Skip to main content

Meiosis: Recombination and the Control of Cell Division

  • Chapter
  • First Online:
Plant Genome Diversity Volume 2

Abstract

Meiosis is a key step in sexual reproduction.. It is required for the production of gametes, consequently fertility, and generates diversity by scrambling parental genotypes. Thus, it is central to plant genome evolution The last ten years have provided a huge step forward in our understanding of chromosome recombination and segregation in plants, with more than 50 genes identified and the deciphering of molecular mechanisms Here we review all these findings on plant meiotic recombination and chromosome dynamics, including both diploid and polyploid species. We discuss their similarities and differences compared to other model species. It appears that there is now an integrated framework to better evaluate how meiosis and recombination have driven plant genome evolution and how genome structure reciprocally impacts meiotic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Able JA, Langridge P (2006) Wild sex in the grasses. Trends Plant Sci 11:261–263

    Article  PubMed  CAS  Google Scholar 

  • Able JA, Crismani W, Boden SA (2009) Understanding meiosis and the implications for crop improvement. Funct Plant Biol 36:575–588

    Article  Google Scholar 

  • Al-Kaff N, Knight E, Bertin I, Foote T, Hart N, Griffiths S, Moore G (2008) Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: with deletion mutants and expression profiling. Ann Bot 101:863–872

    Article  PubMed  CAS  Google Scholar 

  • Armstrong SJ, Jones GH (2001) Female meiosis in wild-type Arabidopsis thaliana and in two meiotic mutants. Sex Plant Reprod 13:177–183

    Article  Google Scholar 

  • Armstrong SJ, Franklin FCH, Jones GH (2003) A meiotic time-course for Arabidopsis thaliana. Sex Plant Reprod 16:141–149

    Article  Google Scholar 

  • Azumi Y, Liu D, Zhao D, Li W, Wang G, Hu Y, Ma H (2002) Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein. EMBO J 21:3081–3095

    Article  PubMed  CAS  Google Scholar 

  • Backström N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E, Webster MT, Ost T, Schneider M, Kempenaers B, Ellegren H (2010) The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res 20:485–495

    Article  PubMed  CAS  Google Scholar 

  • Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327:836–840

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD (1971) The duration of meiosis. Proc Roy Soc Lond B Bio 178:277–299

    Article  CAS  Google Scholar 

  • Beye M, Gattermeier I, Hasselmann M, Gempe T, Schioett M, Baines JF, Schlipalius D, Mougel F, Emore C, Rueppell O, Sirvio A, Guzman-Novoa E, Hunt G, Solignac M, Page RE (2006) Exceptionally high levels of recombination across the honey bee genome. Genome Res 16:1339–1344

    Article  PubMed  CAS  Google Scholar 

  • Bleuyard JY, Gallego ME, White CI (2004) Meiotic defects in the Arabidopsis rad50 mutant point to conservation of the MRX complex function in early stages of meiotic recombination. Chromosoma 113:197–203

    Article  PubMed  CAS  Google Scholar 

  • Boden SA, Shadiac N, Tucker EJ, Langridge P, Able JA (2007) Expression and functional analysis of TaASY1 during meiosis of bread wheat (Triticum aestivum). BMC Mol Biol 8:65

    Article  PubMed  CAS  Google Scholar 

  • Boden SA, Langridge P, Spangenberg G, Able JA (2009) TaASY1 promotes homologous chromosome interactions and is affected by deletion of Ph1. Plant J 57:487–497

    Article  PubMed  CAS  Google Scholar 

  • Borde V, Robine N, Lin W, Bonfils S, Geli V, Nicolas A (2009) Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 28:99–111

    Article  PubMed  CAS  Google Scholar 

  • Bovill WD, Deveshwar P, Kapoor S, Able JA (2009) Whole genome approaches to identify early meiotic gene candidates in cereals. Funct Integr Genomics 9:219–229

    Article  PubMed  CAS  Google Scholar 

  • Broman KW, Rowe LB, Churchill GA, Paigen K (2002) Crossover interference in the mouse. Genetics 160:1123–1131

