Skip to main content

Genome Size and the Phenotype

  • Chapter
  • First Online:
Plant Genome Diversity Volume 2

Abstract

Land plant species (Embryophyta) vary more than 2,300-fold in the size of the holoploid genome (C-value) (see Leitch and Leitch 2012a, this volume) with the extremes at both ends of the scale contributed by angiosperms. At the lower end we find some species of the carnivorous Lentibulariaceae with ultrasmall genomes, e.g. Genlisea aurea with 0.065 pg or 63.5 Mbp (1C) (Greilhuber et al. 2006). This is only about 0.40-fold the size of the genome of Arabidopsis thaliana with 0.16 pg or 156.5 Mbp (1C) (Bennett et al. 2003), a species long considered to be the plant with the smallest reliably determined genome size. At the upper end of the scale stands the monocot octoploid Paris japonica (Melanthiaceae) with 2n = 8x = 40 and 152.23 pg or 148.88 Gbp (1C) (Pellicer et al. 2010). Nevertheless, other monocot species such as Fritillaria davisii (69.45 pg, 1C; 2n = 2x = 24, a possible palaeotetraploid), Trillium apetalon (95.0 pg, 1C; 2n = 4x = 20), and the dicot tree parasite Viscum album (102.9 pg, 1C; 2n = 20, palaeotetraploid?) also rank high on the scale regarding monoploid genome size (i.e. Cx-value = 2C-value divided by ploidy level) (Zonneveld 2010). From these examples it is clear that polyploidy plays only a relatively small role in the origin of the huge genome size differences reported. Instead, it is the accumulation of retroposon-like and other repetitive elements in the genomes which are largely responsible for the huge diversity of genome sizes in plants (Bennetzen et al. 2005; Grover and Wendel 2010; see also Kejnovsky et al. 2012 in Volume 1). (N.B. Recent studies using flow cytometry to estimate genome size in species with enormous genomes have highlighted how the more traditional approach of estimation using Feulgen densitometry may considerably underestimate genome size at this upper end of the scale (Zonneveld 2010).)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achigan-Dako E, Fuchs J, Ahanchede A, Blattner F (2008) Flow cytometric analysis in Lagenaria siceraria (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation. Plant Syst Evol 276:9–19

    Article  CAS  Google Scholar 

  • Acquisti C, Kumar S, Elser JJ (2009) Signatures of nitrogen limitation in the elemental composition of the proteins involved in the metabolic apparatus. Proc Roy Soc Lond B Bio 276:2605–2610

    Article  CAS  Google Scholar 

  • Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot 94:897–911

    Article  PubMed  CAS  Google Scholar 

  • Albert VA, Jobson RW, Michael TP, Taylor DJ (2010) The carnivorous bladderwort (Utricularia, Lentibulariaceae): a system inflates. J Exp Bot 61:5–9

    Article  PubMed  CAS  Google Scholar 

  • Ayonoadu U, Rees H (1968) The influence of B-chromosomes on chiasma frequencies in Black Mexican Sweet Corn. Genetica 39:75–81

    Article  Google Scholar 

  • Bancheva S, Greilhuber J (2006) Genome size in Bulgarian Centaurea s.l. (Asteraceae). Plant Syst Evol 257:95–117

    Article  CAS  Google Scholar 

  • Baranyi M, Greilhuber J (1999) Genome size in Allium: in quest of reproducible data. Ann Bot 83:687–695

    Article  Google Scholar 

  • Barrett SCH, Harder LD, Worley AC (1997) The comparative biology of pollination and mating in flowering plants. In: Silvertown J, Franco M, Harper JL (eds) Plant life histories: ecology, phylogeny, and evolution. Cambridge University Press, Cambridge, pp 57–76

    Google Scholar 

  • Beadle NCW (1962) Soil phophate and the delimitation on plant communitites in eastern Australia II. Ecology 43:281–288

    Article  Google Scholar 

  • Beaton MJ, Cavalier-Smith T (1999) Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes. Proc Roy Soc Lond B Bio 266:2053–2059

