploids. Genetics 174:1583–1596PubMedCrossRefGoogle Scholar
  79. Liu S, Yeh CT, Ji T, Ying K, Wu H, Tang HM, Fu Y, Nettleton D, Schnable PS (2009) Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5:e1000733PubMedCrossRefGoogle Scholar
  80. Lloyd AH, Milligan AS, Langridge P, Able JA (2007) TaMSH7: a cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.). BMC Plant Biol 7:67PubMedCrossRefGoogle Scholar
  81. Luo MC, Dubcovsky J, Dvorak J (1996) Recognition of homeology by the wheat Ph1 locus. Genetics 144:1195–1203PubMedGoogle Scholar
  82. Lynn A, Soucek R, Börner GV (2007) ZMM proteins during meiosis: crossover artists at work. Chromosome Res 15:591–605PubMedCrossRefGoogle Scholar
  83. Macaisne N, Novatchkova M, Peirera L, Vezon D, Jolivet S, Froger N, Chelysheva L, Grelon M, Mercier R (2008) SHOC1, an XPF endonuclease-related protein, is essential for the formation of class I meiotic crossovers. Curr Biol 18:1432–1437PubMedCrossRefGoogle Scholar
  84. Malik SB, Ramesh MA, Hulstrand AM, Logsdon JM Jr (2007) Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss. Mol Biol Evol 24:2827–2841PubMedCrossRefGoogle Scholar
  85. Malkova A, Swanson J, German M, McCusker JH, Housworth EA, Stahl FW, Haber JE (2004) Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics 168:49–63PubMedCrossRefGoogle Scholar
  86. Marsolier-Kergoat MC, Yeramian E (2009) GC content and recombination: reassessing the causal effects for the Saccharomyces cerevisiae genome. Genetics 183:31–38PubMedCrossRefGoogle Scholar
  87. Marston AL, Amon A (2004) Meiosis: cell-cycle controls shuffle and deal. Nat Rev Mol Cell Biol 5:983–997PubMedCrossRefGoogle Scholar
  88. Martinez-Perez E (2009) Meiosis in cereal crops: the grasses are back. Genome Dyn 5:26–42PubMedGoogle Scholar
  89. Mercier R, Grelon M (2008) Meiosis in plants: ten years of gene discovery. Cytogenet Genome Res 120:281–290PubMedCrossRefGoogle Scholar
  90. Mestiri I, Chague V, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Chalhoub B, Jahier J (2010) Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol 186:86–101PubMedCrossRefGoogle Scholar
  91. Mieczkowski PA, Dominska M, Buck MJ, Lieb JD, Petes TD (2007) Loss of a histone deacetylase dramatically alters the genomic distribution of Spo11p-catalyzed DNA breaks in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:3955–3960PubMedCrossRefGoogle Scholar
  92. Mikhailova EI, Naranjo T, Shepherd K, Wennekes-van Eden J, Heyting C, de Jong JH (1998) The effect of the wheat Ph1 locus on chromatin organisation and meiotic chromosome pairing analysed by genome painting. Chromosoma 107:33–350CrossRefGoogle Scholar
  93. Miles LG, Isberg SR, Glenn TC, Lance SL, Dalzell P, Thomson PC, Moran C (2009) A genetic linkage map for the saltwater crocodile (Crocodylus porosus). BMC Genomics 10:339PubMedCrossRefGoogle Scholar
  94. Moore G, Shaw P (2009) Improving the chances of finding the right partner. Curr Opin Genet Dev 19:99–104PubMedCrossRefGoogle Scholar
  95. Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324PubMedCrossRefGoogle Scholar
  96. Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, McVean G, Donnelly P (2010) Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327:876–879PubMedCrossRefGoogle Scholar
  97. Nachman MW (2002) Variation in recombination rate across the genome: evidence and implications. Curr Opin Genet Dev 12:657–663PubMedCrossRefGoogle Scholar
  98. Nicolas SD, Leflon M, Monod H, Eber F, Coriton O, Huteau V, Chevre AM, Jenczewski E (2009) Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids. Plant Cell 21:373–385PubMedCrossRefGoogle Scholar
  99. Noma K, Grewal SI (2002) Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc Natl Acad Sci USA 99(Suppl 4):16438–16445PubMedCrossRefGoogle Scholar
  100. Nonomura K, Nakano M, Fukuda T, Eiguchi M, Miyao A, Hirochika H, Kurata N (2004) The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 16:1008–1020PubMedCrossRefGoogle Scholar
  101. Nonomura K, Nakano M, Eiguchi M, Suzuki T, Kurata N (2006) PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J Cell Sci 119:217–225PubMedCrossRefGoogle Scholar
  102. Osman K, Sanchez-Moran E, Mann SC, Jones GH, Franklin FC (2009) Replication protein A (AtRPA1a) is required for class I crossover formation but is dispensable for meiotic DNA break repair. EMBO J 28:394–404PubMedCrossRefGoogle Scholar
  103. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404PubMedGoogle Scholar