    PubMed  Google Scholar 

  • Brubaker CL, Paterson AH, Wendel JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203

    Article  CAS  Google Scholar 

  • Buard J, Barthes P, Grey C, de Massy B (2009) Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J 28:2616–2624

    Article  PubMed  CAS  Google Scholar 

  • Bulankova P, Riehs-Kearnan N, Nowack MK, Schnittger A, Riha K (2010) Meiotic progression in Arabidopsis is governed by complex regulatory interactions between SMG7, TDM1, and the meiosis I-specific cyclin TAM. Plant Cell 22:3791–3803

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Gong L, Yuan W, Li X, Chen G, Zhang Q, Wu C (2009) Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice. Plant Physiol 151:2162–2173

    Article  PubMed  CAS  Google Scholar 

  • Chelysheva L, Vezon D, Belcram K, Gendrot G, Grelon M (2008) The Arabidopsis BLAP75/Rmi1 homologue plays crucial roles in meiotic double-strand break repair. PLoS Genet 4:e1000309

    Article  PubMed  CAS  Google Scholar 

  • Chen YK, Leng CH, Olivares H, Lee MH, Chang YC, Kung WM, Ti SC, Lo YH, Wang AH, Chang CS, Bishop DK, Hsueh YP, Wang TF (2004) Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation. Proc Natl Acad Sci USA 101:10572–10577

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes M, Eber F, Lucas MO, Lode M, Chevre AM, Jenczewski E (2010a) Repeated polyploidy drove different levels of crossover suppression between homoeologous chromosomes in Brassica napus allohaploids. Plant Cell 22:2265–2276

    Article  PubMed  CAS  Google Scholar 

  • Cifuentes M, Grandont L, Moore G, Chevre AM, Jenczewski E (2010b) Genetic regulation of meiosis in polyploid species: new insights into an old question. New Phytol 186:29–36

    Article  PubMed  CAS  Google Scholar 

  • Colas I, Shaw P, Prieto P, Wanous M, Spielmeyer W, Mago R, Moore G (2008) Effective chromosome pairing requires chromatin remodeling at the onset of meiosis. Proc Natl Acad Sci USA 105:6075–6080

    Article  PubMed  CAS  Google Scholar 

  • Copenhaver GP, Housworth EA, Stahl FW (2002) Crossover interference in Arabidopsis. Genetics 160:1631–1639

    PubMed  CAS  Google Scholar 

  • Couteau F, Belzile F, Horlow C, Grandjean O, Vezon D, Doutriaux MP (1999) Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis. Plant Cell 11:1623–1634

    PubMed  CAS  Google Scholar 

  • Crismani W, Baumann U, Sutton T, Shirley N, Webster T, Spangenberg G, Langridge P, Able JA (2006) Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics 7:267

    Article  PubMed  CAS  Google Scholar 

  • Croft JA, Jones GH (1989) Chromosome pairing and chiasma formation inspermatocytes and oocytes of Dendrocoelum lacteum (Turbellaria, Tricladida): a cytogenetical and ultrastructural study. Heredity 63:97–106

    Article  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Simon M, Jenczewski E, Mercier R (2008) Mutations in AtPS1 (Arabidopsis thaliana parallel spindle 1) lead to the production of diploid pollen grains. PLoS Genet 4:e1000274

    Article  PubMed  CAS  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol 7:e1000124

    Article  PubMed  CAS  Google Scholar 

  • d’Erfurth I, Cromer L, Jolivet S, Girard C, Horlow C, Sun Y, To JP, Berchowitz LE, Copenhaver GP, Mercier R (2010) The cyclin-A CYCA1;2/TAM is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. PLoS Genet 6:e1000989

    Article  PubMed  CAS  Google Scholar 

  • de Bustos A, Perez R, Jouve N (2007) Characterization of the gene Mre11 and evidence of silencing after polyploidization in Triticum. Theor Appl Genet 114:985–999

