Skip to main content

Ultraschalltherapie

  • Chapter
  • First Online:
Evidenzbasierte Elektrotherapie
  • 1528 Accesses

Zusammenfassung

Ultraschall ist eine Anwendung, bei der mechanische Energie umgesetzt wird in Wärme. Die mechanische Einwirkung hat außerdem wahrscheinlich eine spezifische eigene Wirkung. Die Erwärmung findet vor allem statt in Gewebe mit einer hohen Dichte, wie Bändern, Gelenkkapseln und Narbengewebe, auf einer Tiefe von maximal 5 cm. Die Schallenergie wird auch benutzt, um Medikamente einzuschleusen, wobei die Sonophorese dazu besser geeignet scheint als die Iontophorese. Auf SpringerLink finden sich ein Befundbogen, eine Checkliste zum Behandlungsablauf und eine allgemeine Übersicht zu den verschiedenen Anwendungen zum Herunterladen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 01 January 2022

    Es wurden inhaltliche Korrekturen zu diesem Kapitel vorgenommen

Literatur

  • Abd El Baky A, Waked IS (2011) Non-steroidal anti-inflammatory phonophoresis versus topical application in improvement of hand grip strength in psoriatic arthritic patients. J Am Sci 7(6):110–114

    Google Scholar 

  • Abramson DI, Kahn A, Tuck S Jr, Turman GA, Rejal H, Fleischer C (1958) Relationship between a range of tissue temperature and local oxygen uptake in the human forearm. 1 changes observed under resting conditions. J Clin Invest 37:1031–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adair HS, Levine D (2019) Effects of 1-MHz Ultrasound on Epaxial Muscle Temperature in Horses. Front Vet Sci 6;6:177

    Google Scholar 

  • Akinbo SR, Aiyejusunle CB, Akinyemi OA, Adesegun SA, Danesi MA (2007) Comparison of the therapeutic efficacy of phonophoresis and iontophoresis using dexamethasone sodium phosphate in the management of patients with knee osteoarthritis. Niger Postgrad Med J 14(3):190–194

    Google Scholar 

  • Aleem IS, Bhandari M (2016) Cochrane in CORR: ultrasound and shockwave therapy for acute fractures in adults (review). Clin Orthop Relat Res 474:1553–1559

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Román R, Merino G, Kalia YN, Naik A, Guy RH (2003) Skin permeability enhancement by low frequency sonophoresis: lipid extraction and transport pathways. J Pharm Sci 92(6):1138–1146

    Google Scholar 

  • Andrades AO, Mazzanti A, Beckmann DV, Aiello G, Chaves RO, Santos RP (2014) Heating produced by therapeutic ultrasound in the presence of a metal plate in the femur of canine cadavers. Arq Bras Med Vet Zootec 66(5):1343–1350

    Article  Google Scholar 

  • Arand M (2019) Physikalische Verfahren mit Einfluss auf die Knochenheilung. Unfallchirurg 12:526–533

    Article  Google Scholar 

  • Arnold W (1983) Temperatureffekte an Chirurgischen Metallimplantaten Unter Elektrotherapie – Ultraschall. Z Physiother 35:253–258

    Google Scholar 

  • Asano J, Suisha F, Takada M, Kawasaki N, Miyazaki S (1997) Effect of pulsed ultrasound on the transdermal absorption of indomethacin from an ointment in rats. Biol Pharm Bull 20(3):288–291

    Article  CAS  PubMed  Google Scholar 

  • Ashton DF, Draper DO, Myrer JW (1998) Temperature rise in human muscle during ultrasound treatments using flex-all as a coupling agent. J Athl Train 33(2):136–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Askin A, Savas S, Koyuncuoglu HR, Baloglu HH, Inci MF (2014) Low dose high frequency ultrasound therapy for stellate ganglion blockade in complex regional pain syndrome type I: a randomised placebo controlled trial. Int J Exp Med 7(12):5603–5611

    Google Scholar 

  • Bahadir C, Majlesi J, Unalan H (2009) The effect of high-power pain threshold ultrasound therapy on the electrical activity of trigger points and local twitch response on electromyography: a preliminary study. J Musculoskeletal Pain 17(2):162–172

    Article  Google Scholar 

  • Baker RJ, Bell GW (1991) The effect of therapeutic modalities on blood flow in the human calf. J Orthop Sports Phys Ther 13(1):23–27

    Google Scholar 

  • Bakhtiary AH, Fatemi E, Emami M, Malek M (2013) Phonophoresis of dexamethasone sodium phosphate may manage pain and symptoms of patients with carpal tunnel syndrome. Clin J Pain 29:348–353

    Article  PubMed  Google Scholar 

  • Ballerini R, Casini A, Chinol M, Mannucci C, Giaccai L, Salvi M (1986) Study on the absorption of ketoprofen topically administered in man: comparison between tissue and plasma levels. Int J Pharmacol Res 6(1):69–72

    CAS  Google Scholar 

  • Beetge E, du Plessis J, Müller DG, Goosen C, van Rensburg FJ (2000) The influence of the physicochemical characteristics and pharmacokinetic properties of selected NSAID‘s on their transdermal absorption. Int J Pharm 193(2):261–264

    Google Scholar 

  • Benlidayi IC, Gokcen N, Basaran S (2018) Comparative short-term effectiveness of Ibuprofen gel and cream phonophoresis in patients with knee osteoarthritis. Rheumatol Int. https://doi.org/10.1007/s00296-018-4099-9

  • Bishop S, Draper DO, Knight KL, Feland JB, Eggett D (2004) Human tissue-temperature rise during ultrasound treatments with the Aquaflex gel pad. J Athl Train 39(2):126–131

    PubMed  PubMed Central  Google Scholar 

  • Bosch G, Lin YL, van Schie HT, van De Lest CH, Barneveld A, van Weeren PR (2007) Effect of extracorporeal shock wave therapy on the biochemical composition and metabolic activity of tenocytes in normal tendinous structures in ponies. Equine Vet J 39(3):226–231

    Google Scholar 

  • Boyaci A, Tutoglu A, Boyaci N, Aridici R, Koca I (2013) Comparison of the efficacy of ketoprofen phonophoresis, ultrasound, and short-wave diathermy in knee osteoarthritis. Rheumatol Int 33(11):2811–8013