  104. Parvanov ED, Petkov PM, Paigen K (2010) Prdm9 controls activation of mammalian recombination hotspots. Science 327:835PubMedCrossRefGoogle Scholar
  105. Pawlowski WP, Golubovskaya IN, Timofejeva L, Meeley RB, Sheridan WF, Cande WZ (2004) Coordination of meiotic recombination, pairing, and synapsis by PHS1. Science 303:89–92PubMedCrossRefGoogle Scholar
  106. Perella G, Consiglio MF, Aiese-Cigliano R, Cremona G, Sanchez-Moran E, Barra L, Errico A, Bressan RA, Franklin FC, Conicella C (2010) Histone hyperacetylation affects meiotic recombination and chromosome segregation in Arabidopsis. Plant J 62:796–806CrossRefGoogle Scholar
  107. Perez R, Cuadrado A, Chen IP, Puchta H, Jouve N, De Bustos A (2010) The Rad50 genes of diploid and polyploid wheat species. Analysis of homologue and homoeologue expression and interactions with Mre11. Theor Appl Genet 122:251–262PubMedCrossRefGoogle Scholar
  108. Pesin JA, Orr-Weaver TL (2008) Regulation of APC/C activators in mitosis and meiosis. Annu Rev Cell Dev Biol 24:475–499PubMedCrossRefGoogle Scholar
  109. Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–369PubMedCrossRefGoogle Scholar
  110. Prieto P, Shaw P, Moore G (2004) Homologue recognition during meiosis is associated with a change in chromatin structure. Nat Cell Biol 6:906–908PubMedCrossRefGoogle Scholar
  111. Puizina J, Siroky J, Mokros P, Schweizer D, Riha K (2004) Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. Plant Cell 16:1968–1978PubMedCrossRefGoogle Scholar
  112. Quevedo C, Del Cerro AL, Santos JL, Jones GH (1997) Correlated variation of chiasma frequency and synaptonemal complex length in Locusta migratoria. Heredity 78:515–519CrossRefGoogle Scholar
  113. Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639CrossRefGoogle Scholar
  114. Raynard S, Bussen W, Sung P (2006) A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIalpha, and BLAP75. J Biol Chem 281:13861–13864PubMedCrossRefGoogle Scholar
  115. Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847PubMedGoogle Scholar
  116. Riehs N, Akimcheva S, Puizina J, Bulankova P, Idol RA, Siroky J, Schleiffer A, Schweizer D, Shippen DE, Riha K (2008) Arabidopsis SMG7 protein is required for exit from meiosis. J Cell Sci 121:2208–2216PubMedCrossRefGoogle Scholar
  117. Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 13:713–715CrossRefGoogle Scholar
  118. Ronceret A, Doutriaux MP, Golubovskaya IN, Pawlowski WP (2009) PHS1 regulates meiotic recombination and homologous chromosome pairing by controlling the transport of RAD50 to the nucleus. Proc Natl Acad Sci USA 129:173–183Google Scholar
  119. Ross KJ, Fransz P, Armstrong SJ, Vizir I, Mulligan B, Franklin FC, Jones GH (1997) Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines. Chromosome Res 5:551–559PubMedCrossRefGoogle Scholar
  120. Saintenac C, Falque M, Martin OC, Paux E, Feuillet C, Sourdille P (2009) Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 181:393–403PubMedCrossRefGoogle Scholar
  121. Salmon A, Flagel L, Ying B, Udall JA, Wendel JF (2010) Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol 186:123–134PubMedCrossRefGoogle Scholar
  122. Sanchez-Moran E, Mercier R, Higgins JD, Armstrong SJ, Jones GH, Franklin FC (2005) A strategy to investigate the plant meiotic proteome. Cytogenet Genome Res 109:181–189PubMedCrossRefGoogle Scholar
  123. Sanchez-Moran E, Santos JL, Jones GH, Franklin FC (2007) ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes Dev 21:2220–2233PubMedCrossRefGoogle Scholar
  124. Scherthan H, Wang H, Adelfalk C, White EJ, Cowan C, Cande WZ, Kaback DB (2007) Chromosome mobility during meiotic prophase in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:16934–16939PubMedCrossRefGoogle Scholar
  125. Sears ER (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10:31–51PubMedCrossRefGoogle Scholar
  126. Sears ER, Okamoto M (1958) Intergenomic chromosome relationships in hexaploid wheat. In: 10th international congress of genetics. Southam Printing Co., Montreal, pp 258–259Google Scholar
  127. Sheehan MJ, Pawlowski WP (2009) Live imaging of rapid chromosome movements in meiotic prophase I in maize. Proc Natl Acad Sci USA 106:20989–20994PubMedCrossRefGoogle Scholar
  128. Singer A, Perlman H, Yan Y, Walker C, Corley-Smith G, Brandhorst B, Postlethwait J (2002) Sex-specific recombination rates in zebrafish (Danio rerio). Genetics 160:649–657PubMedGoogle Scholar
  129. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348PubMedCrossRefGoogle Scholar