    Article  PubMed  CAS  Google Scholar 

  • De Muyt A, Vezon D, Gendrot G, Gallois JL, Stevens R, Grelon M (2007) AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. EMBO J 26:4126–4137

    Article  PubMed  CAS  Google Scholar 

  • De Muyt AD, Mercier R, Mezard C, Grelon M (2009a) Meiotic recombination and crossovers in plants. Genome Dyn 5:14–25

    Article  PubMed  Google Scholar 

  • De Muyt A, Pereira L, Vezon D, Chelysheva L, Gendrot G, Chambon A, Laine-Choinard S, Pelletier G, Mercier R, Nogue F, Grelon M (2009b) A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana. PLoS Genet 5:e1000654

    Article  PubMed  CAS  Google Scholar 

  • Dean PJ, Siwiec T, Waterworth WM, Schlögelhofer P, Armstrong SJ, West CE (2009) A novel ATM dependant X-ray inducible gene is essential for both plant meiosis and gametogenesis. Plant J 58:791–802

    Article  PubMed  CAS  Google Scholar 

  • Ding D-Q, Hiraoka Y (2007) Nuclear movement enforcing chromosome alignment in fission yeast meiosis without homolog synapsis. In: Egel R, Lankenau DH (eds) Recombination and meiosis. Springer, Berlin/Heidelberg/New York, pp 231–247

    Google Scholar 

  • Drouaud J, Camilleri C, Bourguignon PY, Canaguier A, Berard A, Vezon D, Giancola S, Brunel D, Colot V, Prum B, Quesneville H, Mezard C (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination “hot spots”. Genome Res 16:106–114

    Article  PubMed  CAS  Google Scholar 

  • Drouaud J, Mercier R, Chelysheva L, Berard A, Falque M, Martin O, Zanni V, Brunel D, Mezard C (2007) Sex-specific crossover distributions and variations in interference level along Arabidopsis thaliana chromosome 4. PLoS Genet 3:e106

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Arndt PF (2008) The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet 4:e1000071

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Deal KR, Luo MC (2006) Discovery and mapping of wheat Ph1 suppressors. Genetics 174:17–27

    Article  PubMed  CAS  Google Scholar 

  • Erilova A, Brownfield L, Exner V, Rosa M, Twell D, Mittelsten Scheid O, Hennig L, Köhler C (2009) Imprinting of the polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLoS Genet 5:e1000663

    Article  PubMed  CAS  Google Scholar 

  • Falque M, Anderson LK, Stack SM, Gauthier F, Martin OC (2009) Two types of meiotic crossovers coexist in maize. Plant Cell 21:3915–3925

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JA, Van de Peer Y, Maere S (2013) Significance and biological consequences of polyploidization in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 277–293

    Google Scholar 

  • Fox DP (1973) The control of chiasma distribution in the locust, Schistocerca gregaria (Forskål). Chromosoma 43:289–328

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK (2007) Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8:77–84

    Article  PubMed  CAS  Google Scholar 

  • Geuting V, Kobbe D, Hartung F, Durr J, Focke M, Puchta H (2009) Two distinct MUS81-EME1 complexes from Arabidopsis process Holliday junctions. Plant Physiol 150:1062–1071

    Article  PubMed  CAS  Google Scholar 

  • Glover J, Grelon M, Craig S, Chaudhury A, Dennis E (1998) Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J 15:345–356

    Article  PubMed  CAS  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 20:1115–1117

    Article  CAS  Google Scholar 

  • Grelon M, Gendrot G, Vezon D, Pelletier G (2003) The Arabidopsis MEI1 gene encodes a protein with five BRCT domains that is involved in meiosis-specific DNA repair events independent of SPO11-induced DSBs. Plant J 83:465–475

    Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    Article  PubMed  CAS  Google Scholar 

  • Guillon H, Baudat F, Grey C, Liskay RM, de Massy B (2005) Crossover and noncrossover pathways in mouse meiosis. Mol Cell 20:563–573