    Article  CAS  PubMed  Google Scholar 

  • Brunner GD, Lehmann JF, McMillan JA, Lane KE, Bell JW (1958) Can ultrasound be used in the presence of surgical metal implants: an experimental approach. Phys Ther Rev 38(12):823–824

    Article  CAS  Google Scholar 

  • Burr PO, Demchak TJ, Cordova ML, Ingersoll CD, Stone MB (2004) Effects of altering intensity during 1-MHz ultrasound treatment on increasing triceps surae temperature. Journal of Sport Rehabilitation, 13(4):275–286

    Google Scholar 

  • Byl NN, McKenzie AL, West JM, Whitney JD, Hunt TK, Scheuenstuhl HA (1992) Low-dose ultrasound effects on wound healing: a controlled study with Yucatan pigs. Arch Phys Med Rehabil 73:656–664

    CAS  PubMed  Google Scholar 

  • Cacchio A, Rompe JD, Furia JP, Susi P, Santilli V, De Paulis F (2011) Shockwave therapy for the treatment of chronic proximal hamstring tendinopathy in professional athletes. Am J Sports Med 39(1):146–153

    Google Scholar 

  • Cage SA, Rupp KA, Castel JC, Saliba EN, Hertel J, Saliba SA (2013) Relative acoustic transmission of topical preparations used with therapeutic ultrasound. Arch Phys Med Rehabil 94:2126–2130

    Article  PubMed  Google Scholar 

  • Cagnie B, Vinck E, Rimbaut S, Vanderstraeten G (2003) Phonophoresis versus topical application of Ketoprofen: comparison between tissue and plasma levels. Phys Ther 83(8):707–712

    Article  PubMed  Google Scholar 

  • Cameron MH, Monroe LG (1992) Relative transmission of ultrasound by media customarily used for phonophoresis. Phys Ther 72(2):142–148

    Google Scholar 

  • Casarotto RA, Adamowski JC, Fallopa F, Bacanelli F (2004) Coupling agents in therapeutic ultrasound: acoustic and thermal behaviour. Arch Phys Med Rehabil 85:162165

    Google Scholar 

  • Chan AK, Myrer JW, Measom GJ, Draper DO (1998) Temperature changes in human patellar tendon in response to therapeutic ultrasound. J Athl Train 3(2):130–135

    Google Scholar 

  • Chen YJ, Wang CJ, Yang KD, Kuo YR, Huang HC, Huang YT, Sun YC, Wang FS (2004) Extracorporeal shock waves promote healing of collagenase-induced Achilles tendinitis and increase TGF-beta1 and IGF-I expression. J Orthop Res 22(4):854–861

    Google Scholar 

  • Crowcroft N, Maguire H, Fleming M, Peacock J, Thomas J (1996) Methicillin-resistant Staphylococcus aureus: investigation of a hospital outbreak using a case-control study. J Hosp Infect 34(4):301–309

    Article  CAS  PubMed  Google Scholar 

  • Cruz JM, Hauck M, Cardoso Pereira AP, Borges Moraes M, Noronha Martins C, da Silva PF, Della Mea Plentz R, Peres W, Vargas da Silva AM, Signori LU (2016) Effects of different ultrasound waveforms on endothelial function in healthy volunteers: a randomized clinical trial. Ultrasound Med Biol 42(2):471–480

    Article  PubMed  Google Scholar 

  • Cullum N, Liu Z (2017) Therapeutic ultrasound for venous leg ulcers. Cochrane Database Syst Rev 5(5):CD001180

    Google Scholar 

  • Curie J, Curie P (1880) Développement par compression de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de la Société minéralogique de France 3(4):90–93

    Article  Google Scholar 

  • Dalecki D (2004) Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng 6:229–248

    Article  CAS  PubMed  Google Scholar 

  • Demmink JH, Helders PJM, Hobæk H, Enwemeka C (2003) The variation of heating depth with therapeutic ultrasound frequency in physiotherapy. Ultrasound Med Biol 29(1):113–118

    Article  PubMed  Google Scholar 

  • Deniz S, Topuz O, Atalay NS, Sarsan A, Yildiz N, Findikoglu G, Karaca O, Ardic F (2009) Comparison of the effectiveness of pulsed and continuous diclofenac phonophoresis in treatment of knee osteoarthritis. J Phys Sci 21:331–336

    Google Scholar 

  • Doan N, Reher P, Meghji S, Harris M (1999) In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis and cytokine production by human fibroblasts, osteoblasts and monocytes. J Oral Maxillofac Surg 57:409–419

    Article  CAS  PubMed  Google Scholar 

  • Draper DO (2010) Ultrasound and joint mobilizations for achieving normal wrist range of motion after injury or surgery: a case series. J Athl Train 45(5):486–491

    Article  PubMed  PubMed Central  Google Scholar 

  • Draper DO (2014) Facts and misfits in ultrasound therapy: steps to improve your treatment results. Eur J Phys Rehabil Med 50:209–216

    CAS  PubMed  Google Scholar 

  • Draper DO, Ricard MD (1995) Rate of temperature decay in human muscle following 3 MHz ultrasound: the stretching window revealed. J Athl Train 30(4):304–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Draper DO, Sunderland S (1993) Examination of the law of grotthus-draper: does ultrasound penetrate subcutaneous fat in humans? J Athl Train 28(3):246, 248–250

    Google Scholar 

  • Draper DO, Sunderland S, Kirkendall DT, Ricard M (1993) A comparison of temperature rise in human calf muscles following applications of underwater and topical gel ultrasound. J Orthop Sports Phys Ther 17(5):247–251

    Article  CAS  PubMed  Google Scholar 

  • Draper DO, Castel JC, Castel D (1995) Rate of temperature increase in human muscle during 1 MHZ and 3 MHz continuous ultrasound. J Orthop Sports Phys Ther 22(4):142–150

    Article  CAS  PubMed  Google Scholar 

  • Draper DO, Harris ST, Schulthies S, Durrant E, Knight KL, Ricard M (1998a) Hot-pack and 1 MHz ultrasound treatments have an additive effect on muscle temperature increase. J Athl Train 33(1):21–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Draper DO, Anderson C, Schulthies S, Ricard MD (1998b) Immediate and residual changes in dorsiflexion range of motion using an ultrasound heat and stretch routine. J Athl Train 33(2):141–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Draper DO, Mahaffey C, Kaiser D, Eggett D, Jarmin J (2010) Thermal ultrasound decreases tissue stiffness of trigger points in upper trapezius muscles. Physiother Theor Pract 26(3):167–172