  130. Soltis DE, Buggs RJA, Doyle JJ, Soltis PS (2010) What we still don’t know about polyploidy. Taxon 59:1387–1403Google Scholar
  131. Stacey NJ, Kuromori T, Azumi Y, Roberts G, Breuer C, Wada T, Maxwell A, Roberts K, Sugimoto-Shirasu K (2006) Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. Plant J 48:206–216PubMedCrossRefGoogle Scholar
  132. Stevens R, Grelon M, Vezon D, Oh J, Meyer P, Perennes C, Domenichini S, Bergounioux C (2004) A CDC45 homolog in Arabidopsis is essential for meiosis, as shown by RNA interference-induced gene silencing. Plant Cell 16:99–113PubMedCrossRefGoogle Scholar
  133. Sturtevant AH (1915) The behavior of the chromosomes as studied through linkage. Mol Gen Genet 13:234–287Google Scholar
  134. Sung P, Krejci L, Van Komen S, Sehorn MG (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278:42729–42732PubMedCrossRefGoogle Scholar
  135. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35PubMedCrossRefGoogle Scholar
  136. Szwarcwort-Cohen M, Kasulin-Boneh Z, Sagee S, Kassir Y (2009) Human Cdk2 is a functional homolog of budding yeast Ime2, the meiosis-specific CDK-like kinase. Cell Cycle 8:647–654PubMedCrossRefGoogle Scholar
  137. Talbert PB, Henikoff S (2010) Centromeres convert but don’t cross. PLoS Biol 8:e1000326PubMedCrossRefGoogle Scholar
  138. Tease C, Hulten MA (2004) Inter-sex variation in synaptonemal complex lengths largely determine the different recombination rates in male and female germ cells. Cytogenet Genome Res 107:208–215PubMedCrossRefGoogle Scholar
  139. Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14:680–688PubMedCrossRefGoogle Scholar
  140. Ved Brat S (1966) Genetic systems in Allium. Sex differences in meiosis. Chromosomes Today 1:31–40Google Scholar
  141. Vignard J, Siwiec T, Chelysheva L, Vrielynck N, Gonord F, Armstrong SJ, Schlögelhofer P, Mercier R (2007) The interplay of RecA-related proteins and the MND1-HOP2 complex during meiosis in Arabidopsis thaliana. PLoS Genet 3:1894–1906PubMedCrossRefGoogle Scholar
  142. Wall AM, Riley R, Chapman V (1971) Wheat mutants permitting meiotic chromosome pairing. Genet Res 18:311–328CrossRefGoogle Scholar
  143. Wallace BM, Hulten MA (1985) Meiotic chromosome pairing in the normal human female. Ann Hum Genet 49:215–226PubMedCrossRefGoogle Scholar
  144. Wallace BM, Wallace H (2003) Synaptonemal complex karyotype of zebrafish. Heredity 90:136–140PubMedCrossRefGoogle Scholar
  145. Wang K, Tang D, Wang M, Lu J, Yu H, Liu J, Qian B, Gong Z, Wang X, Chen J, Gu M, Cheng Z (2009) MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. J Cell Sci 122:2055–2063PubMedCrossRefGoogle Scholar
  146. Wang M, Wang K, Tang D, Wei C, Li M, Shen Y, Chi Z, Gu M, Cheng Z (2010a) The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. Plant Cell 22:417–430PubMedCrossRefGoogle Scholar
  147. Wang Y, Jha AK, Chen R, Doonan JH, Yang M (2010b) Polyploidy-associated genomic instability in Arabidopsis thaliana. Genesis 48:254–263PubMedGoogle Scholar
  148. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875–13879PubMedCrossRefGoogle Scholar
  149. Yamada T, Mizuno K, Hirota K, Kon N, Wahls WP, Hartsuiker E, Murofushi H, Shibata T, Ohta K (2004) Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 23:1792–1803PubMedCrossRefGoogle Scholar
  150. Yousafzai FK, Al-Kaff N, Moore G (2010a) The molecular features of chromosome pairing at meiosis: the polyploid challenge using wheat as a reference. Funct Integr Genomics 10:147–156PubMedCrossRefGoogle Scholar
  151. Yousafzai FK, Al-Kaff N, Moore G (2010b) Structural and functional relationship between the Ph1 locus protein 5B2 in wheat and CDK2 in mammals. Funct Integr Genomics 10:157–166PubMedCrossRefGoogle Scholar
  152. Yu H, Wang M, Tang D, Wang K, Chen F, Gong Z, Gu M, Cheng Z (2010) OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice. Chromosoma 119:625–636PubMedCrossRefGoogle Scholar
  153. Yuan W, Li X, Chang Y, Wen R, Chen G, Zhang Q, Wu C (2009) Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J 59:303–315PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Eric Jenczewski
    • 1
  • Raphael Mercier
    • 2
  • Nicolas Macaisne
    • 2
  • Christine Mézard
    • 3
  1. 1.Institut Jean-Pierre BourginInstitut National de RechercheAgronomique, cedexFrance
  2. 2.Institut Jean-Pierre BourginInstitut National de Recherche AgronomiqueVersailles, cedexFrance
  3. 3.Institut Jean-Pierre BourginInstitut National de Recherche AgronomiqueVersailles, cedexFrance

Personalised recommendations