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1922) Sex ratio and unisexual sterility in hybrid animals. J Genet 12:101–109

    Article  Google Scholar 

  • Hamant O, Ma H, Cande WZ (2006) Genetics of meiotic prophase I in plants. Annu Rev Plant Biol 57:267–302

    Article  PubMed  CAS  Google Scholar 

  • Harrison C, Alvey E, Henderson I (2010) Meiosis in flowering plants and other green organisms. J Exp Bot 61:2863–2875

    Article  PubMed  CAS  Google Scholar 

  • Hartung F, Suer S, Knoll A, Wurz-Wildersinn R, Puchta H (2008) Topoisomerase 3alpha and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in Arabidopsis thaliana. PLoS Genet 4:e1000285

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW (2007) Sex: differences in mutation, recombination, selection, gene flow and genetic drift. Evolution 61:2750–2771

    Article  PubMed  Google Scholar 

  • Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FC (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500

    Article  PubMed  CAS  Google Scholar 

  • Holm PB, Wang X (1988) The effect of chromosome 5B on synapsis and chiasma formation in wheat, Triticum aestivum cv. Chinese Spring. Carlsberg Res Commum 5:191–208

    Article  Google Scholar 

  • Hunter N (2007) Meiotic recombination. In: Aguilera A, Rothstein R (eds) Molecular genetics of recombination. Springer, Berlin/New York, pp 381–442

    Chapter  Google Scholar 

  • Jenczewski E, Alix K (2004) From diploids to allopolyploids: the emergence of pairing control genes. Crit Rev Plant Sci 23:21–45

    Article  CAS  Google Scholar 

  • Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chèvre AM (2003) PrBn, a major gene controlling homoeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653

    PubMed  CAS  Google Scholar 

  • Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, Thomas MA, Haussler D, Jacob HJ (2004) Comparative recombination rates in the rat, mouse, and human genomes. Genome Res 14:528–538

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  PubMed  CAS  Google Scholar 

  • Jolivet S, Vezon D, Froger N, Mercier R (2006) Non conservation of the meiotic function of the Ski8/Rec103 homolog in Arabidopsis. Genes Cells 11:615–622

    Article  PubMed  CAS  Google Scholar 

  • Kearsey MJ, Ramsay LD, Jennings DE, Lydiate DJ, Bohuon EJR, Marshall DF (1995) Higher recombination frequencies in female compared to male meisoses in Brassica oleracea. Theor Appl Genet 92:363–367

    Article  Google Scholar 

  • Keeney S (2007) Spo11 and the formation of DNA double-strand breaks in meiosis. In: Egel R, Lankenau D-H (eds) Genome dynamics and stability, vol 2, Recombination and meiosis: crossing-over and disjunction. Springer, Berlin/New York, pp 81–123

    Google Scholar 

  • Kejnovsky E, Leitch IJ, Leitch AR (2009) Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol Evol 24:572–582

    Article  PubMed  Google Scholar 

  • Khoo KHP, Jolly HR, Able JA (2008) The RAD51 gene family in bread wheat is highly conserved across eukaryotes, with RAD51A upregulated during early meiosis. Funct Plant Biol 35:1267–1277

    Article  CAS  Google Scholar 

  • Kimber G (1961) Basis of the diploid-like meiotic behaviour of polyploid cotton. Nature 191:98–100

    Article  Google Scholar 

  • Kleckner N, Storlazzi A, Zickler D (2003) Coordinate variation in meiotic pachytene SC length and total crossover/chiasma frequency under conditions of constant DNA length. Trends Genet 19:623–628

    Article  PubMed  CAS  Google Scholar 

  • Knight R, Greer E, Draeger T, Thole V, Reader S, Shaw P, Moore G (2010) Inducing chromosome pairing through premature condensation: analysis of wheat interspecific hybrids. Funct Integr Genomics 10:603–608