    Article  Google Scholar 

  • Dular M, Požar T, Zevnik J, Petkovšek R (2019) High speed observation of damage created by a collapse of a single cavitation bubble. Wear 418–419:13–23

    Article  Google Scholar 

  • Dyson M, Luke DA (1986) Induction of mast cell degranulation in skin by ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 33(2):194–201

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi S, Abbasnia K, Motealleh A, Kooroshfard N, Kamali F, Ghaffarinezhad F (2012) Effect of lidocaine phonophoresis on sensory blockade: pulsed or continuous mode of therapeutic ultrasound? Physiotherapy 98:57–63

    Article  CAS  PubMed  Google Scholar 

  • Elder SA (1959) Cavitation microstreaming. J Acoust Soc Am 31(1):54–64

    Article  Google Scholar 

  • Emsen IM (2007) The effect of ultrasound on flap survival: an experimental study in rats. Burns 33:369–371

    Article  PubMed  Google Scholar 

  • Ennis WJ, Lee C, Gellada K, Corbiere TF, Koh TJ (2016) Advanced Technologies to Improve Wound Healing: Electrical Stimulation, Vibration Therapy, and Ultrasound-What Is the Evidence? Plast Reconstr Surg 138(3 Suppl):94S–104S

    Google Scholar 

  • Everbach EC, Francis CW (2000) Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol 26(7):1153–1160

    Google Scholar 

  • Faisal Mohamed CK, Sumila M, Mathias L, Ajith S (2013) Comparative study on the effect of low level laser therapy versus phonophoresis in the management of lateral epicondylitis. NUJHS 3(1):35–44

    Google Scholar 

  • Francis C, Onundarson PT, Carstensen EL, Blinc A, Meltzer RS, Schwarz K, Marder VJ (1992) Enhancement of fibrinolysis in vitro by ultrasound. J Clin Invest 90(5):2063–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franson J, Draper DO, Rigby JH, Johnson AW, Mitchell UH (2014) Tissues at a 3-cm depth vigorously heat using 3-MHz ultrasound. Athl Train Sports Health Care 6(6):267–272

    Article  Google Scholar 

  • Frenkel V, Kimmel E, Iger Y (1999) Ultrasound-induced cavitation damage to external epithelia of fish skin. Ultrasound Med Biol. Oct;25(8):1295-303

    Google Scholar 

  • Frye JL, Johns LD, Tom JA, Ingersoll CD (2007) Blisters on the anterior shin in 3 research subjects after a 1-MHz, 1,5 W/cm2, continuous ultrasound treatment: a case series. J Athl Train 42(3):425–430

    PubMed  PubMed Central  Google Scholar 

  • Fyfe MC, Chahl LA (1984) Mastcell degranulation and increased vascular permeability induced by “'therapeutic” ultrasound in the rat ankle joint. Br Exp Path 65:671–676

    CAS  Google Scholar 

  • Gallo JA, Draper DO, Thein Brody L, Fellingham GW (2004) A Comparison of Human Muscle Temperature Increases During 3-MHz Continuous and Pulsed Ultrasound With Equivalent Temporal Average Intensities. J Orthop Sports Phys Ther 34:395–401

    Article  PubMed  Google Scholar 

  • Gan BS, Huys S, Sherebrin MH, Scilley CG (1995) The effects of ultrasound treatment on flexor tendon healing in the chicken limb. J Hand Surg (Br) 20:809–814

    Article  CAS  PubMed  Google Scholar 

  • Gange KN, Kjellerson MC, Berdan CJ (2018) The Dynatron Solaris® ultrasound machine: slower heating than textbook recommendations at 3 MHz, 1.0 W/cm2. J Sport Rehabil 27(1):22–29

    Article  PubMed  Google Scholar 

  • Gann N (2003) Relationship between applied pressure and temperature change in a simulated model during therapeutic ultrasound. Physiotherapy 89(12):708–713

    Article  Google Scholar 

  • Garrett CL, Draper DO, Knight KL (2000) Heat distribution in the lower leg from pulsed short-wave diathermy and ultrasound treatments. J Athl Train 35(1):50–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grey K (2003) Distribution of treatment time in physiotherapeutic application of ultrasound. Physiotherapy 89(12):696–707

    Article  Google Scholar 

  • Gurcay E, Unlu E, Gurhan Gurcay A, Tuncay R, Cakci A (2012) Assessment of phonophoresis and iontophoresis in the treatment of carpal tunnel syndrome: a randomized controlled trial. Rheumatol Int 32:717–722

    Article  CAS  PubMed  Google Scholar 

  • ter Haar G, Daniels S, Eastaugh KC, Hill CR (1982) Ultrasonically induced cavitation in vivo. Br J Cancer Suppl 5:151–155

    Google Scholar 

  • ter Haar G (1999) Therapeutic ultrasound. Eur J Ultrasound 9(1):3–9

    Google Scholar 

  • ter Haar G (2007) Therapeutic applications of ultrasound. Prog Biophys Mol Biol 93(1-3):111–129

    Google Scholar 

  • Halle JS, Scoville CR, Greathouse DG (1981) Ultrasound‘s effect on the conduction latency of the superficial radial nerve in man. Phys Ther 61(3):345–350

    Google Scholar 

  • Hardy M, Woodall W (1998) Therapeutic effects of heat, cold, and stretch on connective tissue. J Hand Ther 11(2):148–156

    Google Scholar 

  • Harvey W, Dyson M, Pond JB, Grahame R (1975) The stimulation of protein synthesis in human fibroblasts by therapeutic ultrasound. Rheumatol Rehabil 14:237

    Article  CAS  PubMed  Google Scholar 

  • Hauck M, Noronha Martins C, Borges Moraes M, Aikawa P, da Silva PF, Della Mea Plentz R, Teixeira da Costa S, Vargas da Silva AM, Signori LU (2019) Comparison of the effects of 1 MHz and 3 MHz therapeutic ultrasound on endothelium-dependent vasodilation of humans: a randomised clinical trial. Pysiotherapy 105(1):120–125