    Article  CAS  Google Scholar 

  • Beaulieu JM (2010) Commentary: the right stuff: evidence for an “optimal” genome size in a wild grass population. New Phytol 187:883–885

    Article  PubMed  Google Scholar 

  • Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986

    Article  PubMed  Google Scholar 

  • Bennett MD (1971) The duration of meiosis. Proc Roy Soc Lond B Bio 178:277–299

    Article  CAS  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc Roy Soc Lond B Bio 181:109–135

    Article  CAS  Google Scholar 

  • Bennett MD (1987) Variation in genomic form in plants and its ecological implications. New Phytol 106:177–200

    Article  Google Scholar 

  • Bennett MD (1998) Plant genome values: How much do we know? Proc Natl Acad Sci USA 95:2011–2016

    Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms—progress, problems and prospects. Ann Bot 95:45–90

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 5.0, Dec. 2010). http://data.kew.org/cvalues/

  • Bennett MD, Smith JB (1972) The effects of polyploidy on meiotic duration and pollen development in cereal anthers. Proc Roy Soc Lond B Bio 181:81–107

    Article  Google Scholar 

  • Bennett MD, Leitch IJ, Hanson L (1998) DNA amounts in two samples of angiosperm weeds. Ann Bot 82:121–134

    Article  Google Scholar 

  • Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (∼100 Mb) and Drosophila (∼175 Mb) using flow cytometry show genome size in Arabidopsis to be ∼157 Mb and thus 25% larger than the Arabidopsis Genome Initiative estimate of ∼125 Mb. Ann Bot 91:547–557

    Google Scholar 

  • Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132

    Article  PubMed  CAS  Google Scholar 

  • Boivin A, Vendrely R, Vendrely C (1948) L’acide desoxyribonucleique du noyau cellulaire dépositaire des caracteres hereditaires: arguments d’ordre analytique. C R Acad Sci 226:1061–1063

    CAS  Google Scholar 

  • Bragg JG, Wagner A (2009) Protein material costs: single atoms can make an evolutionary difference. Trends Genet 25:5–8

    Article  PubMed  CAS  Google Scholar 

  • Bureš P, Pavlíček T, Horová L, Nevo E (2004) Microgeographic genome size differentiation of the carob tree, Ceratonia siliqua, at ‘Evolution Canyon’, Israel. Ann Bot 93:529–535

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34:247–278

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1985) Eukaryotic gene numbers, non-coding DNA and genome size. In: Cavalier-Smith T (ed) The evolution of genome size. John Wiley & Sons Ltd, Chichester, pp 69–103

    Google Scholar 

  • Cavalier-Smith T (2002) Nucleomorphs: enslaved algal nuclei. Curr Opin Microbiol 5:612–619

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturisation and expansion. Ann Bot 95:147–175

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Guo SL, Yin LP (2010) Applying DNA C-values to evaluate invasiveness of angiosperms: validity and limitation. Biol Invasions 12:1335–1348

    Article  Google Scholar 

  • Commoner B (1964) Roles of deoxyribonucleic acid in inheritance. Nature 202:960–968

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  PubMed  CAS  Google Scholar 

  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S et al. (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410:1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Druškovič B (1984) Uticaj zagadjenja sredine na genetske promene u biljnim populacijama. Thesis, University of Novi Sad, Novi Sad

    Google Scholar 

  • Edwards GA, Endrizzi JE (1975) Cell size, nuclear size and DNA content relationships in Gossypium. Can J Genet Cytol 17:181–186

    CAS  Google Scholar 

  • Ehrendorfer F (1970) Evolutionary patterns and strategies in seed plants. Taxon 19:185–195

    Article  Google Scholar 

  • Evans GM, Rees H (1971) Mitotic cycles in dicotyledons and monocotyledons. Nature 233:350–351

    Article  PubMed  CAS  Google Scholar 

  • Evans GM, Rees H, Snell CL, Sun S (1972) The relationship between nuclear DNA amount and the duration of the mitotic cycle. Chromosomes Today 3:24–31