    Article  PubMed  CAS  Google Scholar 

  • Koszul R, Kim KP, Prentiss M, Kleckner N, Kameoka S (2008) Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 133:1188–1201

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Bourbon H, de Massy B (2010) Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice. Genes Dev 24:1266–1280

    Article  PubMed  CAS  Google Scholar 

  • Leflon M, Grandont L, Eber F, Huteau V, Coriton O, Chelysheva L, Jenczewski E, Chevre AM (2010) Crossovers get a boost in Brassica allotriploid and allotetraploid hybrids. Plant Cell 22:2253–2264

    Article  PubMed  CAS  Google Scholar 

  • Lhuissier FG, Offenberg HH, Wittich PE, Vischer NO, Heyting C (2007) The mismatch repair protein MLH1 marks a subset of strongly interfering crossovers in tomato. Plant Cell 19:862–876

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Adamczyk K, Manzanares-Dauleux M, Eber F, Lucas MO, Delourme R, Chevre AM, Jenczewski E (2006) Mapping PrBn and other quantitative trait loci responsible for the control of homeologous chromosome pairing in oilseed rape (Brassica napus L.) haploids. Genetics 174:1583–1596

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Yeh CT, Ji T, Ying K, Wu H, Tang HM, Fu Y, Nettleton D, Schnable PS (2009) Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet 5:e1000733

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AH, Milligan AS, Langridge P, Able JA (2007) TaMSH7: a cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.). BMC Plant Biol 7:67

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Dubcovsky J, Dvorak J (1996) Recognition of homeology by the wheat Ph1 locus. Genetics 144:1195–1203

    PubMed  CAS  Google Scholar 

  • Lynn A, Soucek R, Börner GV (2007) ZMM proteins during meiosis: crossover artists at work. Chromosome Res 15:591–605

    Article  PubMed  CAS  Google Scholar 

  • Macaisne N, Novatchkova M, Peirera L, Vezon D, Jolivet S, Froger N, Chelysheva L, Grelon M, Mercier R (2008) SHOC1, an XPF endonuclease-related protein, is essential for the formation of class I meiotic crossovers. Curr Biol 18:1432–1437

    Article  PubMed  CAS  Google Scholar 

  • Malik SB, Ramesh MA, Hulstrand AM, Logsdon JM Jr (2007) Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss. Mol Biol Evol 24:2827–2841

    Article  PubMed  CAS  Google Scholar 

  • Malkova A, Swanson J, German M, McCusker JH, Housworth EA, Stahl FW, Haber JE (2004) Gene conversion and crossing over along the 405-kb left arm of Saccharomyces cerevisiae chromosome VII. Genetics 168:49–63

    Article  PubMed  CAS  Google Scholar 

  • Marsolier-Kergoat MC, Yeramian E (2009) GC content and recombination: reassessing the causal effects for the Saccharomyces cerevisiae genome. Genetics 183:31–38

    Article  PubMed  CAS  Google Scholar 

  • Marston AL, Amon A (2004) Meiosis: cell-cycle controls shuffle and deal. Nat Rev Mol Cell Biol 5:983–997

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Perez E (2009) Meiosis in cereal crops: the grasses are back. Genome Dyn 5:26–42

    PubMed  CAS  Google Scholar 

  • Mercier R, Grelon M (2008) Meiosis in plants: ten years of gene discovery. Cytogenet Genome Res 120:281–290

    Article  PubMed  CAS  Google Scholar 

  • Mestiri I, Chague V, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Chalhoub B, Jahier J (2010) Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol 186:86–101

    Article  PubMed  CAS  Google Scholar 

  • Mieczkowski PA, Dominska M, Buck MJ, Lieb JD, Petes TD (2007) Loss of a histone deacetylase dramatically alters the genomic distribution of Spo11p-catalyzed DNA breaks in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:3955–3960

    Article  PubMed  CAS  Google Scholar 

  • Mikhailova EI, Naranjo T, Shepherd K, Wennekes-van Eden J, Heyting C, de Jong JH (1998) The effect of the wheat Ph1 locus on chromatin organisation and meiotic chromosome pairing analysed by genome painting. Chromosoma 107:33–350