    Article  CAS  Google Scholar 

  • Hayes BT, Merrick MA, Sandrey MA, Cordova ML (2004) Three-MHz ultrasound heats deeper into the tissues than originally theorized. J Athl Train 39(3):230–234

    PubMed  PubMed Central  Google Scholar 

  • Herbert MK, Holzer P (2002a) Die Neurogene Entzündung I. Grundlegende Mechanismen. Anaesth Intensivmed Notfallmed Schmerzther 37:314–325

    Article  CAS  Google Scholar 

  • Herbert MK, Holzer P (2002b) Die Neurogene Entzündung II. Pathophysiologie und Klinische Implikationen. Anaesth Intensivmed Notfallmed Schmerzther 37:386–394

    Article  CAS  Google Scholar 

  • Huang JJ, Shi YQ, Li RL, Hu A, Zhou HS, Cheng Q, Xu Z, Yang ZM, Hao CN, Duan JL (2014) Angiogenesis effect of therapeutic ultrasound on ischemic hind limb in mice. Am J Transl Res 6(6):703–713

    Google Scholar 

  • Huber P, Debus J, Jöchle K, Simiantonakis I, Jenne J, Rastert R, Spoo J, Lorenz WJ, Wannenmacher M (1999) Control of cavitation activity by different shockwave pulsing regimes. Phys Med Biol 44(6):1427–1437

    Article  CAS  PubMed  Google Scholar 

  • Huisstede BM, Gebremariam L, van der Sande R, Hay EM, Koes BW (2011) Evidence for effectiveness of Extracorporal Shock-Wave Therapy (ESWT) to treat calcific and non-calcific rotator cuff tendinosis—a systematic review. Man Ther 16(5):419–433

    Google Scholar 

  • Hynynen K, Shimm D, Anhalt D, Stea B, Sykes H, Cassady JR, Roemer RB (1990) Temperature distributions during clinical scanned, focused ultrasound hyperthermia treatments. Int J Hyperthermia 6(5):891–908

    Google Scholar 

  • Johns LD (2002) Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis. J Athl Train 37(3):293–299

    PubMed  PubMed Central  Google Scholar 

  • Johns LD, Straub SJ, Howard SM (2007a) Analysis of effective radiating area, power, intensity, and field characteristics of ultrasound transducers. Arch Phys Med Rehabil 88:124–129

    Article  PubMed  Google Scholar 

  • Johns LD, Straub SJ, Howard SM (2007b) Variability in effective radiating area and output power of new ultrasound transducers at 3 MHz. J Athl Train 42(1):22–28

    PubMed  PubMed Central  Google Scholar 

  • Joshi A, Raje J (2002) Sonicated transdermal drug transport. J Control Release 83(1):13–22

    Google Scholar 

  • Kavros SJ, Coronado R (2018) Diagnostic and Therapeutic Ultrasound on Venous and Arterial Ulcers: A Focused Review. Adv Skin Wound Care 31(2):55–65

    Google Scholar 

  • van Kerkhof PH (2011) Ultraschall Systematisch Anwenden und Dosieren – Geht Das? Auf Einer Literaturrecherche Basierender Vorschlag einer Dosierungsmatrix für Therapeutischen Kontinuierlichen Ultraschall. Physioscience 7(3):112–119

    Google Scholar 

  • Kim Y, Kim J, Kwak K, Yoon BC (2014a) A preliminary study on the effect of high-power pain threshold ultrasound to desensitize latent trigger points: a double-blinded randomized study. J Musculoskeletal Pain 22(2):175–181

    Article  Google Scholar 

  • Kim Y, Yang HR, Lee JW, Yoon BC (2014b) Effects of the high-power pain threshold ultrasound technique in the elderly with latent myofascial trigger points: a double blind randomized study. J Back Musculoskeletal Rehabil 7:17–23

    Article  Google Scholar 

  • Klonschinski T, Ament SJ, Schlereth T, Rompe JD, Birklein F (2011) Application of local anesthesia inhibits effects of low-energy extracorporeal shock wave treatment (ESWT) on nociceptors. Pain Med 12(10):1532–1537

    Google Scholar 

  • Kocaoğlu B, Çabukoglu C, Özeras N, Seyhan M, Karahan M, Yalcin S (2011) The effect of therapeutic ultrasound on metallic implants: a study in rats. Arch Phys Med Rehabil 92:1858–1862

    Article  PubMed  Google Scholar 

  • Kolb J, Nyborg WL (1956) Small-scale acoustic streaming in liquids. J Acoustic Soc America 28(6):1237–1242

    Article  Google Scholar 

  • Kramer JF (1985) Effect of therapeutic ultrasound intensity on subcutaneous tissue temperature and ulnar nerve conduction velocity. Am J Phys Med 64(1):1–9

    Google Scholar 

  • Kramer JF (1987) Sensory and Motor Nerve Conduction Velocities Following Therapeutic Ultrasound. Aus J Phys 33(4):235–243

    Google Scholar 

  • Krasinski D, Thrasher AB, Miller MG, Holcomb WR (2013) Effects of transducer mass on intramuscular temperature during ultrasound treatments. J Sport Rehabil Nov;22(4):296–300

    Google Scholar 

  • Lambert I, Tebbs SE, Hill D, Moss HA, Davies AJ, Elliott TS (2000) Interferential therapy machines as possible vehicles for cross-infection. J Hosp Infect 44(1):59–64

    Article  CAS  PubMed  Google Scholar 

  • Leal C, Ramon S, Furia J, Fernandez A, Romero L, Hernandez-Sierra L (2015) Current concepts of shockwave therapy in chronic patellar tendinopathy. Int J Surg 24(Pt B):160–164

    Google Scholar 

  • Lehmann J (1990) Therapeutic heat and cold, 4. Aufl. Williams & Wilkins, ISBN 0-683-04908-9

    Google Scholar 

  • Lehmann JF, Masock AJ, Warren CG, Koblanski JN (1970) Effect of therapeutic temperatures on tendon extensibility. Arch Phys Med Rehabil 51(8):481–487