    CAS  Google Scholar 

  • Fawcett JA, Van de Peer Y, Maere S (2013) Significance and biological consequences of polyploidization in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 277–293

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Flavell RB (1980) The molecular characterisation and organisation of plant chromosomal DNA sequences. Ann Rev Plant Physiol 31:569–596

    Google Scholar 

  • Francis D, Davies MS, Barlow PB (2008) A strong nucleotypic effect of DNA C-value on the cell cycle regardless of ploidy level. Ann Bot 101:747–757

    Article  PubMed  CAS  Google Scholar 

  • Gallagher RV, Leishman MR, Miller JT, Hui C, Richardson DM, Suda J, Trávnícek P (2011) Invasiveness in introduced Australian acacias: the role of species traits and genome size. Diversity Distrib 17:884–897

    Article  Google Scholar 

  • Garcia S, Canela MA, Garnatje T, McArthur ED, Pellicer J, Sanderson SC, Valles J (2008) Evolutionary and ecological implications of genome size in the North American endemic sagebrushes and allies (Artemisia, Asteraceae). Biol J Linn Soc 94:631–649

    Article  Google Scholar 

  • Gasmanová N, Lebeda A, Dolezalová I, Cohen T, Pavlíček T, Fahima T, Nevo E (2007) Genome size variation of Lotus peregrinus at Evolution Canyon I microsite, Lower Nahal Oren, Mt. Carmel, Israel. Acta Biol Cracov Ser Bot 49:39–46

    Google Scholar 

  • Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (2006) Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci USA 103:9566–9571

    Article  PubMed  CAS  Google Scholar 

  • Govindaraju DR, Cullis CA (1991) Modulation of genome size in plants—the influence of breeding systems and neighborhood size. Evol Trends Plants 5:43–51

    Google Scholar 

  • Graham MJ, Nickell CD, Rayburn AL (1994) Relationship between genome size and maturity group in soybean. Theor Appl Genet 88:429–432

    Article  Google Scholar 

  • Green BR (2011) Chloroplast genomes of photosynthetic eukaryotes. Plant J 66:34–44

    Article  PubMed  CAS  Google Scholar 

  • Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev 76:65–101

    Article  PubMed  CAS  Google Scholar 

  • Gregory TR (2005) Genome size evolution in animals. In: Gregory TR (ed) The evolution of the genome. Elsevier, San Diego, pp 3–87

    Chapter  Google Scholar 

  • Gregory TR, Andrews CB, McGuire JA, Witt CC (2009) The smallest avian genomes are found in hummingbirds. Proc Roy Soc Lond B Bio 276:3753–3757

    Article  CAS  Google Scholar 

  • Greilhuber J (1995) Chromosomes of the monocotyledons (general aspects). In: Rudall PJ, Cribb PJ, Humphries CJ (eds) Monocotyledons: systematics and evolution. Whitstable, Royal Botanic Gardens, Kew, pp 379–414

    Google Scholar 

  • Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot 82(suppl A):27–35

    Article  Google Scholar 

  • Greilhuber J (2005) Intraspecific variation in genome size in angiosperms—identifying its existence. Ann Bot 95:91–98

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J (2008) Cytochemistry and C-values—the less well known world of nuclear DNA amounts. Ann Bot 101:791–804

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Obermayer R (1997) Genome size and maturity group in Glycine max (soybean). Heredity 78:547–551

    Article  Google Scholar 

  • Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae with chromosomes of bacterial size. Plant Biol 8:770–777

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro J (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley, Weinheim, pp 67–102

    Chapter  Google Scholar 

  • Grif VG (2000) Some aspects of plant karyology and karyosystematics. Int Rev Cytol 196:131–175

    Article  PubMed  CAS  Google Scholar 

  • Grif VG, Ivanov VB, Machs EM (2002) Cell cycle and its parameters in flowering plants. Tsitologija 44:936–980

    CAS  Google Scholar 

  • Grime JP (1983) Predictions of weed and crop response to climate based upon measurements of nuclear DNA content. Aspects Appl Biol 4:87–98