    Article  Google Scholar 

  • Miles LG, Isberg SR, Glenn TC, Lance SL, Dalzell P, Thomson PC, Moran C (2009) A genetic linkage map for the saltwater crocodile (Crocodylus porosus). BMC Genomics 10:339

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Shaw P (2009) Improving the chances of finding the right partner. Curr Opin Genet Dev 19:99–104

    Article  PubMed  CAS  Google Scholar 

  • Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324

    Article  PubMed  CAS  Google Scholar 

  • Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, McVean G, Donnelly P (2010) Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327:876–879

    Article  PubMed  CAS  Google Scholar 

  • Nachman MW (2002) Variation in recombination rate across the genome: evidence and implications. Curr Opin Genet Dev 12:657–663

    Article  PubMed  CAS  Google Scholar 

  • Nicolas SD, Leflon M, Monod H, Eber F, Coriton O, Huteau V, Chevre AM, Jenczewski E (2009) Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids. Plant Cell 21:373–385

    Article  PubMed  CAS  Google Scholar 

  • Noma K, Grewal SI (2002) Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc Natl Acad Sci USA 99(Suppl 4):16438–16445

    Article  PubMed  CAS  Google Scholar 

  • Nonomura K, Nakano M, Fukuda T, Eiguchi M, Miyao A, Hirochika H, Kurata N (2004) The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 16:1008–1020

    Article  PubMed  CAS  Google Scholar 

  • Nonomura K, Nakano M, Eiguchi M, Suzuki T, Kurata N (2006) PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J Cell Sci 119:217–225

    Article  PubMed  CAS  Google Scholar 

  • Osman K, Sanchez-Moran E, Mann SC, Jones GH, Franklin FC (2009) Replication protein A (AtRPA1a) is required for class I crossover formation but is dispensable for meiotic DNA break repair. EMBO J 28:394–404

    Article  PubMed  CAS  Google Scholar 

  • Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404

    PubMed  CAS  Google Scholar 

  • Parvanov ED, Petkov PM, Paigen K (2010) Prdm9 controls activation of mammalian recombination hotspots. Science 327:835

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski WP, Golubovskaya IN, Timofejeva L, Meeley RB, Sheridan WF, Cande WZ (2004) Coordination of meiotic recombination, pairing, and synapsis by PHS1. Science 303:89–92

    Article  PubMed  CAS  Google Scholar 

  • Perella G, Consiglio MF, Aiese-Cigliano R, Cremona G, Sanchez-Moran E, Barra L, Errico A, Bressan RA, Franklin FC, Conicella C (2010) Histone hyperacetylation affects meiotic recombination and chromosome segregation in Arabidopsis. Plant J 62:796–806

    Article  CAS  Google Scholar 

  • Perez R, Cuadrado A, Chen IP, Puchta H, Jouve N, De Bustos A (2010) The Rad50 genes of diploid and polyploid wheat species. Analysis of homologue and homoeologue expression and interactions with Mre11. Theor Appl Genet 122:251–262

    Article  PubMed  CAS  Google Scholar 

  • Pesin JA, Orr-Weaver TL (2008) Regulation of APC/C activators in mitosis and meiosis. Annu Rev Cell Dev Biol 24:475–499

    Article  PubMed  CAS  Google Scholar 

  • Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–369

    Article  PubMed  CAS  Google Scholar 

  • Prieto P, Shaw P, Moore G (2004) Homologue recognition during meiosis is associated with a change in chromatin structure. Nat Cell Biol 6:906–908

    Article  PubMed  CAS  Google Scholar 

  • Puizina J, Siroky J, Mokros P, Schweizer D, Riha K (2004) Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. Plant Cell 16:1968–1978

    Article  PubMed  CAS  Google Scholar 

  • Quevedo C, Del Cerro AL, Santos JL, Jones GH (1997) Correlated variation of chiasma frequency and synaptonemal complex length in Locusta migratoria. Heredity 78:515–519