    CAS  PubMed  Google Scholar 

  • Leighton TG (2007) What is ultrasound? Prog Biophys Mol Biol Jan-Apr;93(1-3):3–83

    Google Scholar 

  • Levine D, Millis DL, Mynatt T (2001) Effects of 3.3-MHz ultrasound on caudal thigh muscle temperature in dogs. Vet Surg 30:170–174

    Article  CAS  PubMed  Google Scholar 

  • Li J, Waugh LJ, Hui SL, Burr DB, Warden SJ (2007) Low-intensity pulsed ultrasound and nonsteroidal anti-inflammatory drugs have opposing effects during stress fracture repair. J Orthop Res 25:1559–1567

    Article  CAS  PubMed  Google Scholar 

  • Lima LS, Oliveira DP, Costa-Junior JFS, Pinto PA, Omena TP, Costa RM, von Krüger MA, Pereira WCA (2017) Evaluation of gloves as a water bag coupling agent for therapeutic ultrasound. Res Biomed Eng 33(1):42–49

    Article  Google Scholar 

  • Lippmann G (1881) Principe de la conservation de l’électricité, ou second principe de la théorie des phénomènes électriques. J Phys Theor Appl 10(1):381–394

    Article  Google Scholar 

  • Lou S, Lv H, Li Z, Tang P, Wang Y (2018) Effect of low-intensity pulsed ultrasound on distraction osteogenesis: a systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res 12:205–215

    Article  Google Scholar 

  • Lyon R, Liu XC, Meier J (2003) The effects of therapeutic vs. high-intensity ultrasound on the rabbit growth plate. J Orthop Res 21:865–871

    Article  PubMed  Google Scholar 

  • Majlesi J, Ünalan H (2004) High-power pain thershold ultrasound technique in the treatment of active myofascial trigger points: a randomized, double-blind, case-control study. Arch Phys Med Rehabil 85:833–836

    Article  PubMed  Google Scholar 

  • Malliaropoulos N, Thompson D, Meke M, Pyne D, Alaseirlis D, Atkinson H, Korakakis V, Lohrer H (2017) Individualised radial extracorporeal shock wave therapy (rESWT) for symptomatic calcific shoulder tendinopathy: a retrospective clinical study. BMC Musculoskelet Disord 18:513–520

    Article  PubMed  PubMed Central  Google Scholar 

  • Mardiman S, Wessel J, Fisher B (1995) The effect of ultrasound on the mechanical pain threshold of healthy subjects. Physiotherapy 81(12):718–723

    Article  Google Scholar 

  • Maxwell L (1995) Therapeutic ultrasound and tumour metastasis. Physiotherapy 81:272–275

    Article  Google Scholar 

  • Meidan VM, Walmsley AD, Irwin WJ (1995) Phonophoresis – is it a reality? Int J Pharm 118:129–149

    Article  CAS  Google Scholar 

  • Mense S (1978) Effects of temperature on the discharges of muscle spindles and tendon organs. Pflugers Arch 374:15–166

    Article  Google Scholar 

  • Merino G, Kalia YN, Delgado-Charro MB, Potts RO, Guy RH (2003) Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis. J Control Release 88(1):85–94

    Google Scholar 

  • Merrick MA, Mihalyov MR, Roethemeier JL, Cordova ML, Ingersoll CD (2002) A comparison of intramuscular temperatures during ultrasound treatments with coupling gel or gel pads. J Orthop Sports Phys Ther 32:216–220

    Article  PubMed  Google Scholar 

  • Miller MG, Longoria JR, Cheatham CC, Baker RJ, Michael TJ (2008) Intramuscular temperature differences betwen the mid-point and peripheral effective radiating area with ultrasound. J Sports Sci Med 7:286–291

    PubMed  PubMed Central  Google Scholar 

  • Mitragotri S, Edwards DA, Blankschtein D, Langer R (1995) A mechanistical study of ultrasonically-enhanced transdermal drug delivery. J Pharm Sci 84(6):697–706

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Blankschtein D, Langer R (1995) Ultrasound-mediated transdermal protein delivery. Science 11;269(5225):850–853

    Google Scholar 

  • Montgomery L, Elliott SB, Adair HS (2013) Muscle and tendon heating rate with therapeutic ultrasound in horses. Vet Surg 42:243–249

    Article  PubMed  Google Scholar 

  • Moraska AF, Hickner RC, Kohrt WM, Brewer A (2013) Changes in blood flow and cellular metabolism at a myofascial trigger point with trigger point release (ischemic compression): a proof-of-principle pilot study. Arch Phys Med Rehabil 94(1):196–200

    Google Scholar 

  • Mortimer AJ, Dyson M (1988) The effect of therapeutic ultrasound on calcium uptake in fibroblasts. Ultrasound Med Biol 14(6):499–506

    Article  CAS  PubMed  Google Scholar 

  • Myrer JW, Measom GJ, Fellingham GW (2001) Intramuscular Temperature Rises With Topical Analgesics Used as Coupling Agents During Therapeutic Ultrasound. J Athl Train 36(1):20–25

    Google Scholar 

  • Nazer B, Ghahghaie F, Kashima R, Khoklova T, Perez C, Crum L, Matula T, Hata A (2015) Therapeutic ultrasound promotes reperfusion and angiogenesis in a rat model of peripheral arterial disease. Circ J 79:2042–2049

    Article  Google Scholar 

  • Notarnicola A, Tamma R, Moretti L, Fiore A, Vicenti G, Zallone A, Moretti B (2012) Effects of radial shock waves therapy on osteoblasts activities. Musculoskelet Surg 96(3):183–189

    Article  PubMed  Google Scholar 

  • Nyborg WL (1982) Ultrasonic microstreaming and related phenomena. Br J Cancer Suppl. Mar;5:156–60

    Google Scholar 

  • O’Brien W Jr (2007) Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol 93(1–3):212–255

    Article  PubMed  Google Scholar 

  • Ogurtan Z, Celik I, Izci C, Boydak M, Alkan F, Yilmaz K (2002) Effect of experimental therapeutic ultrasound on the distal antebrachial growth plates in one-month-old rabbits. Vet J 164:280–287

    Article  CAS  PubMed  Google Scholar 

  • Oleszkowicz SC, Chittick P, Russo V, Keller P, Sims M, Band J (2012) Infections associated with use of ultrasound transmission gel: proposed guidelines to minimize risk. Infect Control Hosp Epidemiol 33(12):1235–1237