    Google Scholar 

  • Grime JP (1996) Testing predictions of the impacts of global change on terrestrial ecosystems. Aspects Appl Biol 45:3–13

    Google Scholar 

  • Grime JP, Mowforth MA (1982) Variation in genome size—an ecological interpretation. Nature 299:151–153

    Article  Google Scholar 

  • Grotkopp E, Rejmánek M, Sanderson MJ, Rost TL (2004) Evolution of genome size in Pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58:1705–1729

    PubMed  CAS  Google Scholar 

  • Grover C, Wendel JF (2010) Recent insights into mechanisms of genome size change in plants. J Bot 2010: Article ID 382732 (8 pp)

    Google Scholar 

  • Gulliver G (1875) Observations on the sizes and shapes of the red corpuscles of the blood of vertebrates, with drawings of them to a uniform scale, and extended and revised tables of measurements. Proc Zool Soc Lond 1875:474–495

    Google Scholar 

  • Hanson L, McMahon KA, Johnson MAT, Bennett MD (2001a) First nuclear DNA C-values for another 25 angiosperm families. Ann Bot 88:851–858

    Article  CAS  Google Scholar 

  • Hanson L, McMahon KA, Johnson MAT, Bennett MD (2001b) First nuclear DNA C-values for 25 angiosperm families. Ann Bot 87:251–258

    Article  CAS  Google Scholar 

  • Hertwig R (1903) Über Korrelation von Zell- und Kerngröße und ihre Bedeutung für die geschlechtliche Differenzierung und die Teilung der Zelle. Biol Centralbl 23:49–62

    Google Scholar 

  • Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I (2003) Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33:967–973

    Article  PubMed  CAS  Google Scholar 

  • Houben A, Moghaddam AMB, Klemme S (2013) Biology and evolution of B chromosomes. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Wien, pp 149–165

    Google Scholar 

  • Jasienski M, Bazzaz FA (1995) Genome size and high CO2. Nature 376:559–560

    Article  CAS  Google Scholar 

  • Jobson RW, Albert VA (2002) Molecular rates parallel diversification contrasts between carnivorous plant sister lineages. Cladistics 18:127–136

    Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Kankanpää J, Mannonen L, Schulman AH (1996) The genome sizes of Hordeum species show considerable variation. Genome 39:730–735

    Article  PubMed  Google Scholar 

  • Kapralov MV, Filatov DA (2011) Does large genome size limit speciation in endemic island floras? J Bot 2011:Article ID 458684 (6 pp)

    Google Scholar 

  • Kejnovsky E, Hawkins JS, Feschotte C (2012) Plant transposable elements: biology and evolution. In: Wendel JF, Greilhuber J, Doležel J, Leitch IJ (eds) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer-Verlag, Wien, pp 17–34

    Google Scholar 

  • Kelly LJ, Leitch IJ (2011) Exploring giant plant genomes with next-generation sequencing technology. Chromosome Res 19:939–953

    Article  PubMed  CAS  Google Scholar 

  • Kelly L, Leitch AR, Fay MF, Renny-Byfield S, Pellicer J, Macas J, Leitch IJ (2012) Why size really matters when sequencing plant genomes. Plant Ecol Divers (in press) DOI:10.1080/17550874.2012.716868

  • Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76

    Article  Google Scholar 

  • Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190

    Article  PubMed  CAS  Google Scholar 

  • Knight CA, Clancy RB, Götzenberger L, Dann L, Beaulieu JM (2010) On the relationship between pollen size and genome size. J Bot 2010: Article ID 612017 (18 pp)

    Google Scholar 

  • Körner C (1989) The nutritional status of plants from high altitudes. Oecologia 81:379–391

    Google Scholar 

  • Kraaijeveld K (2010) Genome size and species diversification. Evol Biol 37:227–233

    Article  PubMed  Google Scholar 

  • Kubešová M, Moravcová L, Suda J, Jarošik V, Pyšek P (2010) Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82:81–96