    Article  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Raynard S, Bussen W, Sung P (2006) A double Holliday junction dissolvasome comprising BLM, topoisomerase IIIalpha, and BLAP75. J Biol Chem 281:13861–13864

    Article  PubMed  CAS  Google Scholar 

  • Reinisch AJ, Dong JM, Brubaker CL, Stelly DM, Wendel JF, Paterson AH (1994) A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847

    PubMed  CAS  Google Scholar 

  • Riehs N, Akimcheva S, Puizina J, Bulankova P, Idol RA, Siroky J, Schleiffer A, Schweizer D, Shippen DE, Riha K (2008) Arabidopsis SMG7 protein is required for exit from meiosis. J Cell Sci 121:2208–2216

    Article  PubMed  CAS  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 13:713–715

    Article  Google Scholar 

  • Ronceret A, Doutriaux MP, Golubovskaya IN, Pawlowski WP (2009) PHS1 regulates meiotic recombination and homologous chromosome pairing by controlling the transport of RAD50 to the nucleus. Proc Natl Acad Sci USA 129:173–183

    Google Scholar 

  • Ross KJ, Fransz P, Armstrong SJ, Vizir I, Mulligan B, Franklin FC, Jones GH (1997) Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines. Chromosome Res 5:551–559

    Article  PubMed  CAS  Google Scholar 

  • Saintenac C, Falque M, Martin OC, Paux E, Feuillet C, Sourdille P (2009) Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 181:393–403

    Article  PubMed  CAS  Google Scholar 

  • Salmon A, Flagel L, Ying B, Udall JA, Wendel JF (2010) Homoeologous nonreciprocal recombination in polyploid cotton. New Phytol 186:123–134

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Moran E, Mercier R, Higgins JD, Armstrong SJ, Jones GH, Franklin FC (2005) A strategy to investigate the plant meiotic proteome. Cytogenet Genome Res 109:181–189

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Moran E, Santos JL, Jones GH, Franklin FC (2007) ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes Dev 21:2220–2233

    Article  PubMed  CAS  Google Scholar 

  • Scherthan H, Wang H, Adelfalk C, White EJ, Cowan C, Cande WZ, Kaback DB (2007) Chromosome mobility during meiotic prophase in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:16934–16939

    Article  PubMed  CAS  Google Scholar 

  • Sears ER (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10:31–51

    Article  PubMed  CAS  Google Scholar 

  • Sears ER, Okamoto M (1958) Intergenomic chromosome relationships in hexaploid wheat. In: 10th international congress of genetics. Southam Printing Co., Montreal, pp 258–259

    Google Scholar 

  • Sheehan MJ, Pawlowski WP (2009) Live imaging of rapid chromosome movements in meiotic prophase I in maize. Proc Natl Acad Sci USA 106:20989–20994

    Article  PubMed  CAS  Google Scholar 

  • Singer A, Perlman H, Yan Y, Walker C, Corley-Smith G, Brandhorst B, Postlethwait J (2002) Sex-specific recombination rates in zebrafish (Danio rerio). Genetics 160:649–657

    PubMed  CAS  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Soltis DE, Buggs RJA, Doyle JJ, Soltis PS (2010) What we still don’t know about polyploidy. Taxon 59:1387–1403

    Google Scholar 

  • Stacey NJ, Kuromori T, Azumi Y, Roberts G, Breuer C, Wada T, Maxwell A, Roberts K, Sugimoto-Shirasu K (2006) Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination. Plant J 48:206–216

    Article  PubMed  CAS  Google Scholar 

  • Stevens R, Grelon M, Vezon D, Oh J, Meyer P, Perennes C, Domenichini S, Bergounioux C (2004) A CDC45 homolog in Arabidopsis is essential for meiosis, as shown by RNA interference-induced gene silencing. Plant Cell 16:99–113