    Article  PubMed  Google Scholar 

  • Oshikoya CA, Shultz SJ, Mistry D, Perrin DH, Arnold BL, Gansneder BM (2000) Effect of coupling medium temperature on rate of intramuscular temperature rise using continuous ultrasound. J Athl Train 35(4):417–421

    Google Scholar 

  • Pan H, Zhou Y, Izadnegahdar O, Cui J, Deng CX (2005) Study of sonoporation dynamics affected by ultrasound duty cycle. Ultrasound Med Biol 31(6):849–856

    Article  PubMed  Google Scholar 

  • Panus PC, Ferslew KE, Tober-Meyer B, Kao RL (1999) Ketoprofen tissue permeation in swine following cathodic iontophoresis. Phys Ther 79(1):40–49

    Article  CAS  PubMed  Google Scholar 

  • Peters J, Luboldt W, Schwarz W, Jacobi V, Herzog C, Vogl TJ (2004) Extracorporeal shock wave therapy in calcific tendinitis of the shoulder. Skeletal Radiol 33(12):712–718

    Google Scholar 

  • Pittet D, Hugonnet S, Harbarth S, Mourouga P, Sauvan V, Touveneau S, Perneger TV (2000) Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Infection Control Programme. Lancet 356(9238):1307–1312

    Article  CAS  PubMed  Google Scholar 

  • Polak A, Franek A, Taradaj J (2014) High-Voltage Pulsed Current Electrical Stimulation in Wound Treatment. Adv Wound Care (New Rochelle) 3(2):104–117

    Google Scholar 

  • Polat BE, Hart D, Langer R, Blankschtein D (2011) Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 152(3):330–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poltawski L, Watson T (2007) Transmission of therapeutic ultrasound by wound dressings. Wounds 19(1):1–12

    PubMed  Google Scholar 

  • Poolman RW, Agoritsas T, Siuemieniuk RAC, Harris IA, Schipper IB, Mollon B, Smith M, Albin A, Nador S, Sasges W, Schandelmeier S, Lytvyn L, Kuijpers T, van Beers LWAH, Verhofstad MHJ, Vandvik PO (2017) Low intensity pulsed ultrasound (LIPUS) for bone healing: a clinical practice guideline. BMJ 356:j576

    Article  PubMed  Google Scholar 

  • Pye SD, Milford C (1994) The performance of ultrasound physiotherapy machines in lothian region, Scotland 1994. Ultrasound Med Biol 20(4):347–359

    Article  CAS  PubMed  Google Scholar 

  • Quan KM, Shiran M, Watmough DJ (1989) Applicators for generating ultrasound-induced hyperthermia in neoplastic tumours and for use in ultrasound physiotherapy. Phys Med Biol 34(11):1719–1731

    Article  CAS  PubMed  Google Scholar 

  • Qureshi F, Larrabee Z, Roth C, Hananel A, Eames M, Moore D, Snell J, Kassell N, Aubry J-F (2015) Thermochromic phantom for therapeutic ultrasound daily quality assurance. J Therapeutic Ultrasound 3(suppl 1):72–73

    Article  Google Scholar 

  • Reher P, Doan N, Bradnock B, Meghji S, Harris M (1999) Effect of ultrasound on the production of IL-8, basic FGF and VEGF. Cytokine 11:416–423

    Article  CAS  PubMed  Google Scholar 

  • Reher P, Harris M, Whiteman M, Hai HK, Meghji S (2002) Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts. Bone 31:236–241

    Article  CAS  PubMed  Google Scholar 

  • Reilly JM, Bluman E, Tenforde AS (2018) Effect of shockwave treatment for management of upper and lower extremity musculoskeletal conditions: a narrative review. PM&R 10(12):1385–1403

    Article  Google Scholar 

  • Rich KT, Hoerig CL, Rao MB, Mast TD (2014) Relations between acoustic cavitation and skin resistance during intermediate- and high-frequency sonophoresis. J Control Release 194:266–77

    Google Scholar 

  • Robertson VJ, Ward AR (1995) Subaqueous ultrasound: 45kHz and 1MHz machines compared. Arch Phys Med Rehabil 76(6):569–575

    Google Scholar 

  • Robertson VJ, Ward AR (1995a) Subaqueous ultrasound: the depth efficiency of heating of 1 MHz and 45 kHz ultrasound machines compared. Arch Phys Med Rehabil 76:569–575

    Article  CAS  PubMed  Google Scholar 

  • Robertson VJ, Ward AR (1995b) Subaqueous ultrasound: 45kHz and 1MHz machines compared. Arch Phys Med Rehabil 76(6):569–575

    Google Scholar 

  • Roerdink RL, Dietvorst M, van der Zwaard B, van der Worp H, Zwerver J (2017) Complications of extracorporeal shockwave therapy in plantar fasciitis: systematic review. Int J Surg 46:133–145

    Article  CAS  PubMed  Google Scholar 

  • Roman N (2017) Physiotherapy devices able to generate ethical dilemmas. MATEC Web Conf IManE&E 112:1–7

    Google Scholar 

  • Rompe JD, Kirkpatrick CJ, Küllmer K, Schwitalle M, Krischek O (1998) Dose-related effects of shock waves on rabbit tendo Achillis. A sonographic and histological study. J Bone Joint Surg Br 80(3):546–552

    Google Scholar 

  • Rose S, Draper DO, Schulthies SS, Durrant E (1996) The stretching window part two: rate of thermal decay in deep muscle following 1-MHz ultrasound. J Athl Train 31(2):139–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosim GC, Barbieri CH, Lanças FM, Mazzer N (2005)Diclofenac phonophoresis in human volunteers. Ultrasound Med Biol. Mar;31(3):337–43

    Google Scholar 

  • Royer BC, de Fátima Albuquerque C, da Silva CF, Walker Zancanaro G, Nakayama GK, Bertolini GRF (2018) Comparison of combined therapy with ultrasound-associated interferential current in healthy subjects. Br J Pain 1(1):51–54

    Google Scholar 

  • Rutten S, van den Bekerom MPJ, Sierevelt IN, Nolte PA (2016) Enhancement of bone-healing by low-intensity pulsed ultrasound. A systematic review. JBJS Rev 4(3):e6