    Google Scholar 

  • Labani RM, Elkington TT (1987) Nuclear DNA variation in the genus Allium L. (Liliaceae). Heredity 59:119–128

    Article  Google Scholar 

  • Lavergne S, Muenke NJ, Molofsky J (2010) Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Ann Bot 105:109–116

    Article  PubMed  CAS  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH, Weinheim, pp 153–176

    Google Scholar 

  • Leitch AR, Leitch IJ (2008) Perspective—genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  PubMed  CAS  Google Scholar 

  • Leitch AR, Leitch IJ (2012) Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol 194:629–646

    Article  PubMed  CAS  Google Scholar 

  • Leitch IJ, Leitch AR (2013) Genome size diversity and evolution in land plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 307–322

    Google Scholar 

  • Leitch IJ, Beaulieu JM, Chase MW, Leitch AR, Fay MF (2010) Genome size dynamics and evolution in monocots. J Bot 2010: Article ID 862516

    Google Scholar 

  • Leong-Škornickovà J, Šída O, Jarolímová V, Sabu M, Fér T, Trávnícek P, Suda J (2007) Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann Bot 100:505–526

    Article  PubMed  Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  PubMed  CAS  Google Scholar 

  • Lysák MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26:85–98

    Article  PubMed  CAS  Google Scholar 

  • Macas J, Kejnovský E, Neumann P, Novák P, Koblížková A, Vyskot B (2011) Next generation sequencing-based analysis of repetitive DNA in the model dioceous plant Silene latifolia. PLoS One 6:e27335

    Article  PubMed  CAS  Google Scholar 

  • MacGillivray CW, Grime JP (1995) Genome size predicts frost-resistance in British herbaceous plants—implications for rates of vegetation response to global warming. Funct Ecol 9:320–325

    Article  Google Scholar 

  • Maluszynska J, Kolano B, Sas-Nowosielska H (2013) Endopolyploidy in plants. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF (eds) Plant genome diversity, vol 2, Physical structure, behaviour and evolution of plant genomes. Springer-Verlag, Wien, pp 99–119

    Google Scholar 

  • Manninen I, Schulman AH (1993) BARE-1, a copia-like retroelement in barley (Hordeum vulgare L.). Plant Mol Biol 22:829–846

    Article  PubMed  CAS  Google Scholar 

  • Martin PG (1966) Variation in amounts of nucleic acids in cells of different species of higher plants. Exp Cell Res 44:84–94

    Article  PubMed  CAS  Google Scholar 

  • Martin PG, Shanks R (1966) Does Vicia faba have multi-stranded chromosomes. Nature 211:650–651

    Article  Google Scholar 

  • Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17:589–596

    Article  PubMed  CAS  Google Scholar 

  • Morgan MT (2001) Transposable element number in mixed mating populations. Genet Res 77:261–275

    Article  PubMed  CAS  Google Scholar 

  • Mowforth MA, Grime JP (1989) Intra-population variation in nuclear DNA amount, cell size and growth rate in Poa annua L. Funct Ecol 3:289–295

    Article  Google Scholar 

  • Müller KF, Borsch T, Legendre L, Porembski S, Barthlott W (2006) Recent progress in understanding the evolution of carnivorous Lentibulariaceae (Lamiales). Plant Biol 8:748–757

    Article  PubMed  Google Scholar 

  • Murín A (1976) Polyploidy and mitotic cycle. Nucleus 19:192–195

    Google Scholar 

  • Nevo E (2012) “Evolution Canyon”, a potential microscale monitor of global warming across life. Proc Natl Acad Sci USA 109:2960–2965

    Article  PubMed  CAS  Google Scholar 

  • Nevo E, Fragman O, Dafni A, Beiles A (1999) Biodiversity and interslope divergence of vascular plants caused by microclimatic differences at “Evolution Canyon”, Lower Nahal Oren, Mount Carmel, Israel. Isr J Plant Sci 47:49–59

    Google Scholar 

  • Noirot M, Barre P, Louarn J, Duperray C, Hamon S (2000) Nucleus-cytosol interactions—A source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Ann Bot 86:309–316

    Article  CAS  Google Scholar 

  • Noirot M, Barre P, Duperray C, Louarn J, Hamon S (2003) Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in coffee tree. Ann Bot 92:259–264

    Article  PubMed  CAS  Google Scholar 

  • Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378

    Article  PubMed  CAS  Google Scholar 

  • Nussaume L, Kanno S, Javot Hln, Marin E, Nakanishi TM, Thibaud M-C (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2: Article 83

    Google Scholar 

  • Ogur M, Erickson RO, Rosen GU, Sax KB, Holden C (1951) Nucleic acids in relation to cell division in Lilium longiflorum. Exp Cell Res 2:73–89

    Article  CAS  Google Scholar 

  • Ohri D, Pistrick K (2001) Phenology and genome size variation in Allium L.—a tight correlation? Plant Biol 3:654–660

    Article  CAS  Google Scholar 

  • Oliver MJ, Petrov D, Ackerly D, Falkowski P, Schofield OM (2007) The mode and tempo of genome size evolution in eukaryotes. Genome Res 17:594–601

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE, Crick FH, Sapienza C (1980) Selfish DNA. Nature 288:645–646

    Article  PubMed  CAS  Google Scholar 

  • Östergren G (1945) Parasitic nature of extra fragment chromosomes. Bot Not 2:157–163

    Google Scholar 

  • Pagel M (1997) Inferring evolutionary processes from phylogenies. Zool Scr 26:331–348

    Article  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  PubMed  CAS  Google Scholar 

  • Pandit MK, Pocock MJO, Kunin WE (2011) Ploidy influences rarity and invasiveness in plants. J Ecol 99:1108–1115

    Article  Google Scholar 

  • Pavliček T, Bureš P, Horová L, Raskina O, Nevo E (2008) Genome size microscale divergence of Cyclamen persicum in Evolution Canyon, Israel. Cent Eur J Biol 3:83–90

    Article  Google Scholar 

  • Pecinka A, Suchanková P, Lysák MA, Trávnícek B, Doležel J (2006) Nuclear DNA content variation among central European Koeleria taxa. Ann Bot 98:117–122

    Article  PubMed  CAS  Google Scholar 

  • Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15

    Article  Google Scholar 

  • Petrov DA (2002) Mutational equilibrium model of genome size evolution. Theor Popul Biol 61:531–544

    Article  PubMed  Google Scholar 

  • Price HJ, Bachmann K (1976) Mitotic cycle time and DNA content in annual and perennial Microseridinae (Compositae, Cichoriaceae). Plant Syst Evol 126:323–330

    Article  Google Scholar 

  • Price HJ, Sparrow AH, Nauman AF (1973) Correlations between nuclear volume, cell volume and DNA content in meristematic cells of herbaceous angiosperms. Experientia 29:1028–1029

    Article  CAS  Google Scholar 

  • Price HJ, Chambers KL, Bachmann K (1981) Geographic and ecological distribution of genomic DNA content variation in Microseris douglasii (Asteraceae). Bot Gaz 142:415–426

    Article  CAS  Google Scholar 

  • Price HJ, Chambers KL, Bachmann K, Riggs J (1986) Patterns of mean nuclear DNA content in Microseris douglasii (Asteraceae) populations. Bot Gaz 147:496–507

    Article  CAS  Google Scholar 

  • Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot 86:929–934

    Article  CAS  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (2005) Biology of plants, 7th edn. W.H. Freeman and Company, New York, pp 686

    Google Scholar 

  • Rayburn AL, Auger JA (1990) Genome size variation in Zea mays ssp. mays adapted to different altitudes. Theor Appl Genet 79:470–474

    Article  Google Scholar 

  • Rees H, Jones GH (1967) Chromosome evolution in Lolium. Heredity 22:1–18

    Article  Google Scholar 

  • Rejmánek M (1996) A theory of seed plant invasiveness: the first sketch. Biol Conserv 78:171–181

    Article  Google Scholar 

  • Rejmánek M (2000) Invasive plants: approaches and predictions. Austral Ecol 25:497–506

    Article  Google Scholar 

  • Renzaglia KS, Rasch EM, Pike LM (1995) Estimates of nuclear DNA content in bryophyte sperm cells: phylogenetic considerations. Am J Bot 82:18–25

    Article  Google Scholar 

  • Rothfels K, Sexsmith E, Heimburger M, Krause MO (1966) Chromosome size and DNA content of species of Anemone L. and related genera (Ranunculaceae). Chromosoma 20:54–74

    Article  Google Scholar 

  • Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogenet Evol 42:92–103

    Article  PubMed  CAS  Google Scholar 

  • Schubert I (2011) ‘Sex and crime’ in evolution—why sexuality was so successful. Genes Genet Syst 86:1–6

    Article  PubMed  Google Scholar 

  • Sharaf K, Bureš P, Hovrová L, Pavliček T, Nevo E (2008) Distribution of abundance and genome size variability in the grain beetle Oryzaephilus surinamensis (Linnaeus, 1758) (Coleoptera: Silvanidae). Zool Middle East 45:79–89

    Google Scholar 

  • Slovák M, Vit P, Urfus T, Suda J (2009) Complex pattern of genome size variation in a polymorphic member of the Asteraceae. J Biogeogr 36:372–384

    Article  Google Scholar 

  • Šmarda P (2006) DNA ploidy levels and intraspecific DNA content variability in Romanian fescues (Festuca, Poaceae) measured in fresh and herbarium material. Folia Geobot 41:417–432

    Article  Google Scholar 

  • Šmarda P, Bureš P (2006) Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot 98:665–678

    Article  PubMed  Google Scholar 

  • Šmarda P, Bureš P (2010) Understanding intraspecific variation in genome size in plants. Preslia 82:41–61

    Google Scholar 

  • Šmarda P, Bureš P (2012) The variation of base composition in plant genomes. In: Wendel JF, Greilhuber J, Doležel J, Leitch IJ (eds) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer-Verlag, Wien, pp 209–236

    Google Scholar 

  • Šmarda P, Bureš P, Hovrová L (2007) Random distribution pattern and non-adaptivity of genome size in a highly variable population of Festuca pallens. Ann Bot 100:141–150

    Article  PubMed  Google Scholar 

  • Šmarda P, Bureš P, Hovrová L, Rotreková O (2008) Intrapopulation genome size dynamics in Festuca pallens. Ann Bot 102:599–607

    Article  PubMed  Google Scholar 

  • Šmarda P, Horová L, Bureš P, Hralová I, Marková M (2010) Stabilizing selection on genome size in a population of Festuca pallens under conditions of intensive intraspecific competition. New Phytol 187:1195–1204

    Article  PubMed  Google Scholar 

  • Sparrow AH, Miksche JP (1961) Correlation of nuclear volume and DNA content with higher plant tolerance to chronic radiation. Science 134:282–283

    Article  PubMed  CAS  Google Scholar 

  • Stebbins GL (1957) Self fertilization and population variability in higher plants. Am Nat 91:337–354

    Article  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Strasburger E (1893) Über die Wirkungssphäre der Kerne und die Zellgröße. Histol Beitr 5:97–124

    Google Scholar 

  • Suda J, Kyncl T, Jarolimová V (2005) Genome size variation in Macaronesian angiosperms: forty percent of the Canarian endemic flora completed. Plant Syst Evol 252:215–238

    Article  CAS  Google Scholar 

  • Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss GM, Trávnícek P, Schönswetter P (2007) Complex distribution patterns of di-, tetra-, and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae). Am J Bot 94:1391–1401

    Article  PubMed  Google Scholar 

  • Suoniemi A, Anamthawat-Jónsson K, Arna T, Schulman AH (1996a) Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome. Plant Mol Biol 30:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Suoniemi A, Narvanto A, Schulman AH (1996b) The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays. Plant Mol Biol 31:295–306