    Article  PubMed  CAS  Google Scholar 

  • Sturtevant AH (1915) The behavior of the chromosomes as studied through linkage. Mol Gen Genet 13:234–287

    Google Scholar 

  • Sung P, Krejci L, Van Komen S, Sehorn MG (2003) Rad51 recombinase and recombination mediators. J Biol Chem 278:42729–42732

    Article  PubMed  CAS  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35

    Article  PubMed  CAS  Google Scholar 

  • Szwarcwort-Cohen M, Kasulin-Boneh Z, Sagee S, Kassir Y (2009) Human Cdk2 is a functional homolog of budding yeast Ime2, the meiosis-specific CDK-like kinase. Cell Cycle 8:647–654

    Article  PubMed  CAS  Google Scholar 

  • Talbert PB, Henikoff S (2010) Centromeres convert but don’t cross. PLoS Biol 8:e1000326

    Article  PubMed  CAS  Google Scholar 

  • Tease C, Hulten MA (2004) Inter-sex variation in synaptonemal complex lengths largely determine the different recombination rates in male and female germ cells. Cytogenet Genome Res 107:208–215

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14:680–688

    Article  PubMed  CAS  Google Scholar 

  • Ved Brat S (1966) Genetic systems in Allium. Sex differences in meiosis. Chromosomes Today 1:31–40

    Google Scholar 

  • Vignard J, Siwiec T, Chelysheva L, Vrielynck N, Gonord F, Armstrong SJ, Schlögelhofer P, Mercier R (2007) The interplay of RecA-related proteins and the MND1-HOP2 complex during meiosis in Arabidopsis thaliana. PLoS Genet 3:1894–1906

    Article  PubMed  CAS  Google Scholar 

  • Wall AM, Riley R, Chapman V (1971) Wheat mutants permitting meiotic chromosome pairing. Genet Res 18:311–328

    Article  Google Scholar 

  • Wallace BM, Hulten MA (1985) Meiotic chromosome pairing in the normal human female. Ann Hum Genet 49:215–226

    Article  PubMed  CAS  Google Scholar 

  • Wallace BM, Wallace H (2003) Synaptonemal complex karyotype of zebrafish. Heredity 90:136–140

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Tang D, Wang M, Lu J, Yu H, Liu J, Qian B, Gong Z, Wang X, Chen J, Gu M, Cheng Z (2009) MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. J Cell Sci 122:2055–2063

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Wang K, Tang D, Wei C, Li M, Shen Y, Chi Z, Gu M, Cheng Z (2010a) The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. Plant Cell 22:417–430

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Jha AK, Chen R, Doonan JH, Yang M (2010b) Polyploidy-associated genomic instability in Arabidopsis thaliana. Genesis 48:254–263

    PubMed  CAS  Google Scholar 

  • Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875–13879

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Mizuno K, Hirota K, Kon N, Wahls WP, Hartsuiker E, Murofushi H, Shibata T, Ohta K (2004) Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 23:1792–1803

    Article  PubMed  CAS  Google Scholar 

  • Yousafzai FK, Al-Kaff N, Moore G (2010a) The molecular features of chromosome pairing at meiosis: the polyploid challenge using wheat as a reference. Funct Integr Genomics 10:147–156

    Article  PubMed  CAS  Google Scholar 

  • Yousafzai FK, Al-Kaff N, Moore G (2010b) Structural and functional relationship between the Ph1 locus protein 5B2 in wheat and CDK2 in mammals. Funct Integr Genomics 10:157–166

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Wang M, Tang D, Wang K, Chen F, Gong Z, Gu M, Cheng Z (2010) OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice. Chromosoma 119:625–636

    Article  PubMed  CAS  Google Scholar 

  • Yuan W, Li X, Chang Y, Wen R, Chen G, Zhang Q, Wu C (2009) Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J 59:303–315

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Mézard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Jenczewski, E., Mercier, R., Macaisne, N., Mézard, C. (2013). Meiosis: Recombination and the Control of Cell Division. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_8

Download citation

Publish with us

Policies and ethics