    Article  PubMed  Google Scholar 

  • Saggini R, Di Stefano A, Saggini A, Bellomo RG (2015a) Clinical application of shock wave therapy in musculoskeletal disorders: part I. J Biol Regul Homeost Agents 29(3):533–545

    CAS  PubMed  Google Scholar 

  • Saggini R, Di Stefano A, Saggini A, Bellomo RG (2015b) Clinical application of shock wave therapy in musculoskeletal disorders: part II related to myofascial and nerve apparatus. J Biol Regul Homeost Agents 29(4):771–785

    CAS  PubMed  Google Scholar 

  • Said Ahmed MA, Saweeres ES, Abdelkader NA, Abdelmajeed SF, Fares AR (2019) Improved pain and function in knee osteoarthritis with dexamethasone phonophoresis: a randomized controlled trial. Indian J Orthop 53:700–707

    Article  PubMed  PubMed Central  Google Scholar 

  • Saini V, Yadav S, McCormick S (2011) Low-intensity pulsed ultrasound modulates shear stress induced PGHS-2 expression and PGE2 synthesis in MLO-Y4 osteocyte-like cells. Ann Biomed Eng 39:378–393

    Article  PubMed  Google Scholar 

  • Sakharov DV, Hekkenberg RT, Rijken DC (2000) Acceleration of fibrinolysis by high-frequency ultrasound: the combination of acoustic streaming and temperature rise. Thromb Res 100:333–340

    Article  CAS  PubMed  Google Scholar 

  • Sangtong K, Chupinijrobkob C, Putthakumnerd W, Kuptniratsaikul V (2019) Does adding transcutaneous electrical nerve stimulation to therapeutic ultrasound affect pain or function in people with osteoarthritis of the knee? A randomized controlled trial. Clin Rehab 1–9

    Google Scholar 

  • Schabrun S, Chipchase L (2006) Healthcare equipment as a source of nosocomial infection: a systematic review. J Hosp Infection 63:239–245

    Article  CAS  Google Scholar 

  • Schabrun S, Chipchase L, Rickard H (2006 Jun) Are therapeutic ultrasound units a potential vector for nosocomial infection? Physiother Res Int 11(2):61–71

    Article  PubMed  Google Scholar 

  • Schandelmeier S, Kaushal A, Lytvyn L, Heels-Ansdell D, Siemieniuk RAC, Agoritsas T, Guyat GH, Vandvik PO, Couban R, Mollon B, Busse JW (2017) Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials. BMJ 356:j656

    Article  Google Scholar 

  • Schmidt RF, Lang F, Heckmann M (2011) Physiologie des Menschen, mit Pathophysiologie. Springer, Berlin/Heidelberg, Print ISBN 978-3-642-01650-9

    Book  Google Scholar 

  • Schmitz C, Császár NBM, Milz S, Schieker M, Maffulli N, Rompe JD, Furia JP (2015) Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database. Br Med Bull 116:115–138

    PubMed  PubMed Central  Google Scholar 

  • Shin SM, Choi JK (1997) Effect of indomethacin phonophoresis on the relief of temporomandibular joint pain. Cranio 15(4):345–348

    Article  CAS  PubMed  Google Scholar 

  • Sicard-Rosenbaum L, Lord D, Danoff JV, Thom AK, Eckhaus MA (1995) Effects of continuous therapeutic ultrasound on growth and metatasis of subcutaneous murine tumors. Phys Ther 75:3–13

    Article  CAS  PubMed  Google Scholar 

  • Simons DG, Travell JG (1999) Myofascial pain and dysfunction. The trigger point manual. Volume 1: upper half of body, 2. Aufl. Lippincott Williams & Wilkins, ISBN 0-683-08363-5

    Google Scholar 

  • Skoubo-Kristensen E, Sommer J (1982) Ultrasound influence on internal fixation with a rigid plate in dogs. Arch Phys Med Rehabil 63(8):371–373

    CAS  PubMed  Google Scholar 

  • Smith NB (2007) Perspectives on transdermal ultrasound mediated drug delivery. Int J Nanomedicine 2(4):585–594

    Google Scholar 

  • Soyupek F, Kutluhan S, Uslusoy G, Ilgun E, Eris S, Askin A (2012) The efficacy of phonophoresis on electrophysiological studies of the patients with carpal tunnel syndrome. Rheumatol Int 32:3235–3242

    Article  CAS  PubMed  Google Scholar 

  • Sprat HG, Levine D, Tillman L (2014) Physical therapy clinic therapeutic ultrasound equiprment as a source for bacterial contamination. Physiother Theory Pract 30(7):507–511

    Article  Google Scholar 

  • Stania M, Juras G, Chmielewska D, Polak A, Kucio C, Król P (2019) Extracorporeal shock wave therapy for Achilles tendinopathy. Bio Med Res Int 26:3086910

    Google Scholar 

  • Steiss JE, Adams CC (1999) Effect of coat on rate of temperature increase in muscle during ultrasound treatment of dogs. Am J Vet Res 60(1):76–80

    CAS  PubMed  Google Scholar 

  • Stewart HF, Harris GR, Herman BA, Robinson RA, Haran ME, McRall GR, Carless G, Rees D (1974) Survey of use and performance of ultrasonic therapy equipment in Pinellas County, Florida. Phys Ther 54(7):707–715

    Article  CAS  PubMed  Google Scholar 

  • Straub SJ, Johns LD, Howard SM (2008) Variability in effective radiating area at 1 MHz affects ultrasound treatment intensity. Phys Ther 88:50–57

    Article  PubMed  Google Scholar 

  • Sundaram J, Mellein BR, Mitragotri S (2003) An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J May;84(5):3087–10

    Google Scholar 

  • Taradaj J, Franek A, Brzezinska-Wcislo L, Cierpka L, Dolibog P, Chmielewska D, Blaszczak E, Kusz D (2008) The use of therapeutic ultrasound in venous leg ulcers: a randomized, controlled clinical trial. Phlebology 23(4):178–183