    Article  PubMed  CAS  Google Scholar 

  • Swift H (1950) The constancy of desoxyribose nucleic acid in plant nuclei. Proc Natl Acad Sci USA 36:643–654

    Article  PubMed  CAS  Google Scholar 

  • te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesova M, Pysek P (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45

    Article  Google Scholar 

  • Temsch EM, Temsch W, Ehrendorfer-Schratt L, Greilhuber J (2010) Heavy metal pollution, selection, and genome size: The species of the Žerjav study revisited with flow cytometry. J Bot 2010: Article ID 596542 (11 pp)

    Google Scholar 

  • Thomas CA (1971) The genetic organization of chromosomes. Annu Rev Genet 5:237–256

    Article  PubMed  CAS  Google Scholar 

  • Turpeinen T, Kulmala J, Nevo E (1999) Genome size variation in Hordeum spontaneum populations. Genome 42:1094–1099

    PubMed  CAS  Google Scholar 

  • Van’t Hof J (1965) Relationships between mitotic cycle duration, S period duration and average rate of DNA synthesis in root meristem cells of several plants. Exp Cell Res 39:48–58

    Article  Google Scholar 

  • Van’t Hof J, Sparrow AH (1963) A relationship between DNA content, nuclear volume, and minimum mitotic cycle time. Proc Natl Acad Sci USA 49:897–902

    Article  PubMed  Google Scholar 

  • Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM et al. (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72

    Article  PubMed  CAS  Google Scholar 

  • Vendrely R, Vendrely C (1948) La teneur du noyau cellulaire en acide désoxyribonucléique à travers les organes, les individus et les espèces animales: Techniques et premiers résultats. Experientia 4:434–436

    Article  PubMed  CAS  Google Scholar 

  • Verma RS, Lin MS (1979) The duration of DNA synthetic (S) period in Zea mays: a genetic control. Theor Appl Genet 54:277–282

    Article  Google Scholar 

  • Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784

    PubMed  CAS  Google Scholar 

  • Vidic T, Greilhuber J, Vilhar B, Dermastia M (2009) Selective significance of genome size in a plant community with heavy metal pollution. Ecol Appl 19:1515–1521

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov AE (2003) Selfish DNA is maladaptive: evidence from the plant Red List. Trends Genet 19:609–614

    Article  PubMed  CAS  Google Scholar 

  • Walker DJ, Monino I, Correal E (2006) Genome size in Bituminaria bituminosa (L.) C.H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Environ Exp Bot 159:104–116

    Google Scholar 

  • Wendel JF, Wessler SR (2000) Retrotransposon-mediated genome evolution on a local ecological scale. Proc Natl Acad Sci USA 97:6250–6252

    Article  PubMed  CAS  Google Scholar 

  • Whitney KD, Baack EJ, Hamrick JL, Godt MJW, Barringer BC et al. (2010) A role for nonadaptive processes in plant genome size evolution? Evolution 64:2097–2109

    PubMed  Google Scholar 

  • Wright SI, Schoen DJ (1999) Transposon dynamics and the breeding system. Genetica 107:139–148

    Article  PubMed  CAS  Google Scholar 

  • Wright SI, Ness RW, Foxe JP, Barrett SCH (2008) Genomic consequences of outcrossing and selfing in plants. Int J Plant Sci 169:105–118

    Article  Google Scholar 

  • Yang DP, Dodson EO (1970) The amounts of nuclear DNA and the duration of DNA synthetic period (S) in related diploid and autotetraploid species of oats. Chromosoma 31:309–320

    Article  Google Scholar 

  • Zonneveld BJM (2010) New record holders for maximum genome size in eudicots and monocots. J Bot 2010: Article ID 527357

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Greilhuber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Greilhuber, J., Leitch, I.J. (2013). Genome Size and the Phenotype. In: Greilhuber, J., Dolezel, J., Wendel, J. (eds) Plant Genome Diversity Volume 2. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1160-4_20

Download citation

Publish with us

Policies and ethics