    Google Scholar 

  • Testa G, Vescio A, Sessa G, Pavone V, Perez S, Consoli A, Costarella L (2020) Extracorporeal shockwave therapy treatment in upper limb diseases: a systematic review. J Clin Med 9:453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tezel A, Mitragotri S (2003) Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low frequency sonophoresis. Biophys J 85:3502–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travell J, Simons D (1999) Myofascial Pain and Dysfunction. The Trigger Point Manual. Volume 1. Williams and Wilkins 1999 ISBN 0-683-08366-X

    Google Scholar 

  • Turner SM, Powell ES, Ng CSS (1989) The effect of ultrasound on the healing of repaired cockerel tendon: is collagen cross-linkage a factor? J Hand Surg (Br) 14B:428–433

    Article  Google Scholar 

  • Ueda H, Mutoh M, Seki T, Kobayashi D, Morimoto Y (2009) Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery. Biol Pharm Bull 32(5):916–920

    Google Scholar 

  • Vahdatpour B, Alizadeh F, Moayednia A, Emadi M, Khorami MH, Haghdani S (2013) Efficacy of extracorporeal shock wave therapy for the treatment of chronic pelvic pain syndrome: a randomized, controlled trial. ISRN Urol 2013:972601

    Google Scholar 

  • Vetrano M, d‘Alessandro F, Torrisi MR, Ferretti A, Vulpiani MC, Visco V (2011) Extracorporeal shock wave therapy promotes cell proliferation and collagen synthesis of primary cultured human tenocytes. Knee Surg Sports Traumatol Arthrosc 19(12):2159–2168

    Google Scholar 

  • Wadhwa S, Godwin SL, Peterson DR, Epstein MA, Raisz LG, Pilbeam CC (2002) Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal-regulated kinase signaling pathway. J Bone Miner Res 17:266–274

    Article  CAS  PubMed  Google Scholar 

  • Wang CJ, Huang HY, Pai CH (2002) Shock wave-enhanced neovascularization at the tendon-bone junction: an experiment in dogs. J Foot Ankle Surg 41(1):16–22

    Google Scholar 

  • Wang YC, Chen SJ, Huang PJ, Huang HT, Cheng YM, Shih CL (2019) Efficacy of different energy levels used in focused and radial extracorporeal shockwave therapy in the treatment of plantar fasciitis: a meta-analysis of randomized placebo-controlled trials. J Clin Med 8(9):1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward AR, Robertson VJ (1996a) Dosage factors for the subaqueous application of 1 MHz ultrasound. Arch Phys Med Rehabil 77:1167–1172

    Article  CAS  PubMed  Google Scholar 

  • Ward AR, Robertson VJ (1996b) Comparison of heating of nonliving soft tissue produced by 45 kHz and 1 MHz frequency ultrasound machines. J Orthop Sports Phys Ther 23(4):258–266

    Article  CAS  PubMed  Google Scholar 

  • Warden SJ, Favaloro JM, Bennell KL, McMeeken JM, Ng KW, Zajac JD, Wark JD (2001) Low-intensity pulsed ultrasound stimulates a bone-forming response in UMR-106 Cells. Biochem Biophys Res Commun 286:443–450

    Article  CAS  PubMed  Google Scholar 

  • van Warmel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, de Jong N (2006) Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 112(2):149–155

    Article  Google Scholar 

  • Warren CG, Lehmann JF, Koblanski JN (1971) Elongation of rat tail tendon: effect of load and temperature. Arch Phys Med Rehabil 52(10):465–474

    CAS  PubMed  Google Scholar 

  • Waugh CM, Morrissey D, Jones E, Riley GP, Langberg H, Screen HR (2015) In vivo biological response to extracorporeal shockwave therapy in human tendinopathy. Eur Cell Mater 29:268–280; discussion 280

    Google Scholar 

  • Weaver SL, Demchak TJ, Stone MB, Bruckner JB, Burr PO (2006) Effect of transducer velocity on intramuscular temperature during a 1-MHz ultrasound treatment. J Orthop Sports Phys Ther 36(5):320–325

    Article  PubMed  Google Scholar 

  • Webster DF, Harvey W, Dyson M, Pond JB (1980) The role of ultrasound-induced cavitation in the “in vitro” stimulation of collagen synthesis in human fibroblasts. Ultrasonics 18(1):33–37

    Article  CAS  PubMed  Google Scholar 

  • Wess OJ (2008) A neural model for chronic pain and pain relief by extracorporeal shock wave treatment. Urol Res 36(6):327–334

    Article  PubMed  Google Scholar 

  • Williams AR, McHale J, Bowditch M, Miller DL, Reed B (1987) Effects of MHz ultrasound on electrical pain threshold perception in humans. Ultrasound Med Biol 13(5):249–258

    Article  CAS  PubMed  Google Scholar 

  • Wolloch L, Kost J (2010) The importance of microjet vs shock wave formation in sonophoresis. J Control Release 148(2):204–211

    Google Scholar 

  • Yang KH, Parvizi J, Wang SJ, Lewallen DG, Kinnick RR, Greenleaf JF, Bolander ME (1996) Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J Orthop Res 14(5):802–809

    Google Scholar 

  • Yildiz N, Atalay NS, Gungen GO, Sanal E, Akkaya N, Topuz O (2011) Comparison of ultrasound and ketoprofen phonophoresis in the treatment of carpal tunnel syndrome. J Back Musculoskeletal Rehab 24:39–47

    Article  Google Scholar 

  • Young SR, Dyson M (1990) The effect of therapeutic ultrasound on angiogenesis. Ultrasound Med Biol 16(3):261–269

    Article  CAS  PubMed  Google Scholar 

  • Žauhar G, Radojčić ĐS, Kaliman Z, Schnurrer-Luke-Vrbanić T, Jurković S (2019) Determination of physiotherapy ultrasound beam quality parameter from images derived using thermochromic material. Ultrasonics 99:1–6

    Article  Google Scholar 

  • Zimmermann R, Cumpanas A, Miclea F, Janetschek G (2009) Extracorporeal shock wave therapy for the treatment of chronic pelvic pain syndrome in males: a randomised, double-blind, placebo-controlled study. Eur Urol 56(3):418–424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

7.1 Elektronisches Zusatzmaterial

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Kerkhof, P. (2022). Ultraschalltherapie. In: Evidenzbasierte Elektrotherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63536-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63536-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63535-3

  • Online ISBN: 978-3-662-63536-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics